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Abstract
A model with Holstein-like electron–phonon coupling is studied in the limit of
adiabatic phonons. The phonon distribution is anharmonic with two degenerate
maxima. This model can be related to fermions in a correlated binary alloy
and describes microscopic phase separation. We discuss the weak and strong
electron–phonon coupling limits and present a qualitative phase diagram.
In terms of the phononic displacements it consists of a homogeneous, an
alternating, and a disordered phase. There is a first-order phase transition
between the homogeneous and the alternating phases, and a second-order phase
transition between the alternating and the disordered phases. The opening of a
gap inside the disordered phase is treated using dynamical mean-field theory.

1. Introduction

Adiabatic (or static) phonons have been discussed in the literature by many authors [1–4]. They
can be considered as a first step towards a full treatment of the electron–phonon interaction
in a many-body system. The latter is plagued by a number of difficulties like the unrestricted
number of phonons at each lattice site. These problems are partially avoided by taking the
adiabatic limit, where the phonons are described with classical degrees of freedom.

In general, the electron–phonon interaction can be successfully treated in a self-consistent
perturbation theory, as long as the corresponding coupling is small. This approach is known
as the Migdal–Eliashberg theory [5, 6]. At strong coupling, however, this theory experiences
problems known as the breakdown of the Migdal–Eliashberg theory. In the case of the Holstein
model it was argued by Benedetti and Zeyher that this breakdown at large electron–phonon
coupling is associated with the appearance of an effective double-well potential for the atomic
positions [7]. It is conceivable that the appearance of a degeneracy in the atomic positions is
a source of problems in a perturbative approach like that of Migdal and Eliashberg.

The aim of this work is to discuss the physics of anharmonic adiabatic phonons with two
degenerate maxima of the distribution at each lattice site in terms of a simple model. We ignore

                                                               5489

mailto:Klaus.Ziegler@Physik.Uni-Augsburg.de


5490                      

the electronic spin which is of no interest in our study and concentrate only on the scattering
of spinless fermions. Our discussion includes the derivation of an effective Ising spin model,
where the spins represent the degenerate maxima of the distribution, and the application of
the dynamical mean-field theory, which corresponds to the infinite-dimensional limit of the
model. Our anharmonic model can also be considered as the strong coupling regime of the
adiabatic Holstein model.

The paper is organized as follows. The model is discussed in section 2 and an effective
distribution of the adiabatic phonons is derived in section 3. In the limit of discrete phonon
degrees of freedom (correlated binary alloy) this is related to a distribution of Ising spins
(section 3.1). The latter is studied in the weak (section 4.1) and strong coupling (section 4.2)
limits. In section 5 we apply the dynamical mean-field approach to our model. Finally, the
results of the two approaches are discussed in section 6.

2. The model for adiabatic phonons

The Holstein-like model with spinless fermions coupled to adiabatic anharmonic phonons is
defined by the Hamiltonian Hf and the thermal phonon distribution P0 at inverse temperature
β:

Hf = −t̄
∑

〈r,r ′〉
c†

r cr ′ −
∑

r

(µ − gxr )c
†
r cr , P0(xr ) ∝ exp[−βU(x2

r − 1)2]. (1)

c†
r (cr ) are the fermionic creation (annihilation) operators and the real variable xr represents

the phonon degrees of freedom. The latter describes the displacements of the atoms at sites
r , assuming that it is thermally distributed according to P0. The fermions feel the displaced
atom as a one-body potential −gxr . For harmonic phonons we have a Gaussian distribution

Ph(xr ) ∝ exp(−βx2
r ), (2)

instead of P0, with xr = 0 as the position with maximal weight. The anharmonic distribution
P0, on the other hand, has two degenerate positions with maximal weight, namely xr = ±1.
The coupling to the fermions, however, can break this degeneracy, leading to homogeneous
and inhomogeneous equilibrium distributions of the atomic positions on the lattice.

