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The characteristic oscillations of the density-density correlation function and the resulting structure factor
are studied for a hard-core Bose gas in a one-dimensional lattice. Their wavelength diverges as the system
undergoes a continuous transition from an incommensurate to a Mott insulating phase. The transition is
associated with a unit static structure factor and a vanishing sound velocity. The qualitative picture is un-
changed when a weak confining potential is applied to the system.
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Recent experiments on one-dimensional s1Dd Bose sys-
tems in an optical lattice f1–3g have opened an exciting field
of physics. This will provide us with an extended and deeper
understanding of the special properties of strongly interact-
ing particles at low dimensions. From the theoretical point of
view 1D systems are easier to treat in comparison with two-
and three-dimensional s2D and 3Dd systems but also prevent
us from using conventional mean-field methods.

Strong repulsion allows at most one boson per minimum
of the optical lattice. This situation has been realized in re-
cent experiments f3g. In such a system there is a competition
between repulsive and kinetic energy: For a sufficiently weak
tunneling rate the repulsive energy always wins and a Mott
insulator is formed. In the case of weak repulsion Mott insu-
lators can also be formed at commensurable fillings of the
optical lattice with n=1,2 , . . . bosons at each potential mini-
mum. Subsequently we shall only consider the case of strong
repulsion.

A well-known fact of one-dimensional many-body phys-
ics is that a continuous hard-core Bose gas can be mapped to
a free Fermi gas f4,5g. This can be understood when we
study a grand-canonical ensemble of bosons. The bosons dif-
fuse along the 1D lattice by tunneling between nearest-
neighbor sites like free particles. They experience each other
only when they try to tunnel to the same site at the same
time. However, this process is excluded by the strong repul-
sion between the bosons. The exclusion condition is also an
intrinsic statistical property of fermions as a consequence of
the antisymmetry of the fermionic wave function under par-
ticle exchange. The fact that bosons have a symmetric wave
function under particle exchange is irrelevant in 1D because
particles cannot exchange their positions in this case. There-
fore, free fermions and hard-core bosons are equivalent in
1D but not in higher dimensions.

For free fermions the multiparticle wave function sSlater
determinantd factorizes in the diagonal representation of the
individual particles. The partition function of a grand-
canonical ensemble of fermions with Hamiltonian H at tem-
perature 1/b then reads

Z = Tre−bH = p
v,k
zsv,kd ,

where v is the Matsubara frequency and k is the wave vector
for a translational-invariant 1D system. In order to determine
zsv ,kd we will adopt an approach to the statistics of directed
polymers f6g in two dimensions. The analogy with this clas-
sical statistical problem is based on the observation that the
world lines of a grand-canonical ensemble of bosons are
equivalent to directed polymers, random walks, or fluctuat-
ing flux lines f7,8g. This can be formally expressed by the
fact that the partition function Z of the grand-canonical en-
semble of these systems is identical.

For directed polymers in two dimensions it was shown
that Z can be written as a determinant f6g. Thus the partition
function of hard-core bosons in d=1 reads

Z = p
v

det Rsvd , s1d

where R is diagonal with respect to the Matsubara frequency
v,

Rsvd = seiv − z−1ds0 +
J
2

s1 + eiv + T̂−1 + eivT̂ds1

− i
J
2

s1 − eiv + T̂−1 − eivT̂ds2. s2d

T̂ is the shift operator along the 1D lattice (T̂fsrd= fsr+1d),
and the s j are the Pauli matrices

s0 = S1 0
0 1 D, s1 = S0 1

1 0 D, s2 = S0 − i
i 0 D .

zsv ,kd is obtained from Rsvd by diagonalization with re-
spect to the 1D lattice and the 232 structure.

This model describes the tunneling of bosons with rate
Jù0 between nearest neighbors, expressed by the shift op-
erator T̂ and its inverse T̂−1. J is dimensionless and measured
in units of the energy "2 /2ma2, where m is the mass of the
particles and a the lattice constant. The 232 structure arises
from the fact that particle exchange between neighboring
sites through simultaneous tunneling is prohibited. This re-
duces the translational symmetry to sublattices with every*Electronic address: klaus.ziegler@physik.uni-augsburg.de
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second site, where ar is the position on a sublattice, and r
takes integer values.

z.0 is the fugacity that controls the density of bosons in
the system. Here, it is related to the chemical potential m,
which is measured in the same energy unit as J, by z−1=1
−m. The fugacity is not directly accessible in the experiment
but only indirectly through the density nsz ,Jd. Therefore,
physical quantities should be measured as functions of n and
J. An additional potential, superimposed on the optical lat-
tice, is described by a space-dependent fugacity zr.

