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1. Introduction

This paper gives a brief review of some aspects relevant for scattering of electromagnetic waves
in random media and a numerical study of a one-dimensional system of scatterers. To discuss the
phenomenon of random scattering one can distinguish three di:erent regimes: (I) propagation, (II)
di�usion and (III) localization of waves. In case (I) very few scatterers are present and there is
almost no e:ect on the free wave propagation: a locally created wave expands linearly in time.
The di:usive regime occurs in the presence of intermediate randomness. The wave is scattered back
and forth such that the vector of the wave front follows a random walk. Consequently, a locally
created wave cannot expand linearly in time t, as in the case of free propagation, but only with

√
t.

For strong randomness one expects destructive interference such that a locally created wave cannot
expand at all but decays exponentially in space. This is known as Anderson localization [1] and
will just be called localization subsequently. Regimes (I) and (II) can be observed in many realistic
situations whereas regime (III) is more di@cult to detect in experiments [2]. One of the reasons is
that localization is a phenomenon based on elastic scattering in non-absorbing media. It turns out
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that it is not easy to distinguish localization from absorption because both are exponential e:ects
when a wave expands in a medium [3,4].

2. Continuum models: wave equations

Localization was originally suggested in solid state physics for the wavefunction of electrons [1].
The idea for this e:ect was motivated by the experimental observation that some strongly disordered
solids do not allow the conduction of an electric current whereas their less disordered counterparts
do. In other words, due to disorder these materials are insulators. A description of this e:ect can be
given in terms of the wavefunction �E(r) of a quantum particle with energy E, using the SchrFodinger
equation[

− ˝
2

2m
�+ V (r)− E

]
�E(r) = 0

with the three-dimensional Laplace operator �. There is a close formal analogy with electromagnetic
waves, since each component of a stationary electromagnetic Held �(r) at frequency !, created by
an electric current j(r), is described by Helmholtz equation [6]

[�+ k20 (1 + �(r))]�(r) = j(r):

k0 = !=c is the wave vector with the speed of light c. The refractive index 1 + � is complex in
general. Moreover, � varies in space in the case of an inhomogeneous medium. A solution of the
Helmholtz equation can be written as

�(r) =
∫

G(r; r′)j(r′) d3r′

with the Green’s function

G = [�+ k20 (1 + �)]−1: (1)

For a local current density at r= 0 (i.e. j(r) = �(r)), the Held then reads

�(r) = G(r; 0)

which implies for the intensity at r

I(r) = |�(r)|2 = G(r; 0)G∗(r; 0): (2)

In the presence of random scatterers physical quantities like the intensity must be averaged with
respect to their distribution.

3. Discrete models: random-matrix representation

With the new notation k20 (1 + �) = k20 + V + i�, where i� represents a small absorbing part and V
the potential of the scatterers, the Green’s function (1) reads

G = (�+ k20 + V + i�)−1
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and for a homogeneous medium (i.e. without scattering: V = 0)

G0 = (�+ k20 + i�)−1:

The latter can be evaluated, e.g., in three dimensions and is for a given pair of sites

G0(r; r′) =− 1
4�

e±ik0|r−r′|

|r− r′| ;

where the sign of the exponent depends on whether the limit � → 0 has been taken from positive
or negative values.

A random medium is considered in which random scatterers are distributed on 7xed sites R1; : : : ;Rn.
These are the sites of point-like scatterers, e.g. water droplets in fog or dust particles in the atmo-
sphere or in the solar system. On each of these sites Rj there is a scattering potential such that

V (r) = k20

n∑
j=1

�j�j(r); (3)

where �j(r) is a Wannier function, centered at Rj [5]. These functions are orthogonal with respect
to di:erent scattering sites:∫

�j(r)�k(r) d3r= �jk :

�j and/or Rj may be chosen randomly, representing a random distribution of scatterers. There can
be various situations of random scattering of which there are two special cases: (a) the positions of
the random scatterers are on a regular lattice with random values of the scattering potential �j and
(b) an array of randomly positioned identical scatterers. Case (a) will be called a periodic array
of random scatterers (PARS) (Fig. 1).
G0 can be used to express the Green’s function for a system with scatterers as

G = (G−1
0 + V )−1 = G0(1+ VG0)−1:

Since V in Eq. (3) implies a projection P onto the subspace of the sites of the scatterers, the Green’s
function should also be projected to this subspace:

GP ≡ P(G−1
0 + V )−1P = PG0(1+ VG0)−1P = [[PG0P]−1

P + VP]−1
P ; (4)

where [ : : : ]−1
P is the inverse with respect to the projected space and VP = PVP. The last equality

follows from the identity given in Appendix A. Thus, in the present case with n scatterers the
Green’s function can be reduced to an n× n matrix.