Although the model defined in equation (1) looks like a model for Anderson localization
this is not a correct interpretation. The reason is that a model for Anderson localization requires
the averaging of the Green function with respect to P0. This is not the case for the adiabatic
phonons: a grand-canonical ensemble of spinless fermions, coupled to adiabatic phonons, is
defined by the partition function

Z = Tr e−βH =
∫

Trf e−βHf
∏

r

P0(xr ) dxr (3)

which represents an annealed average of the fermionic system. The fermionic Green function
then reads in the temperature formalism

Gr,t;r ′ ,0 = 1

Z
Tr
[
e−(β−t)H cr e−t H c†

r ′
] = 1

Z

∫
Trf

[
e−(β−t)Hf cr e−t Hf c†

r ′
]∏

r

P0(xr ) dxr . (4)

The anharmonicity is related to previous studies where an effective anharmonic (double-
well) potential for the electrons was found [7]. Here the main idea is that the tunnelling of
the fermions is much faster than the motion of the atoms between the two maxima of the
distribution. Therefore, the dynamics of the phonons is negligible and adiabatic phonons can
serve as phononic degrees of freedom.
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3. Effective phonon distribution

The trace with respect to the fermions can be performed in equations (3) and (4), since the
fermions do not interact directly in the Hamiltonian Hf [8]. This gives the determinant of an
N × N matrix, averaged with respect to the distribution P0, such that the partition function
reads [9]

Z =
∫

det
[
1 + eβ(µ+t̂−gx)

]∏

r

P0(xr ) dxr .

N is the number of lattice sites and t̂ is the hopping matrix. The integrand of Z is a positive
expression and can be considered as an effective distribution of the adiabatic phonons that
replaces P0:

P({xr }) = 1

Z
det

[
1 + eβ(µ+t̂−gx)

]∏

r

P0(xr ). (5)

3.1. Ising spin representation

For the evaluation of the effective phonon distribution given in equation (5) we consider the
limiting case U � 1. Then the distribution P0 selects

xr → Sr = ±1,

where Sr is formally an Ising spin which describes discrete displacements of the atoms. This
case can be considered as a correlated binary alloy (CBA), where the correlations are mediated
by the fermions through the determinant in equation (5). The partition function is now a sum
with respect to Ising spins:

Z =
∑

{Sr=±1}
Z({Sr }) with Z({Sr }) = det

[
1 + eβ(µ+t̂−gS)

]
.

Then the fermionic Green function is a resolvent, averaged with respect to the effective phonon
distribution [9]:

〈(iω + µ + t̂ − gS)−1〉Ising,

where 〈· · ·〉Ising is the CBA distribution

P({Sr }) = det[1 + eβ(µ+t̂−gS)]
∑

{Sr } det[1 + eβ(µ+t̂−gS)]
. (6)

It should be noted that the CBA distribution is not Z2 invariant, i.e. not invariant under a global
flip of the spins or the coupling constant g, in contrast to the distribution P0.

4. Approximations of the CBA distribution

The effective phonon distribution given in equation (6) can describe different types of order of
the displacements of the atoms, depending on the inverse temperature β. At high temperatures
we expect a paramagnetic (disordered) distribution, and at low temperatures some kind of
order. Some insight can be obtained by evaluating the distribution in the asymptotic regimes
of weak as well as strong coupling. More details of the calculations are given in the appendix.
For further simplification of the results we restrict our interest to the low temperature regime,
i.e. to β ∼ ∞.



5492                      

4.1. Weak coupling limit

The weak coupling limit is obtained from an expansion for small values of g. According to
the appendix the regime describes an uncorrelated binary alloy with the distribution

Pw({Sr }) =
∏

r

e−βghSr

∑
Sr =±1 e−βghSr

, with h =
∫

�(µ + ε(k))
ddk

(2π)d
, (7)

where ε(k) is the dispersion of the tunnelling term t̂ . Thus the fermions create a homogeneous
magnetic field gh for the Ising spins with 0 � h � 1. This favours the atomic position
xr = −1:

〈S〉 = − tanh(βgh).

For a low fermion density (i.e. for µ + ε(k) < 0) there is no magnetic field (h = 0). Then the
Ising spins are paramagnetic (disordered without correlations).