Physical quantities can be derived from the matrix R. For
instance, if we are interested in properties at zero tempera-
ture we can use the integral with respect to the Matsubara
frequency

Gr,r8 = E
0

2p

sR−1dr,r8
dv

2p
s3d

to evaluate the local density of bosons as

nr = 1 + z r
−1Gr,r. s4d

It should be noticed that Gr,r8 is not the Green’s function for
the propagation of an individual boson in the system but a
correlation function between two bosons. Therefore, it is not
possible to evaluate the momentum distribution of bosons
f3–5,9–14g from this expression. On the other hand, the
evaluation of the density and the density-density correlation
function becomes a simple task with the matrix Gr,r8 f6g.

Another interesting quantity is the correlation function of
the density fluctuations

Cr,r8 = szrzr8d
−1Gr,r8Gr8,r + z r

−1Gr,rdr,r8 s5d

from which the static structure factor as a function of the
momentum k can be obtained by Fourier transformation f15g

Skª 1 − o
r

sC0,r + n0dr,0de−ikrYo
r

sC0,r + n0dr,0d . s6d

k is dimensionless and measured in units of " /a.
The local density nr and the correlation of the density

fluctuations can be directly measured in an experiment f16g.
This motivates the following study of these quantities for a
translational-invariant system as well as for a system with a
weak parabolic potential. We will compare the results in the
incommensurate regime near the transition to the Mott insu-
lator and discuss their characteristic properties.
(i) Translational-invariant case. For constant fugacity zr

;z the system has translational symmetry on the sublattices,
and Gr,r8 can be calculated analytically f6g. Figure 1 shows
the zero-temperature phase diagram of the model. The par-
ticle density is constant in space. Three phases can be iden-
tified: an empty phase with n=0 for z,1/ s1+2Jd, a Mott
insulator sMId with n=1 for z.1/ s1−2Jd and J,1/2, and
an incommensurate phase sICPd. For J.J0=1/2 the system
exhibits no MI phase. The density in the ICP can be calcu-
lated from Eq. s4d and gives

n = 1 −
1

2p
fk̃7 sk! − pdg , s7d

where 7 correspond to the cases z.1 and z,1, respec-
tively, and k̃, k! are given by

k̃ = arccosS1 −
s1 + z −1d2

2sz −1 + J2dD , s8d

k! = arccosS s1 − z −1d2

2J2 − 1D . s9d

The transition from the intermediate to the Mott insulating
phase at the critical fugacity zc=1/ s1−2Jd is continuous.

To investigate the behavior of the system near the Mott
transition we calculate the correlations of density fluctuations
asymptotically from Eq. s5d for r@1 and k!!1 as

C0,r , „sinsk!rd/zr…2. s10d

After a Fourier transformation we obtain the static structure
factor as

Sk , 5 uku
2k! : uku , 2k!

1 : uku . 2k! 6 . s11d

These quantities are shown in Figs. 2sad and 2sbd for two
values of the tunneling rate J in the ICP. C0,r vanishes as the
MI phase is reached due to the fact that the MI exhibits no
density fluctuations. The correlation function of the density
fluctuations shows significant oscillations in the ICP. Their
wavelength l=2p /k! determines the characteristic length
scale for density fluctuations and diverges as the Mott tran-
sition is approached. Sk grows linearly to both sides from k
=0 in the interval f−2k! ,2k!g and is constantly 1 elsewhere.
The Feynman relation Sk=k2 /2m"vskd with the dispersion
relation vskd="ck+Osk2d, which is linear for small values

