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Lower bound for the Fermi-level density of states of a disordered d-wave superconductor
in two dimensions
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We consider a disordered d-wave superconductor in two dimensions. Recently, we have shown in an exact
calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle
density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the
Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian
distribution, one can establish a nonzero lower bound for the Fermi-level density of states. The fact that the
tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained
before is generic. @S0163-1829~98!01617-8#
I. INTRODUCTION

Considerable evidence for d-wave superconductivity in
the high-temperature cuprate superconductors has led to in-
terest in studying the effect of disorder on d-wave paired
systems. Unlike s-wave superconductors ~SC's !, where
Anderson's theorem 1 predicts negligible effect of nonmag-
netic impurities on thermodynamic properties, simple defects
are expected to be pairbreaking in superconductors with gap
nodes, and are in fact generally thought to induce ®nite den-
sity of quasiparticle states N(0) at the Fermi level. As in
disordered normal metals, one might expect properties of
such systems to depend strongly on dimensionality. In fact,
Nersesyan et al. ~NTW! have shown2 that the usual t-matrix
approximation for impurity scattering, which is exact in the
dilute limit in three dimensions ~3D!, breaks down for a
strictly 2D d-wave superconductor. By mapping the problem
onto a continuum model of Dirac fermions in a random
gauge ®eld, subsequently solved by bosonization methods,
NTW claimed that the density of states of such systems must
go to zero at the Fermi level as a power law, N(E)}Ea.
Later it was realized that for a realistic d-wave SC with four
nodes on the Fermi surface their result might not be
applicable.3 Although the real materials in question are
quasi-2D, it is of considerable importance to establish the
effect of disorder in the strictly 2D case because the exis-
tence of a 2D-3D crossover at low energies could invalidate
the standard picture of low-temperature thermodynamics in a
d-wave superconductor developed under the assumption of a
®nite residual density of statesN(0).
Recently,4 we have shown that for a lattice model of a

disordered d-wave superconductor in two spatial dimensions,
one can obtain an exact result for the density of states ~DOS!
570163-1829/98/57~17!/10825~6!/$15.00
N(E), provided that the disorder is modeled by a Lorentzian
distribution of the chemical potential. The result was a ®nite
DOS at the Fermi level N(0)/N0}g ln 4D0 /g with N0 the
normal DOS at the Fermi level, D0 the maximum value of
the superconducting order parameter over a circular Fermi
surface, and g the width of the Lorentzian distribution. We
also quoted rigorous lower bounds for N(0) for a large class
of disorder distributions which we obtained using methods
developed in a different context. These results and the un-
derlying methods were questioned in a Comment by Ners-
esyan and Tsvelik.6 They claimed that our result for a
Lorentzian distribution, while simple to obtain and exact for
all energies, is nongeneric. Their claim was based on the
observation that an expansion of the resulting DOS for small
disorder strength is inconsistent with a straightforward per-
turbative calculation of the DOS using standard diagram
techniques with Gaussian disorder. In a Reply7 we pointed
out that one cannot expect such a comparison to make sense
since the perturbation series based on a Lorentzian distribu-
tion cannot be de®ned due to the divergence of all moments.
In the light of this controversy, our proof of lower positive
bounds for the DOS in the case of more general disorder
distributions acquires a special importance.
In this paper we therefore present in some detail the deri-

vation of the nonzero lower bound for the DOS at the Fermi
level which in a different context was ®rst given in Ref. 5.
We stress that since our results are lower bounds, no argu-
ments about the dependence of the DOS on disorder strength
can be made. It suf®ces for our purposes to show that a lower
bound exists, and that its existence does not depend on the
speci®cs of the tails of the distribution, i.e., power-law de-
cay, exponential decay or compact support of the distribution
will all give a nonzero lower bound for the DOS.
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The paper is organized as follows. First, we formulate the
problem and give a general outline of the proof. Second, we
show preliminary calculations which will be used in the
proof. We then derive the nonzero lower bound for a certain
class of Hamiltonians. Finally, we show that the Hamiltonian
of interest belongs to this class. We conclude with ®nal re-
marks about cases where the method fails to give a nonzero
lower bound ~e.g., s-wave superconductors!.