4. Perturbation theory: weak localization

Weak localization occurs in systems with moderate scattering. In the context of light scattering it
is often called coherent backscattering because of its characteristic angular dependence, observed in
systems like fog or dust clouds. This phenomenon connects the propagation of waves with di:usion,
a concept originally established for classical particles. The idea may be very old but to my knowledge
was introduced as a formal theory only in the 1970s for electrons in solid state physics. It is based on
a perturbation theory with the small parameter �=l, where � is the wavelength of the scattered wave
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Fig. 1. A periodic array of random scatterers (PARS) and randomly positioned identical scatterers.

and l is the typical distance of the scatterers, often called the mean free path. It turned out that one
has to take into account an inHnite number of terms of this �=l expansion in order to obtain di:usive
behavior [8]. This can also be formulated in a self-consistent theory. From such a calculation one
Hnds in particular, that the intensity satisHes a di:usion equation [7,8]. It is characterized by the
di:usion coe@cient

D(l)˙
l
�
: (5)

Moreover, for an incoming planar wave the intensity of the scattered light is angular-dependent
(albedo) with

�(�) =
3
4�

[
1 +

1− e−2�|�|l=�

2�|�|l=�

]
:

The angle � is measured with respect to backscattering. This angular behavior (see Fig. 2), with
a pronounced maximum in backward direction, is the signature of coherent backscattering, and has
been seen in many experiments [10].
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Fig. 2. The angular dependency of the intensity in units of l=�.

5. Scaling theory: (strong) localization

Anderson introduced the idea of localization under the title “absence of di:usion” in 1958 [1].
A theoretical formulation was found later on the basis of a scaling theory [9]. It is clear from the
result of the perturbation theory [5] that a vanishing di:usion coe@cient cannot be reached within
this method. Therefore, the scaling theory starts from the picture that a 7nite system with random
scattering will always be di:usive. Thus a Hnite d-dimensional cube of size Ld can be characterized
by the L-dependent di:usion coe@cient D(L). Under quite general conditions it can be assumed
that this quantity behaves monotoneously: either D(L) is monotoneously de- or increasing with the
size L. A non-monotoneous behavior would indicate an extra length scale Lc at which a qualitative
change of D(L) takes place. There is no reason to believe that this is the case.
In the famous paper by Abrahams et al. [9] a scaling function was established for the conductance

g of d-dimensional system. Their result can be translated into the scaling behavior of the di:usion
coe@cient D, since the latter is proportional to the conductance:

g=  DLd−2;

where  is the density of waves contributing to the di:usion. For its change under a change of scale
L, the expression

! =
@ log(g)
@ log(L)
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Fig. 3. Schematic picture of the scaling behavior. The upper curve shows a three-dimensional system with a Hxed point,
the lower two curves the one- and two-dimensional systems with localized asymptotic behavior (from Ref. [9]).

measures the localization: !¿ 0 means di:usion and !¡ 0 localization. In the asymptotic regime for
large values of g the behavior is dominated by a macroscopic (i.e. L-independent) conductivity  D
such that !∼d− 2. On the other hand, in the regime of very small g one expects localization. This
means an exponential decay g ∼ exp(−L=%) on the scale %. In the interpolating regime one Hnds that
for !¿ 0 (¡ 0) the rescaled di:usion coe@cient g will increase (decrease) under an increase of the
size of the system L, indicating di:usion (localization). These qualitative arguments lead to the !
functions shown in Fig. 3 [9]. It is interesting to notice that, according to this qualitative discussion,
only systems with dimensionality larger than two can have a non-vanishing di:usion coe@cient at
inHnite size. For systems with dimensionality d6 2 random scattering always leads to localization.
A three-dimensional system can be di:usive if the randomness is weak but is localized for strong
randomness. The former is the case when !¿ 0 at a given size L and the latter when !¡ 0, as
indicated by the arrows in Fig. 3.

6. Numerical results in d = 1: the localization length

Localization is most likely to occur in low-dimensional systems. Although it cannot be treated in
terms of a perturbation theory around the system without scatterers, it can easily be seen in numerical
simulations.

