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Two-component Bose gas in an optical lattice at single-particle filling
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The Bose-Hubbard model of a twofold degenerate Bose gas is studied in an optical lattice with one particle
per site and virtual tunneling to empty and doubly occupied sites. An effective Hamiltonian for this system is
derived within a continued-fraction approach. The ground state of the effective model is studied in mean-field
approximation for a modulated optical lattice. A dimerized mean-field state gives a Mott insulator whereas the
lattice without modulations develops long-range correlated phase fluctuations due to a Goldstone mode. This
result is discussed in comparison with the superfluid and the Mott-insulating state of a single-component
hard-core Bose gas.
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I. INTRODUCTION

An ultracold Bose gas is brought into an optical lattice,
created by a stationary laser field @1#. If the corresponding
periodic potential is sufficiently strong, such that tunneling
of atoms between the potential wells is strongly suppressed,
the phase coherence of the Bose gas is destroyed due to the
repulsive interaction between the bosons. In this case the
Bose gas becomes a Mott insulator. This ground state is char-
acterized by a fixed number of bosons in each lattice well
and strong incoherent phase fluctuations of the quantum
state, in contrast to the phase coherence of the Bose-Einstein
condensate with a strongly fluctuating local particle number.
The Mott insulator and the transition to the superfluid state
were discussed theoretically some time ago @2–4# and ob-
served experimentally recently @1#.

Besides the phase of the bosons and the local particle
number there can be other degrees of freedom in an ultracold
gas of bosonic atoms which may also establish some long-
range ordering. A possible candidate for such a consideration
is a Bose gas in an optical or a magnetic trap @5#, where the
fluctuations between nearly degenerate hyperfine states rep-
resent an additional degree of freedom. This can play a role
in establishing different types of ordering, similar to the spin
degree of freedom in fermionic systems. Here the case of a
strongly interacting Bose gas with one particle per site will
be considered. Using a Bose-Hubbard model, the interaction
and the chemical potential of a grand-canonical ensemble are
adjusted such that there is one particle per optical lattice site.
According to the statements given above, the fixed number
of particles per site would represent a Mott insulator. On the
other hand, the local particle number nr is a sum of the
particle numbers of both components ~represented by a
‘‘spin’’ ↑ or ↓)

nr5nr,↑1nr,↓ .

The individual particle numbers of the two components are
fluctuating quantities and can lead to a new state when long-
range correlations develop. A similar situation can be found
in a single-component hard-core Bose gas in an optical lat-
tice. Then each lattice site is either empty with the quantum
state u0& or singly occupied with u1&. Formally these two
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states correspond with the states u↑& and u↓& of the two-
component gas. It is known from analytic @2,3# and numeri-
cal calculations @6# that the hard-core Bose gas develops a
superfluid phase for arbitrarily small tunneling rates if the
states u0& and u1& are degenerate, i.e., when ^nr&51/2. This
behavior will be discussed in Sec. III A. Using the formal
correspondence with the two-component Bose gas the devel-
opment of a long-range correlated state would also take place
for any tunneling rate if the states u↑& and u↓& are degenerate.
A consequence would be that these two states could easily
separate in space, leading to an entangled state in the Bose
gas.

Ordering phenomena can be studied perturbatively, start-
ing from isolated potential wells of the optical lattice and
systematically turning on the tunneling between these poten-
tial wells. Because of the degeneracy with respect to the spin
degrees of freedom in the isolated wells this requires a de-
generate perturbation theory. Instead of using a perturbation
theory for the tunneling Hamiltonian a continued-fraction ap-
proach will be applied in the following.

The central aim of this paper is to derive an effective
Hamiltonian for the two-component Bose gas with ^nr&51
and to discuss the properties of this system. In this case a
particle is a superposition of the states u↑& and u↓&. Without
tunneling between lattice sites it represents a ‘‘paramag-
netic’’ state, i.e., a state without ordering. Tunneling, on the
other hand, preserves the ‘‘spin’’: starting with a boson of a
given spin this boson will spread to neighboring potential
wells. This process requires virtual states which are empty or
occupied by more than one particle. Here only occupation
with two particles will be allowed to keep the calculational
effort low. However, the continued-fraction approach pro-
posed in this paper can be extended to higher orders of oc-
cupation.

After introducing the two-component Bose-Hubbard
model in Sec. II, the single-component hard-core Bose gas is
considered for comparison in Sec. III and treated in mean-
field approximation in Sec III A. The ground states of a two-
component Bose-Hubbard model with ^nr&<1 and a single-
component hard-core Bose gas are evaluated for a two-site
system in Sec. III B. Then the effective Hamiltonian for a
projected system of interacting particles is derived by a trun-
cated continued fraction in Sec. IV and applied to the two-
©2003 The American Physical Society02-1
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component Bose gas with ^nr&51 in Sec. V. Finally, the
two-site system ~Sec. VA! and a mean-field approximation
~Sec. VB! are discussed for the effective model.