II. FORMULATION OF THE PROBLEM AND OUTLINE
OF THE PROOF

The problem is de®ned4 by the Bogliubov±de Gennes
Hamiltonian

H52~¹21m !s31DÃds1 , ~1!

m being the random chemical potential, distributed according
to a symmetric distribution function P(mr) (s i are the Pauli
matrices, s0 is the 232 identity matrix!. The kinetic energy
operator 2¹2 is taken to act as ¹2C(r)5C(r12e1)
1C(r22e1)1C(r12e2)1C(r22e2) on a function
C(r) of the sites r of a 2D square lattice L spanned by the
unit vectors e1 and e2. The diagonal term of 2¹2 can be
absorbed in the nonrandom part of the chemical potential m0.
For the particle-hole symmetric pure system we consider we
have m050. Note that this function involves displacements
of two lattice sites rather than one, as would be the case in
the simplest tight-binding representation of the lattice kinetic
energy. For a system of fermions in the thermodynamic
limit, the bare kinetic energy will then have a band represen-
tation quite similar to the usual tight-binding form, with no
particular distinguishing features near the Fermi level. In the
above de®nition of the kinetic energy, we have taken the
hopping matrix element as our unit of energy. The bilocal
lattice operator DÃd[Dr ,r8 is taken be DÃdC(r)5D@C(r
1e1)1C(r2e1)6C(r1e2)6C(r2e2)# . The Matsubara
Green function G(iE)5(iEs02H)21 determines the den-
sity of states in the usual way, namely, by

N~E !5
21
2p

Im Tr2^Gr ,r~ iE→E1ie !& ~2!

where the trace Tr2 refers to the 232 structure of the Hamil-
tonian, corresponding to quasiparticles and quasiholes of the
superconductor. ^•••& denotes the disorder average, which
consists of integration over the disorder variable ~the chemi-
cal potential! at every site of the lattice, with a measure given
by P(mr)dmr .
To derive a lower bound of the average DOS we ®rst

write the Green function as

G~ iE !5
i~ iEs01H !

2E @~HÄ2iEs0!
212~HÄ1iEs0!

21# ,

~3!

where the new Hamiltonian HÄ5HDs352(¹21m)Ds0
2iDDs2 has been introduced for formal reasons ~cf. Ref. 4
and below!. The matrix D is diagonal with matrix elements
Dr ,r85(21)

r11r2dr ,r8 (r1 ,r2 are the two components of the
2D r vector!. Equation ~3! holds for any distribution of ran-
domness in the Hamiltonian, before averaging. We are inter-
ested in the DOS at the Fermi level, i.e., at zero energy. This
means that after the analytic continuation iE→E1ie we
will set E50. Consequently, iE→ie ~with positive e), and
the local DOS at the Fermi level at lattice site r reads

Nr~0 !5
21
2p

Tr2 Im Grr~ ie !5
2i
4p

Tr2@~HÄ2ies0!rr
21

2~HÄ1ies0!rr
21#5

e

2p
Tr2~HÄ21e2s0!rr

21 . ~4!

From the analytic properties of G it follows that Nr is non-
negative ~either positive or zero!.
The average DOS (1/uLu)^(rPLNr& can be estimated

from below using the method worked out in Ref. 5. The
central idea of the proof is to divide the lattice L into ®nite
lattice blocks $S j%. We then evaluate the average DOS on
these lattice blocks and also the contribution from the inter-
actions of the lattice blocks. On the lattice blocks a ``coarse
graining'' method will be used by relating the disorder inte-
gration over all other sites to one at the ``center'' of S . On
this ``center'' site the range of integration of the random
variable zr5mrD will be restrained to a ®nite interval
@2a ,a# . The cutoff a eliminates the contribution of the tails
of the distribution. Since Nr is nonnegative, the tail contri-
bution can only add to the result obtained by integrating over
@2a ,a# . Thus, if we are able to ®nd anonzero average DOS
by integrating only over the ®nite interval @2a ,a# we have
obtained a nonzero DOS without relying on tail contribu-
tions. This explains why distributions with power-law tails
~e.g., Lorentzian distribution! lead qualitatively to the same
results as, for example, the Gaussian distribution or distribu-
tions with exponential decay.
The proof rests on an identity @Eq. ~14! in the next sec-

tion# that is intimately connected with the fact that the local
DOS Nr ~before averaging! is nonnegative. It also relies on
the in®mum of the disorder distribution in the restricted
range @2a ,a# being ®nite. This puts some limits on the ap-
plicability of the proof to compact distributions, but it always
holds for unbounded distributions such as the Gaussian or
the Lorentzian. The result can be summarized by the follow-
ing statement: For any ®nite subregion S of the lattice L
with boundary ]S , de®ned by the lattice sites ofL\S which
are connected to S by the matrix elements of HÄ, there exists
a distribution dependent positive constant PS , related to a
restricted disorder distribution on S , with

1
uLuK (

rPL
NrL >PS~12u]Su/uSu!. ~5!

