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Delocalization of 2D Dirac Fermions: The Role of a Broken Supersymmetry
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The mechanism of delocalization of two-dimensional Dirac fermions with random mass is inves-
tigated, using a superfield representation. Although localization effects are very strong, one fermion
component can delocalize due to the spontaneous breaking of a special supersymmetry of the model.
The delocalized fermion has a nonsingular density of states and is described by a diffusion propagator.
Supersymmetry is restored if the mean of the random mass is sufficiently large. This is accompanied

by a critical boson component.
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The transition from localized to delocalized states of
noninteracting quantum particles in a random potential
is a phenomenon which is characterized by symmetries.
In contrast to classical critical phenomena, where sym-
metries are either discrete or compact continuous, it was
observed that the transition from localized to delocalized
states of a particle, described by a discrete Schrodinger
equation (tight-binding model), is related to noncompact
symmetry groups [1]. Nonlinear o models with the corre-
sponding symmetries provide an effective large scale de-
scription, presenting the relevant degrees of freedom for
localization or delocalization. They describe an effective
diffusion of the quantum particle with diffusion coeffi-
cient D = 0. An important physical property of D in the
nonlinear o model is its flow under renormalization. In
general, there are fixed points, one for delocalized states
(D > 0) and one for localized states (D = 0) [2]. In two-
dimensional systems the renormalization always drives
the diffusion coefficient to zero [2], therefore reflecting
the absence of delocalized states, at least in the absence of
more complicated extensions of the Schrodinger equation
like spin-orbit coupling.

It turned out that for a number of interesting physical
systems the effective quantum theory is not defined by
Schrodinger particles but by Dirac fermions. The main
reason for this is a linear dispersion and a substructure,
either given by a sublattice or a spin. For instance, the in-
teger quantum Hall transition (QHT) in a 2D electron gas
with magnetic field can be formulated with Dirac fermi-
ons without a magnetic field [3—10]. Other examples for
Dirac fermions are the degenerate semiconductor [11] and
quasiparticles in a 2D d-wave superconductor [12,13].

A Dirac fermion is a quantum particle with symmetry
properties different from those of the Schrédinger par-
ticles. In particular, the symmetry of the 2D Dirac
Hamiltonian is discrete in contrast to the continuous
symmetries of the Schrédinger Hamiltonian. This fact
has important consequences for the delocalization of the
Dirac particle in d = 2 [9], and will be discussed in
this Letter.
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The Dirac Hamiltonian in 2D reads
Hp = iVyo; + iVooy + Mos. ()

V; is the lattice difference operator in the j direction, M is
the mass of the particle, and o ; is a Pauli matrix. The lo-
calization properties of massless Dirac fermions with ran-
dom vector potential was recently studied [5,14]. It turned
out that the low energy states are delocalized. Since
the related Hamiltonian matrix has only off-diagonal ele-
ments, this result can be compared with similar observa-
tions in 1D systems: there are delocalized states at the
band center with a singular density of states (DOS) if
the Hamiltonian represents hopping between sublattices
or different spin states [15]. In contrast to this, it is of
interest to consider models where a diagonal (potential)
term also appears in the Hamiltonian, and which have a
nonsingular DOS.

The Dirac Hamiltonian Hp is an effective two-particle
Hamiltonian because the Dirac theory includes particles
and holes as the two components of the Dirac spinor.
Hp is Hermitian and invariant under the transformation
Hp — —o3Hpos, provided the Dirac mass M is zero.
However, this symmetry is not interesting here because it
is always broken by the mass. Moreover, there is a space-
dependent discrete transformation

Hp — —SH)S )

for which the massive Hp is invariant. The 2 X 2 matrix
S, is changing between o and o by going from one site
to its nearest neighbor site, and HJ, is obtained from Hp
by a space rotation of 7 /2 and a reflection of the y axis.
(This is just an exchange of V| and V, in Hp.)

In order to compare the Dirac Hamiltonian with the cor-
responding Hamiltonian H = V> + V of a Schrodinger
particle in a random potential V, we extend the lat-
ter to Hg = (V> + V)os. This Hamiltonian describes
particles and the corresponding holes, and can be used
to express the two-particle Green's function for Ander-
son localization without a magnetic field. Hg is sym-
metric and invariant under a noncompact continuous
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symmetry under Hg — (cog + syo1 + s,00)Hs(cog +
sio + sy0) with the condition ¢? — s% - s% = 1. The
role of the chemical potential in the case of Dirac particles
is played by the Dirac mass, as it was earlier discussed by
Ludwig et al. [5].

Transport properties can be evaluated from the two-
particle Green's function [9]

K(r,r'se) = —(Tr[G(r,r';ie)o1GT (¢, rii€)ai]),
(3)

where G(r,r';ie) = (H + i€),,} is the one-particle
Green's function of Hp or Hg, and (---) the average
over random contributions in the Hamiltonian. For
localized states the two-particle Green's function decays
exponentially on the localization length.