4.2. Strong coupling limit

The strong coupling regime enables us to apply an expansion in terms of the fermion hopping.
As shown in the appendix we can write for the effective phonon distribution

Ps ∝
∏

r

[
1 + eβ(µ−gSr )

]
exp

{
∑

r,r ′
[E1(Sr + Sr ′) + E2Sr Sr ′ ]

}

with coefficients

E1 = t̂rr ′ t̂r ′r
β2

8

[
eβµ−βg

(1 + eβµ−βg)2
− eβµ+βg

(1 + eβµ+βg)2

]
and

E2 = t̂rr ′ t̂r ′r

{
β2

8

[
eβµ−βg

(1 + eβµ−βg)2
+

eβµ+βg

(1 + eβµ+βg)2

]
− β

4g

eβµ sinh(βg)

1 + e2βµ + 2eβµ cosh(βg)

}
.

This gives in the low temperature regime (β ∼ ∞):

E1 ∼ 0, E2 ∼




− β

4g
t̂rr ′ t̂r ′r for −g < µ < g

0 otherwise

and for the distribution density

Ps ∼






1 for µ < −g

exp

{
−β

[
∑

r

(µ + g)Sr/2 + t̄2
∑

〈r,r ′〉
Sr Sr ′/4g

]}
for −g < µ < g

exp

(
−βg

∑

r

Sr

)
for g < µ.

(8)

In terms of the Ising spins there is a paramagnetic phase for µ < −g. For −g < µ < g the
competition of the magnetic field term and the antiferromagnetic spin–spin interaction leads
to a first-order phase transition between ferromagnetic and antiferromagnetic states, at least
for low temperatures. A simple mean-field approximation reveals that the Ising ground state
is an antiferromagnet for µ < dt̄2/g − g and a ferromagnet for µ > dt̄2/g − g. Finally, for
µ > g there is always a ferromagnetic state with 〈S〉 < 0. These three phases are shown in
the low temperature µ−g phase diagram in figure 1.
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Figure 1. Mean-field T = 0 phase diagram. Thermal fluctuations are likely to create a disordered
phase for small values of g and any value of µ.

5. The DMFT equations

The spectral density of the itinerant fermions can be evaluated conveniently using the dynamical
mean-field theory (DMFT), originally developed for the Hubbard model [4, 10, 11]. The main
idea of the DMFT is the infinite-dimensional limit of the system. This limit is characterized by
a simplified scattering process in comparison with the situation in a finite-dimensional system:
the scattering of the same pair of fermions is very unlikely due to the large phase space. In the
case of our adiabatic phonon system it is very unlikely that a fermion scatters with the same
phonon more than once. This enables us to consider only the effective scattering on a single
site. A consequence is that the effective correlation between the phonons, discussed in the
weak and strong coupling regimes, is excluded in the DMFT [13].

Formally, the Green function reads

Gn =
∫

ρ(ε)

iωn + µ − �n − ε
dε (9)

with ωn the Matsubara frequency and ρ the density of states of free fermions on the lattice.
Moreover, the Green function can also be written as [4]

Gn = w0

G−1
n + �n + g

+
1 − w0

G−1
n + �n − g

. (10)

Equation (10) yields the self-consistent equation for the self-energy �n :

�n = − 1

2Gn
± 1

2

√
G−2

n + 4g2 + 4g(1 − 2w0)G−1
n , (11)

where the coefficient w0 depends on the self-energy and Gn as

w0 =
(

1 + e−βg
∞∏

n=−∞

�n + G−1
n + g

�n + G−1
n − g

)−1

.
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Figure 2. Density of states for varying coupling strengths (g = 0.3, 0.4, 0.5, 0.6, and 1.0) for
T = 1, µ = 0, and t̄ = 0.5. Increasing electron–phonon coupling favours the gap formation.

From these three equations the self-energy �n and the Green function Gn can be determined
numerically [4].

For a special form of the density of states ρ the integral in equation (9) can be evaluated
explicitly. This simplifies the numerical effort of solving the equations substantially. An
example is the case of a semicircular density of states ρ(ε) = √

4t̄2 − ε/2π t̄2 which gives [12]

Gn = 1

2t̄2

(
ζn − sgn(Re ζn)

√
ζ 2

n − 4t̄2

)
(12)

with ζn = iωn + µ − �n . w0 is determined numerically using equations (11) and (12).
Substituting �n = iωn + µ − G−1

n − t̄2Gn in equation (10) yields a cubic equation for the
Green function [14]:

t̄4G3
n − 2ηt̄2G2

n + (η2 + t̄2 − g2)Gn − [η + g(1 − 2w0)] = 0 (13)

with η = iωn + µ. Analytic continuation (iωn → ω + i0+, Gn → G(ω)) and the condition
Im G(ω) < 0 leads to the fermionic density of states D(ω) = −Im G(ω)/π . Our results are
shown in figure 2.