Since the block size uSu grows faster than the size of the
boundary u]Su the right-hand side is positive above a certain
block size.
It should be noted that the method of this paper will not

give a nonzero lower bound for the DOS for every Hamil-
tonian. We will determine the conditions for the lower bound
to be nonzero and show that the Hamiltonian of interest
(d-wave SC! ful®lls these conditions. We will also show that
for an isotropic s-wave SC with a local order parameter the
method will only yield a ~trivial! vanishing bound for the
Fermi level DOS.
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III. PRELIMINARY CONSIDERATIONS

As a ®rst step we evaluate the integral *2`
` Nrdzr . For

this purpose the identity

IS~HÄ1ISAIS!21IS5@~HÄ21!S
211ISAIS#S

21 ~6!

is useful. IS is the projector onto the region S , and (•••)S
21

5IS(IS•••IS)21IS is the inverse on the region S . The proof
of this identity is given in Appendix A. Choosing S5$r%,
i.e., just a single lattice site, we note that the 232 matrix
@(HÄ1zrs01ies0)21#$r%

21 is diagonal. Furthermore, it is pro-
portional to the unit matrix s0 as a consequence of the de®-
nition of HÄ, which involves only s0 and s2. ~Terms of the
inverse that are proportional to s2 are nonlocal and, conse-
quently, projected out by I $r% .! Therefore, we can write

@~HÄ1zrs01ies0!
21#$r%

215S Xr1iY r 0
0 Xr1iY rD , ~7!

where Y r}e.0. For the special choice I $r%AI $r%52zrs0 in
Eq. ~6! we obtain

~HÄ1ies0!rr
215$@~HÄ1zrs01ies0!

21#$r%
212zrs0%rr

21 .
~8!

This gives for the local DOS of Eq. ~4!

1
p
Y r@~Xr2zr!21Y r

2#21. ~9!

The integration over zr leads to

E
2`

`

Nrdzr51. ~10!

This result will be used below. It is nontrivial as, for ex-
ample, for an s-wave SC with a local order parameter term
Ds1 the equivalent of Eq. ~7! would have also off-diagonal
entries. In fact, we have shown in Ref. 4 that the correspond-
ing expression of the local DOS of the s-wave supercon-
ductor reads

Nr~0 !52
1
p

ie

2AD21e2
@~2¹22m2iAD21e2!rr

21

2~2¹22m1iAD21e2!rr
21# , ~11!

i.e., it is proportional to e/AD21e2. This implies a vanishing
DOS in the limit e→0 as long as the superconducting order
parameter is nonzero. Of course, that is what is expected for
a SC with a nonvanishing gap everywhere on the Fermi sur-
face ~Anderson's theorem !.1
The local DOS Eq. ~4! can be written in a differential

form as

Nr5
i
4p

]

]zr
@ ln det~HÄ2ies0!2ln det~HÄ1ies0!#

5
i
4p

]

]zr
$ln det@122ie~HÄ1ies0!

21#%, ~12!
which follows from the fact that the differentiation with re-
spect to zr picks the r ,r component of HÄ6ies0. We de®ne
a matrix A as

A:522ie~HÄ1ies0!
21. ~13!

Because the DOS is non-negative the function i ln det(1
1A) is a nondecreasing function of zr . As a consequence of
the Eq. ~10! we have the following integral:

E
2`

`

Nrdzr5
i
4p

ln det~11A !uzr52`
zr5`

51. ~14!