FIG. 1. The zero-temperature phase diagram of the model shows
three phases: a Mott insulator sMId, an incommensurate sICPd, and
an empty phase. For J.J0=1/2 there is no MI.
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of k, allows us to identify the sound velociy as c=k! /m".
The dependence of k! on the density for varying tunneling

rates is depicted in Fig. 3. At low densities k! increases with
increasing n until it reaches its maximal value of p at a
certain density, where it shows a cusp for J,`. For JøJ0
the system can undergo a Mott transition, where k! vanishes
at n=1. Otherwise it is nonzero. This behavior is substan-
tially different from the behavior of the continuous sTonks-
Girardeaud gas f4,15g. In the latter the role of k! is played by
kF s;pnd which depends linearly on the density. This differ-
ence reflects the fact that the lattice system undergoes a tran-
sition to a Mott insulating phase, in contrast to the continu-
ous Bose gas which cannot become a Mott insulator without
an additional potential. Recent experiments f1–3g were per-
formed in a strong optical potential that can be described by
a lattice model.
(ii) Parabolic background potential. A parabolic potential

can be expressed as a spatially varying fugacity z r
−1=z −1

+Vr2, where V determines the strength of the potential. In
this case Gr,r8 cannot be evaluated simply by a Fourier trans-
formation, since the translational invariance is broken. We
have calculated the local particle density, the correlations of

the density fluctuations, and the static structure factor by
inverting the matrix R numerically on a lattice with N=500
sites.

The local particle density nr is shown in Fig. 4 for differ-
ent values of the tunneling rate J. The density is symmetric
around the minimum of the parabolic potential at r=0 with a
maximum at the center f17g. It is suppressed as the potential
becomes larger with increasing distance from the center of
the trap. As the tunneling rate is decreased the distribution of
the particles along the lattice becomes narrower and the den-
sity is shifted upwards. When J reaches some value JP, we
observe a region with local particle density nr=1 developing
symmetrically around r=0.

To investigate the development of this plateau we have
evaluated the correlations of the density fluctuations C0,r to-
gether with the associated static structure factor. These quan-
tities are depicted in Figs. 2scd and 2sdd for two values of
J*JP. The correlation function of the density fluctuations
exhibits oscillations that do not have a unique wavelength
and Sk does not show a sharp cutoff. However, the properties
are qualitatively the same as in the translational-invariant
case. C0,r vanishes when JP is reached, owing to the fact that
there are no density fluctuations within the plateau. The char-

FIG. 2. Correlation function of
density fluctuations C0,r and static
structure factor Sk for different
tunneling rates J. First row: con-
stant background sz −1=0.3,
V=0d. Second row: parabolic
background sz −1=0.3, V=3
310−5d. Tunneling rates: J1
=0.3506 ssolid linesd and J2
=0.3504 sdashed linesd. The tran-
sition point for the Mott insulator
is at J=0.3500.

FIG. 3. Characteristic wave vector k! as a function of the den-
sity in the translational-invariant case. Curves are plotted for differ-
ent values of the tunneling rate: J=0.2,J0 ssolidd, J=0.5=J0
sdashedd, J=0.8.J0 sdottedd.

FIG. 4. Local particle density for parabolic background potential
sz −1=0.3, V=3310−5d. Development of a Mott plateau in the cen-
ter of the trap sr=0d as the tunneling rate J is decreased below JP
<0.35.
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acteristic length scales become larger as the Mott plateau is
approached. Close to JP we observe clear indications for the
developing Mott plateau f18g. The correlations of the density
fluctuations are suppressed around the center of the trap lead-
ing to a local minimum of C0,r at r=0. This is accompanied
by an increase of the slope of Sk.
Conclusion. For the 1D strongly interacting Bose gas in

an optical lattice we have identified characteristic oscillations
of the density-density correlation function with length l.
This can be used as a measure for the distance of the system
from the MI state: the length l diverges in units of the lattice
spacing with the density n as 1/ s1−nd when we approach the
MI. This phenomenon is related to the behavior of the static

structure factor Sk. Its characteristic wave vector k!=2p /l is
proportional to the sound velocity c. Sk is linear and saturates
at a value of 1 for uku.2k!. k! itself vanishes continuously as
the MI is approached and Sk=1 in the MI phase. This behav-
ior also survives qualitatively if a weak parabolic potential is
applied to the interacting Bose gas. In particular, the static
structure factor is strongly suppressed if a large fraction of
the Bose gas is in the MI state.
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