6. Discussion of the results

The phase diagram of our model is complex and has been studied by two different mean-
field approaches, a classical one for the Ising spin representation (i.e. the CBA) and the
DMFT. It consists of paramagnetic, ferromagnetic, and antiferromagnetic phases in terms
of the Ising spins (cf equation (8)). The latter correspond to displacement configurations of the
adiabatic phonons: disordered phonons (or phonon liquid) and homogeneous and alternating
(charge-ordered) phases. There are phase transitions between these phases. According to our
mean-field calculations, a first-order transition appears between the metallic homogeneous
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Figure 3. Chemical potential versus the critical value of the electron–phonon coupling gc plotted
for t̄ = 0.5 and several temperatures T = 0.05, 0.2, and 1.0 (from left to right). The lines are
guides to the eyes.

and the insulating alternating phases. The transition between the disordered and insulating
alternating phases is second order. The disordered phase is most likely also insulating due to
Anderson localization of the fermions. The weak coupling behaviour of equation (7) indicates
a disordered phase for µ < −2 dt̄ and a homogeneous phase for µ > −2 dt̄ . These results are
summarized in the qualitative phase diagram of figure 1.

Our DMFT results do not agree very well with the picture obtained from the CBA. This
might be a consequence of the fact that the DMFT is a local approach, at least in the version
discussed in this paper [13]. There is a critical coupling gc that indicates the opening of a gap
for g > gc. In our model gc changes with µ and T (see figure 3). Large positive values for µ

imply gc ≈ 0.5 for the hopping rate t̄ = 0.5. Decreasing µ results in a reduced value of gc.
The lower the temperature the lower the value of gc. Lower temperatures favour the insulating
phase.

The gap opening at gc cannot be directly linked to a characteristic change of the ordering
of the adiabatic phonons, at least not in the regime of strong coupling and/or high temperatures.
The anharmonicity plays a crucial role here because it can open a gap of width 2g already in
the absence of tunnelling. This can be compared with the situation of harmonic phonons: in
equation (1) we replace the distribution P0 by the harmonic distribution in (2) and study the
strong coupling regime. The treatment of the determinant of equation (5) in strong coupling
does not depend on the type of the random variable xr . Thus we obtain the distribution for xr

as given in equation (8), except for an extra factor Ph(xr ). In contrast to the distribution of the
Ising spins, this distribution has only disordered or homogeneously ordered phases for xr and no
staggered order, implying the absence of a gap. It remains an open question whether or not the
gap opening and the order of the adiabatic anharmonic phonons are related in general. This can
be compared with the metal–insulator transition of the Hubbard model inside a paramagnetic
phase [10, 11]. It might be that the gap opening in both cases does not require any additional
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change of order in the models. A common feature of these models is the appearance of two
eigenstates which are separated by the interaction energy if electronic tunnelling is absent.
This is fundamental also for the gap formation in the system with electronic tunnelling. Such
a separation of electronic state does not exist for adiabatic harmonic phonons. A remaining
puzzle is that the strong coupling result in equation (8) is an antiferromagnetic Ising model
that provides a metallic homogeneous or a gapped alternating phase, whereas the DMFT result
indicates only a gap in the disordered phase.

The experimental relevance of our results can be linked to the complex structures observed
in manganites and related materials [15, 16]. It is believed that the interesting properties of
these materials (like the colossal magnetoresistance, or CMR) are caused by a frozen mixture
of ferromagnetic metallic and antiferromagnetic (or charge-ordered) insulating clusters. The
typical size of these clusters is of the order of ten to a hundred nanometres. This has been
understood as electronic phase separation due to the proximity to a first-order phase transition.
Although our model contains far fewer degrees of freedom than a realistic description
of manganites, the phenomenon of self-organized phase separation due to frozen metallic
(i.e. homogeneously ordered) and insulating (i.e. staggered) clusters and a first-order phase
transition between the homogeneously ordered and the staggered phases is also essential in
our theory in terms of the correlated binary alloy.