IV. LOWER BOUND OF THE AVERAGE DOS

A. Coarse graining and elimination of the distribution tails

Now we consider the average local DOS summed over all
lattice sites on a ®nite lattice blockS , and restrict the range
of integration over zr to a ®nite region in order to eliminate
the tail contributions. If we can ®nd a nonzero lower bound
for the DOS in this way, we have established it indepen-
dently of the speci®c decay ~e.g., power law or exponential!
at large values of the disorder variable. First we choose a site
r0PS for which we restrict the zr integration to the interval
@2a ,a# . For the remaining integrations on S we de®ne

zr5zr01dzr ~15!

with dzrP@0,d# . The above choice of the range of integra-
tion on S is suf®cient but not necessary, i.e., different
choices can be made as long as the range of integration is
®nite and certain conditions discussed below are satis®ed. In
the case considered a must be chosen large enough to in-
clude all singularities of the Green function. This is the case
if it satis®es the inequality

0,a2d24~11D ! ~16!

as we will see below. Using the notation ^•••&S8 for this
restricted averaging on S we have

^Nr&>^Nr&S8 ~17!

because Nr is nonnegative. Then we can write with Eq. ~12!

K (
rPS

NrL
S

8
5

i
4pK (

rPS

]

]zr
lndet~11A !L

S

8

5
i
4pK E

2a

a
dzr0P~zr0!

3S )
rPS ,rÞr0

E
zr0

zr01d
dzrP~zr!D

3
]

]zr0
ln det~11A !L

L\S

, ~18!

where ^•••&L\S refers to the ~unrestricted, i.e., zrP
@2` ,`#) averaging over zr on all lattice sites on L except
the ones on S .
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We now bound the right-hand side ~RHS! of Eq. ~18! from below by pulling out certain in®ma of the distribution. As a ®rst
step, we pull out the in®mum of the distribution on zr0. This leads to

> inf
zr0P@2a ,a#

P~zr0!
i
4pK E

2a

a
dzr0S )

rPS ,rÞr0
E
zr0

zr01d
dzrP~zr!D ]

]zr0
ln det~11A !L

L\S

. ~19!

Furthermore, by pulling out the in®mum of the integrand of) rPS ,rÞr0* zr0

zr01ddzrP(zr) we obtain

> inf
zr0P@2a ,a#

P~zr0!
i
4pK E2a

a
dzr0 inf

zrP@z0 ,z01d#

]

]zr0
ln det~11A !F )

rPS ,rÞr0
E
zr0

zr01d
P~zr!dzrG L

L\S

. ~20!

Pulling out the integral over zr (r0ÞrPS) eventually yields

> inf
zr0P@2a ,a#

P~zr0! inf
zr0P@2a ,a#

S Ezr0
zr01d

P~zr!dzrD uSu21 i
4pK inf

zrP@z0 ,z01d#
E

2a

a
dzr0

]

]zr0
ln det~11A !L

L\S

. ~21!
The disorder distribution on the block S is now taken care of
by the coef®cient

PS :5 inf
zr0P@2a ,a#

P~zr0!

3 inf
zr0P@2a ,a#

S Ezr0
zr01d

P~zr!dzrD uSu21
~22!

which multiplies the remaining disorder average over L\S .
PS is nonzero as long as the disorder distribution P(zr) is not
vanishing in the restricted range of integration. This is cer-
tainly true for unbounded distributions, such as a Gaussian.
However, compact distributions with a narrow range of dis-
order will fail to provide a nonzero lower bound. This will be
discussed in more detail below.

B. General lower bound for the DOS

Combining Eqs. ~18!, ~21!, and ~22! we obtain

K (
rPS

NrL
S

8
>

i
4p

PS^ inf
zrP@z0 ,z01d#

@ ln det~11A !uzr05a

2ln det~11A !uzr052a#&L\S . ~23!

In the next step we isolate the lattice block S from the rest of
the lattice L by sending zr to 6` on the boundary ]S of S .
~Particles trying to occupy sites on the boundary will either
be trapped or repelled by an in®nitely strong barrier.! The
boundary ]S is de®ned by all sites ofL which are not in S
but connected with S by the matrix HÄ, i.e., all sites r¹S with
ur2r8u51,2 for any r8PS . ~Observe that due to the de®ni-
tion of the Laplacian the ``boundary'' is actually two layers
around the block S .! With the above de®nition of the bound-
ary ]S the matrix (12I]S)HÄ(12I]S) separates into one
block matrix on S and another one on L\Sø]S

~12I]S!HÄ~12I]S!5ISHÄIS1IL\Sø]SHÄIL\Sø]S . ~24!

Applying the identities of Appendix A, it follows that the
inverse of (12I]S)HÄ(12I]S) separates into two block ma-
trices. Consequently, limzr→2`(rP]S)A5AL\]S :522ie(HÄ
1ies0)L\]S

21 also separates into two block matrices

AL\]S5AS1AL\Sø]S . ~25!