According to the scaling picture in the previous section, there are only localized waves in an
inHnite one-dimensional systems. However, since we can only deal with Hnite systems in a computer
simulation or in a real experiment the question is, whether the localization length is smaller or larger
than the system length. In the latter case it would not be possible to observe the exponential decay
of the wave. There are also non-generic models in which delocalized waves can survive even in
an inHnitely large one-dimensional system at special wavelengths. This was already discussed by
Dyson who gave an exact argument for the absence of localization in a one-dimensional system with



                                                                                 1195

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

in
ve

rs
e 

lo
ca

liz
at

io
n 

le
ng

th

frequency^2

Fig. 4. Inverse localization length %−1 for a system with periodic scattering (+) and a PARS (×) with matrix elements
uniformly distributed on [0; 1] in one dimension.

random o:-diagonal terms [11]. Such a model will be considered in the following as a realization
of a one-dimensional PARS. The aim here is to study the behavior of the inverse localization length
from the intensity [2]

%−1 =− 1
2|r| log(|�(r)|2)

for large |r|. This quantity is convenient for numerical studies because it is “self-averaging”, i.e.,
there is no averaging over the random matrix elements required. Using the deHnition of the projected
the Green’s function in Eq. (4), for the PARS [PG0P]−1

P is a translational-invariant symmetric matrix.
Therefore, an orthogonal transformation can be applied to GP to diagonalize [PG0P]−1

P :

[PG0P]−1
P → k20 + i�; VP → H:

k0 is not exactly the wave vector of the Green’s function G0 but a renormalized one. Thus the
transformed model is given by a random matrix on a one-dimensional array of scatterers as

G = (H + k20 + i�)−1; (6)

where H is a symmetric random matrix (i.e., Hj; k = Hk; j). For simplicity it is assumed that

Hj; k =



Hj; j+1 ∈ [0; w] for k = j + 1;

Hj; j−1 ∈ [0; w] for k = j − 1;

0 for all other values of k:
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Fig. 5. Behavior of the localization length % in a one-dimensional PARS for uniformly distributed matrix elements on
[0; w] for w = 1, 1.5 and 2.

The distribution of the matrix elements is independent for each pair of j; j + 1, j; j − 1, except for
the symmetric elements, and uniformly distributed on the interval [0; w]. The numerical calculation
is performed on a chain with 105 sites.
First a periodic chain is studied with Hj; j+1 = 1. Fig. 4 shows that the inverse localization length

is always zero. Then matrix elements are considered which are uniformly distributed on the interval
[0; 1]. As shown in Fig. 4, this leads to a non-zero inverse localization length which vanishes only
at k0=0 and grows with k0. A more detailed numerical analysis, shown in Fig. 5, indicates a power
law divergency for the localization length as one approaches k0 = 0:

%˙ %0k−2(
0 ; %0 ≈ 1:8:::2:2; ( ≈ 0:21

in units of the distance between the scatterers. It should be noticed that ( depends only weakly
on w.
An experimental realization of such a system is, e.g., a waveguide which is randomly Hlled with

alumina spheres [12,13]. The measurement of the transmission indicates the existence of localized
waves, a clear distinction from absorption is di@cult though.

The existence of delocalized states in the one-dimensional system at k0 = 0 depends crucially on
the fact that only the o:-diagonal term H in the Green’s function (Eq. (6)) is random. Adding a
diagonal random term would immediately localize all states in one- and two-dimensional systems. It
was found, however, that the Dirac equation in two dimensions, which describes a vector Held (i.e.,
a Dirac spinor) rather than the scalar Held �(r), can have a band of extended states even in the
presence of a diagonal random term [14]. This indicates that a vector Held may have qualitatively
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di:erent localization properties in low-dimensional systems. Since in general the electromagnetic
Held is also a vector Held, replacing the scalar version of the Helmholtz equation by its vectorial
counterpart [15] may lead to new e:ects in terms of localization.

7. Conclusions

Scattering of electromagnetic waves by random impurities is characterized by three di:erent
regimes: propagation, di:usion and localization of waves. Di:usion, related to coherent backscat-
tering, is probably the most common form of light scattering, pure propagation is known in clean
environments, whereas localization is extremely rare. Nevertheless, it is easily seen in numerical
simulations. More work is necessary to determine the speciHc experimental conditions under which
localization of light can be observed.

Appendix A.

The following identity for an operator A and the projection P on the a subspace holds:

(1+ PA)−1P = [P + PAP]−1
P ;

where [ : : : ]−1
P means the inverse with respect to the projected space. The validity of this identity

will be shown in three steps. The Hrst step is to show that the left-hand side of the identity is indeed
zero outside the projected space by multiplying it from the right with P(1+ PA)P:

(1− P)(1+ PA)−1(1+ PA)P = (1− P)P = 0:

Now we have to multiply the left-hand side of the identity with the inverse of the right-hand side,
Hrst from the right

(1+ PA)−1P(1+ PAP) = (1+ PA)−1(1+ PA)P = P

and then from the left

P(1+ PAP)(1+ PA)−1P = P(1+ PA)(1+ PA)−1P = P:

The Hrst equality in this equation follows from the second equation of the appendix.
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