7. Conclusions

Anharmonic phonons were studied in the adiabatic limit of the Holstein model. We applied
two different approaches to study the effect of the electron–phonon coupling; one is based
on a correlated binary alloy (represented by Ising spins), and the other one on the dynamical
mean-field theory. These approaches cover different regions of the phase diagram. In terms
of the phonons the correlated binary alloy reveals a homogeneous, an alternating (or charge-
density wave), and a disordered phase. In terms of the fermions there is a metallic state in
the homogeneous phonon phase, and insulating states in the alternating phonon phase (with a
gap) and in the disordered phonon phase (without gap). The dynamical mean-field theory, on
the other hand, indicates a gapped insulating state inside the disordered phase.
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Appendix. Effective Ising models

The determinant in equation (6)

P = 1

Z
det

[
1 + eβ(µ+t̂−
gS)

]
(A.1)

is expanded in powers of g (weak coupling regime) or in powers of the tunnelling rate t̄ (strong
coupling regime).

In the weak coupling regime we can expand the argument of the exponential function in
powers of g. This gives in leading order

P ≈ exp
{ − βg Tr

[
G0eβ(µ+t̂)S

]}/
Nw = exp

{
− βg

∑

r

[
G0eβ(µ+t̂)

]
rr

Sr

}/
Nw
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with G0 = (1+eβ(µ+t̂))−1 and the normalization Nw. [G0eβ(µ+t̂)]rr can be evaluated by Fourier
transformation (t̂ → ε) as

[
G0eβ(µ+t̂)

]
rr

=
∫ [

1 + e−β(µ+ε(k))
]−1 ddk

(2π)d
.

In the limit β → ∞ the integrand becomes the Heaviside step function �(µ + ε(k)).
The expansion of the expression in equation (A.1) in powers of t̂ can be applied in the

strong coupling regime:

exp
{

Tr
[
ln
(

1 + eβ(µ+t̂−gS)
)]}

≈ det
(
G−1

1

)
exp[Tr(G1 D) − 1

2 Tr(G1 DG1 D)]

with G−1
1 = 1 + eβ(µ−gS) and D = eβ(µt̂+gS) − eβ(µ−gS).

A lengthy but straightforward calculation gives with Ar = µ − gSr the relation

Tr(G1 D) − 1

2
Tr(G1 DG1 D) ≈ β

2

∑

r,r ′

eβ Ar − eβ Ar′

Ar − Ar ′

t̂rr ′ t̂r ′r

(1 + eβ Ar )(1 + eβ Ar′ )

Since there are only values Sr = −1, 1, the term

E(Sr , Sr ′ ) = eβ Ar − eβ Ar′

Ar − Ar ′

t̂rr ′ t̂r ′r

(1 + eβ Ar )(1 + eβ Ar′ )

can also be expressed as a quadratic form with respect to the Ising spins:

E(Sr , Sr ′ ) = E0 + E1(Sr + Sr ′ ) + E2Sr Sr ′

with

E0 = 1
4 [E(1, 1) + E(−1,−1) + 2E(1,−1)]

= t̂rr ′ t̂r ′r

{
β2

8

[
eβµ−βg

(1 + eβµ−βg)2
+

eβµ+βg

(1 + eβµ+βg)2

]
+

β

4g

eβµ sinh(βg)

1 + e2βµ + 2eβµ cosh(βg)

}
,

E2 = 1
4 [E(1, 1) + E(−1,−1) − 2E(1,−1)]

= t̂rr ′ t̂r ′r

{
β2

8

[
eβµ−βg

(1 + eβµ−βg)2
+

eβµ+βg

(1 + eβµ+βg)2

]
− β

4g

eβµ sinh(βg)

1 + e2βµ + 2eβµ cosh(βg)

}
,

and

E1 = 1

4
[E(1, 1) − E(−1,−1)] = t̂rr ′ t̂r ′r

β2

8

[
eβµ−βg

(1 + eβµ−βg)2
− eβµ+βg

(1 + eβµ+βg)2

]
.
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