Performing the limiting process for the lower bound of the
DOS we can use the fact that i ln det(11A) is a nondecreas-
ing function of zr

]

]zr

i
4p

ln det~11A !5Nr>0. ~26!

This implies a lower bound for the RHS of Eq. ~23! if we
decrease the ®rst term in Eq. ~23! by taking zr→2` and
increase the second term by taking zr→` ~on the boundary
of S). The result of this procedure is the lower bound

i
4p

PS^ inf
zrP@z0 ,z01d#

@ lim
zr→2`~rP]S !

ln det~11A !uzr05a

2 lim
zr→`~rP]S !

ln det~11A !uzr052a]&L\~Sø]S ! . ~27!

Next, we rewrite the second ~negative! term by applying suc-
cessively Eq. ~14! for all rP]S . This yields

lim
zr→`~rP]S !

i ln det~11A !

54pu]Su1 lim
zr→2`~rP]S !

i ln det~11A !. ~28!

We therefore have for the expression ~27!
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i
4p

PS^ inf
zrP@z0 ,z01d#

@ lim
zr→2`~rP]S !

ln det~11A !uzr05a

2 lim
zr→2`~rP]S !

ln det~11A !uzr052a]&L\~Sø]S !2PSu]Su.

~29!

There is no contribution from the matrix A on L\Sø]S ,
since this matrix part does not depend on zr056a . Conse-
quently, the difference of these contributions gives zero, and
we ®nd a lower bound of the form

K (
rPS

NrL
S

8
>

i
4p

PS inf
zrP@z0 ,z01d#

@ ln det~11AS!uzr05a

2ln det~11AS!uzr052a#2PSu]Su. ~30!

The right-hand side of Eq. ~30! is a difference between a
contribution from the block S ~the logarithmic terms! and a
boundary contribution ~the u]Su term!. If the contribution of
the block grows with its volume uSu we ®nd for suf®ciently
large lattice blocks a positive lower bound for the RHS of
Eq. ~30!. We show below that this is indeed the case for the
considered model of a d-wave SC.

C. Lower bound for a 2D d-wave superconductor

The growth of the block contribution with the volume uSu
follows from the range of the disorder integration on S @Eqs.
~15! and ~16!#. To see this we de®ne

H85ISHÄIS1zr0s0IS . ~31!

ISHÄIS and H8 can be diagonalized by unitary transforma-
tions. An eigenvalue l j of ISHÄIS satis®es2zr01minlj8<lj

<2zr01maxlj8 . This implies for the terms in Eq. ~30!,
where zr056a

7a1minl j8<l j<7a1maxl j8 . ~32!

An upper bound of l j8
2 can be derived from the eigenvalues

of IS(H1zr0Ds3)IS ~see Appendix B!. It yields ul j8u<4(1
1D)1d , since the deterministic part of the Hamiltonian
2¹2s31DÃds1 has an upper bound 4(11D), and the ran-
dom part comes from dzr (0<dzr<d). Thus we obtain

2a24~11D !<l j<2a14~11D !1d ~zr05a !,
~33!

a24~11D !<l j<a14~11D !1d ~zr052a !.
~34!

The condition for a in Eq. ~16! guarantees that for zr05a
(zr052a) all eigenvalues l j are negative ~positive!. Conse-
quently, the argument of the logarithm for any eigenvalue
l j , 122ie/(l j1ie), is 11ie (12ie) for the ®rst ~second!
term in Eq. ~30!. In order to deal with the branch cut of the
complex logarithm we let 2e→2p2e for the second term
in Eq. ~30!. Now we can safely let e→0 in both terms and
obtain for
i ln det~11AS!uzr05a2i ln det~11AS!uzr052a ~35!

a contribution of 2p for each of the 2uSu eigenvalues l j ,
i.e., a total of 4puSu. From Eqs. ~17! and ~30! it therefore
follows that the DOS is given by

K (
rPS

NrL >PS~ uSu2u]Su!. ~36!

The average DOS is the sum of the local average DOS, nor-
malized by the lattice size uLu. Dividing the lattice L into
identical blocks S we sum over all blocks and obtain after
normalization

1
uLuK (

rPL
NrL >PS~12u]Su/uSu!. ~37!