Hy is invariant under the transposition 7' of the matrix
elements, whereas the Dirac Hamiltonian Hp is not. It is
convenient to write the two-particle Green's function as a
functional integral

Gjj(r.r'si€)Gl(r' riie)

= f Xr’j’/?rjlprklpr’k’ eXp(_SO) Dv DX . (4)

So is a quadratic form of the four-component superfield
(X rs \Pr )

, xr\ . (H +ie 0 Xr
()71 ) (8

’ (5)

with a complex component y, and a Grassmann compo-
nent ¥,. The reason for introducing the superfield is that
an extra normalization factor for the integral in Eq. (4)
is avoided because of [exp(—So) DY D y = det(Hp +
i€)/det(Hp + ie) = 1. It is crucial that Sy is not of the
usual supersymmetric form [16], where both diagonal ele-
ments are H + ie, if HT # H [17]. This reflects a fun-
damental difference between the symmetric Schrodinger
Hamiltonian Hg and the asymmetric Dirac Hamiltonian
Hp for the construction of collective fields. In the fol-
lowing, we will concentrate on the Dirac Hamiltonian and
refer to the literature for the case of the Schrdodinger
Hamiltonian [1,16,18].

In addition to the discrete symmetry of Hp, there
is an invariance of the action Sy for € = 0 under
supersymmetry transformation

wo = (9 )= oS ) -
1 -

for U — ((1 ta0oy o ) ©
o (1 = 340

with Grassmann variables ¢ and . It is important to
notice that the Dirac mass does not break this symmetry
but only the term proportional to € in (5), since U? is
not the unit matrix. Therefore, the field conjugate to
the symmetry breaking field, which is quadratic in the

3114

superfield, must be studied in order to take the relevant
symmetry properties into account. This leads to the
collective field representation [9,16]

Vi)ee=(8 5) o

The matrix elements Q,,...,P, are 2 X 2 matrices,
corresponding to the two components of ¥, and y,.

Since the Dirac Hamiltonian Hp is usually obtained
from a large scale (or low energy) approximation of a
nonrelativistic problem, there are several ways to intro-
duce disorder which are motivated by the original con-
densed matter systems. One starting point is, for instance,
the network model of Chalker and Coddington [19] for the
QHT. This phenomenological description implies a ran-
dom Dirac mass, a random energy term, and a random
vector potential [10]. Thus, this model represents a com-
plex situation which also includes fluctuations of the mag-
netic field. Here we are interested only in the simplest
possible case for the QHT of a system in a homogeneous
magnetic field. (Strong fluctuations of the random vector
potential may drive the system into another universality
class. At this point it is not clear if randomness in the
vector potential is relevant in the experiments on a 2D
electron gas.) The QHT can also be described by a tight-
binding model with a homogeneous magnetic field [5] in
a random chemical potential. The latter would lead to a
random Dirac mass. However, there was the argument
that the random Dirac mass alone does not present the
generic situation for the QHT because the DOS is zero at
low energy [5]; i.e., there are no bulk states even in the
presence of disorder. It turned out though that these states
exist if one goes beyond perturbation theory. This effect
was also found in numerical calculations [20,21]. A con-
sistent treatment of this nonperturbative contribution can
be based on an effective field theory derived from the col-
lective field Q [9]. This representation will be used in the
following to discuss the breaking of the supersymmetry
defined in (6) and its consequences for the existence of
delocalized states.

Averaging over a Gaussian random Dirac mass M
(where (M,) = m and (M, M,) = gé,,) and transform-
ing the functional integral to the collective field creates
the new action [9,16]

<Xr)‘(r
\I,rir

S = lZ:Trg“(Qf) + Indetg(Hy + ie — 27Q7),
85
)

with Hy = (Hp) and the 4 X 4 diagonal matrix 7 =
[(03)"/2, (03)"/%]. Trg, and detg are the “supertrace” and
the “superdeterminant,” respectively [16]. In particular,
the two-particle Green's function at r # r’ then reads

K(r,r'se) = g 2(@,12 + 0,21) (0,12 + 0,21))0.
©)
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The functional integral (---)p = [---exp(—S’) DQ can
be approximated by a saddle point integration. A special
saddle point is Qo = (m/4)yo — i(n/2)y3, where y; is
the diagonal block matrix (o, o;) and n = wgp is pro-
portional to the average DOS p [9]. The symmetry trans-
formations are now applied to the saddle point solution
7Qo7. The discrete transformation (2) changes the sign of
n; i.e., the discrete symmetry of the massive Dirac Hamil-
tonian is spontaneously broken if lime—g 7 # 0. This is
the case for —m, < m < m, with m, = 2exp(—7/g)
[9]. The supersymmetry transformation (6), on the other
hand, gives n — nU?. Thus, lim._on # 0 also indi-
cates a spontaneously broken supersymmetry. This be-
havior is analogous to a Heisenberg ferromagnet, where
n corresponds to the magnetization and e plays the role
of the external magnetic field. However, the situation is
more complex for the Dirac fermions because the break-
ing of two symmetries is involved, a supersymmetric and
a discrete one. As a consequence of the supersymmetry
of Sy at € = 0 there is not just an isolated saddle point but
a whole saddle point manifold, created by the symmetry
transformation U. Therefore, the field