Since the lattice block size uSu grows faster than the size of
its boundary u]Su, there is a ®nite size which gives a positive
bound on the RHS and therefore a positive lower bound on
the DOS.
Equation ~37! holds for our lattice model of a d-wave SC,

given by the Hamiltonian Eq. ~1! for all unbounded and sym-
metric disorder distribution that vanish at large disorder pa-
rameters zr . In particular, the lower bound holds for both
power law ~e.g., Lorentzian! and exponential ~e.g., Gaussian!
distributions. It also holds for compact distributions of suf®-
cient width, with the width being determined by the require-
ment that the factor PS must be nonzero when a is chosen
according to the condition Eq. ~16! in order to let the DOS
on S grow with uSu. This does not imply that narrow compact
distributions will have a vanishing DOS at the Fermi level.
However, to show the ®niteness of the DOS for such distri-
butions a more sophisticated method is required.

V. CONCLUSIONS

In conclusion, we have shown that for rather generic con-
ditions a nonzero lower bound for the Fermi-level density of
quasiparticle states exists. The bound does not depend on the
speci®cs of the ``tails'' of the distribution as both Lorentzian
and Gaussian distributions yield a nonzero lower bound. This
proves that our exact result for the case of Lorentzian
disorder4 is generic.
This result applies to a class of Hamiltonians describing

2D superconductors with nonlocal order parameters, like ex-
tended s-wave, p-wave, and d-wave SC's. In contrast, for a
local isotropic s-wave SC our method will yield a vanishing
lower bound, in complete agreement with Anderson's theo-
rem for nonmagnetic disorder in SC's with a ®nite order
parameter everywhere on the Fermi surface. It should be
noted that our results imply that the selfconsistent t-matrix
approximation8 gives qualitatively correct physics as long as
only the DOS at the Fermi level is concerned ~i.e., for ther-
modynamic properties!. Whether this also holds for the dy-
namic ~transport! properties is an interesting question to be
resolved.
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APPENDIX A: PROJECTIONS
OF THE GREEN FUNCTION

Consider a general square matrix H de®ned on a latticeL .
R is a subset of L , and IR is the projector on the region R
which can be written as a diagonal matrix

IR ,q ,q85IR ,qdqq8 with IR ,q5H 1 if qPR ,
0 otherwise.

~A1!

If the inverse of H and H1IRCIR exist then we ®nd the
identity

~H1IRCIR!215H212H21~11IRCIRH21!R
21IRCIRH21,

~A2!
where

~••• !R
215IR~IR•••IR!21IR ~A3!

is the inverse with respect to R . From Eq. ~A2! follows im-
mediately

~H1IRCIR!215H211H21$~H21!R
21@~H21!R

21

1IRCIR#R
21~H21!R

212~H21!R
21%H21,

~A4!
and on R follows

IR~H1IRCIR!21IR5@~H21!R
211IRCIR#R

21 ~A5!

by means of Eq. ~A3!. If we choose C5zr0s0 and let zr0
→6` we obtain with Eq. ~A2!

lim
zr0→6`

~H1IRCIR!215H212H21~H21!R
21H21.

~A6!
All matrix elements on R are zero. Therefore, we can write
this expression also as a projection onto L\R which can
eventually be rewritten as the inverse on L\R

[~12IR!H21~12IR!2~12IR!H21IR~H21!R
21

3IRH21~12IR!5~H !L\R
21 . ~A7!

We use the above identity in the text with the choice R
5]S , the boundary of the block S .

APPENDIX B: ESTIMATION OF THE EIGENVALUES

H and HÄ5HDs3 are Hermitian matrices. Therefore, both
matrices can be diagonalized by unitary transformations U
and UÄ, respectively. There are eigenvalues l j and lÄj with

l j5~UHU ² ! j j ~B1!

and

lÄj5~UÄHÄUÄ² ! j j .

Then we have

lÄj
25@~UÄHÄUÄ² ! j j#25~UÄHÄUÄ²UÄHÄUÄ² ! j j

5~UÄHDs3HDs3UÄ² ! j j . ~B2!

Since H and Ds3 commute and (Ds3)251, we obtain for
the RHS

~UÄH2UÄ² ! j j<maxl j
2 . ~B3!

This estimation holds for any projection of H and HÄon a
region S as long as the relation HÄ5HDs3 is valid on S . We
apply the above inequality in our estimation of the eigenval-
ues of the projection of HÄon the lattice block S .
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