Q. = f]rQoer_1 = %yo — i%T*UET*
_ _ ‘ﬂr‘]frO'S —ifo
= Q ”7<_i‘r7/r0'1 _'wl’r’»_br0'3 (10)

controls the fluctuations around the saddle point manifold
with U, = 7*U,7 and U ' = 7U,7*. U, is here the
matrix U of Eq. (6) in which the Grassmann variable
is replaced by the Grassmann field ¢,. That means for
the large scale properties the integration with respect to
Q, can be restricted to an integration with respect to the
field Q.. Thus the critical (long-range) part of the random
mass Dirac theory is controlled by the one-component
fermion (Grassmann) field ¢,. The bosonic (complex)
field has only short-range correlations and, therefore, is
localized by the disorder. The reason is that the bosonic
field corresponds to the discrete symmetry transformation
(2) which has a long-range mode only at the critical
point where the order parameter 1 vanishes. The latter
is indeed the case because the localization length of
Q11 — O and Py — Py increases like (m, — |m|)~1/?
as the critical value =m, is approached from |m| < m,
[9]. This indicates a growing influence of these bosonic
fields on the large scale properties.

The expansion of (8) up to second order in the gradients
yields in general an action of the type [1,16,18,22]

fe [ rTeasQ)) + [ r Trg,(70) - V)

8 [ @Y e T QT.QN.Q). ()
v

where €, is the antisymmetric unit tensor, and the pa-
rameters « and B are determined by the model. In par-
ticular, for the quantum Hall effect there is &« = o, the

(unrenormalized) longitudinal conductivity, and 8 = oy,
the (unrenormalized) Hall conductivity [22]. The topolog-
ical term [ d*r Z/w €., Trg,4(Q.V,Q.V,Q!) takes care
of the Hall plateaux because the latter are a consequence
of the (topological) edge states in the presence of localized
bulk states. At the QHT, however, transport is dominated
by delocalized bulk states. Therefore, the topological term
should not play a crucial role in this case. In fact, for the
Dirac Hamiltonian Hp with m = 0, i.e., for the choice Q’
of Eq. (10), the topological term vanishes. The only terms
which remain in the action are the linear off-diagonal ele-
ments of Q’

$" = (1fmp) [ @rin(e + D, ()

where the average DOS p and the diffusion coefficient D
can be evaluated from the saddle point equation. This sur-
prisingly simple result, which satisfies the Ward identity
K(q = 0,€) = mwp/e, reflects the fact that only a one-
component Grassmann field contributes to the massless
fluctuations, created by the broken supersymmetry. That
means there is a simple physical structure for the well-
delocalized Dirac fermions in the vicinity of m = 0. The
divergent localization length of two real boson components
will eventually turn into a restoration of the supersym-
metry, where lime_gn = 0. Since the supersymmetric
theory in 2D does not have delocalized states [16], the
restoration of the supersymmetry must be accompanied by
a transition into a localized regime. This is the regime
characterized by the Hall plateaux. The critical behavior
of the two real fields (which can be considered as the two
components of one complex boson field) at m = *m, due
to the spontaneously broken discrete symmetry (2) invali-
dates S near these points. It must be replaced by a more
complicated field theory which includes both the critical
boson field and the critical Grassmann field of (12). This
would require an additional matrix field

(Qr(;f3 0 > (13)

—ip,o3

added to Q! in (10). The real field components g,
and p, are related to Qy1, — Qx, and Py, — P2,
respectively.

As a direct consequence of these results the value of
the conductivity at m = 0 (the “conduction peak™) can be
evaluated from the Einstein relation o, = (e?/h)Dp [23]

e? 1

L S 14
wh 1+ g/27 (14)

Oxx =
This is in agreement with experimental results [24,25]
and other theoretical work [26,27]. For weak disorder
the second factor can be neglected. In this case the peak
value is just the universal constant o, = e?/7h. The
latter was obtained for Dirac fermions in a random vector
potential [5] and for the lowest Landau level with random
spin scattering [28], regardless of the strength g. Thus,
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the extra factor in Eq. (14) indicates that the random
Dirac mass, representing a random scalar potential, has a
stronger effect on the Dirac particle than the random vector
potential or a random spin scattering.

In conclusion, the large scale behavior of the two-
particle Green's function of 2D Dirac fermions with ran-
dom mass is characterized by a single massless Grassmann
field on the interval [ —m,, m.] of the average Dirac m. It
describes delocalized states with nonsingular DOS due to
a broken supersymmetry by a diffusion propagator. There
is a two-component real bosonic field which has a diver-
gent localization length as the critical points =m, are ap-
proached. It corresponds to a broken discrete symmetry of
the Dirac Hamiltonian. This mechanism of delocalization
is different from the one which is responsible for delocal-
ized states in the random vector potential or for random
spin scattering.
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