II. THE MODEL: INTERACTING BOSE GAS

In order to describe a multicomponent interacting Bose
gas the interaction of bosons can either be included as a
hard-core interaction or in terms of the Bose-Hubbard model.
Crucial is only that a repulsive interaction stabilizes an in-
completely filled lattice with vanishing compressibility.
From this point of view the actual form of the local interac-
tion Hamiltonian H0 is not important except for the fact that
it depends only on the local particle number at site r

nr5 (
s5↓ ,↑

ar,s
† ar,s

with boson creation ~annihilation! operator a† (a). For a
more specific discussion, a Bose-Hubbard model with

H05(
r

@2mnr1Unr~nr21 !# ~1!

shall be considered, where m is the chemical potential and
U.0 the interaction constant. Eigenvalues of the local par-
ticle number are n50,1, . . . with corresponding energies per
lattice site

E~n !52mn1Un~n21 !.

For 0,m,U , the case considered throughout this paper, the
lowest energy is E(1)52m for n51, and next higher en-
ergies are E(0)50 and E(2)52(U2m) and even higher
energies for n.2.

The dynamics of the bosons is described by the tunneling
Hamiltonian

H152 (
^r,r8&

tr,r8 (
s5↓ ,↑

tsar,s
† ar8,s , ~2!

where ^r,r8& are nearest-neighbor sites on the optical lattice.
The parameter 0<tr,r8<1 describes a modulation of the op-
tical lattice. The interaction is crucial for finding new physi-
cal states, since the noninteracting Bose gas ~i.e., for U
50) the Hamiltonian H1 gives only two independent Bose-
Einstein condensates.

A grand-canonical ensemble of bosons at the inverse tem-
perature b , defined by the partition function

Z5Tr exp~2bH !, ~3!

can be used to evaluate the average density of particles as

n̄5
1

bN
]ln Z
]m

with the number of lattice site N. Without tunneling ~i.e., for
ts50) the average density of particles n̄ gives ] n̄ /]m50
~i.e., incompressible states! for all noninteger values of m/U .
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III. SINGLE-COMPONENT HARD-CORE BOSE GAS:
SUPERFLUID AND MOTT-INSULATING STATES

Before discussing the two-component Bose gas the
single-component hard-core Bose gas shall be considered be-
cause its properties are known from a number of other ap-
proaches. The hard-core interaction can be described by a
bosonic creation ~annihilation! operator A† ~A! with the ad-
ditional condition A†250. The Hamiltonian of the hard-core
Bose gas then reads

HHCB52t (
^r,r8&

Ar
†Ar82m(

r
Ar

†Ar ~4!

and acts on the Hilbert space with u0& and u1& as basis states
at each lattice site. There is a close formal connection be-
tween hard-core Bose and spin-1/2 operators, since one can
write

Sx5~A1A†!/2, S y5i~A2A†!/2, S z5A†A21/2.
~5!

The Hamiltonian can be expressed in terms of these spin
operators as an XY model with a magnetic field in z direc-
tion:

HHCB52t (
^r,r8&

~Sr
xSr8

x
1Sr

ySr8
y

!2m(
r

Sr
z .

For sufficiently large values of umu the ground state is ferro-
magnetic: if m.0 the magnetization is ^S z&.0 and vice
versa. Therefore, for m.0 (m,0) these ground states cor-
respond in terms of the hard-core bosons with a completely
filled ~empty! lattice, where the filled lattice represents a
Mott-insulating state @2–4#. m50 is a marginal situation,
where the bosons develop a superfluid state for any positive
value of the tunneling rate t. More general, the superfluid
state persists if the tunneling dominates.

The advantage of the spin representation is that it pro-
vides a simple qualitative picture for the existence of a Mott-
insulating state and a transition to a superfluid state. A more
quantitative description is obtain from a mean-field approxi-
mation which is discussed in the following section.

A. Mean-field approximation of the hard-core Bose gas

A possible complex mean-field state for the hard-core
Bose gas is

uCMF&5)
r

@e iwrcos~hr!1e icrsin~hr!Ar
†#u0& ~6!

from which matrix elements can be calculated. For instance,
the tunneling term in the Hamiltonian HHCB gives

^CMFuAr
†Ar81Ar8

† AruCMF&

52 cos~ar2ar8!cos~hr!sin~hr!cos~hr8!sin~hr8!,

where the phases appear only in the phase difference ar
5wr2cr . Thus this term of the Hamiltonian has a global
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U~1! symmetry because it is invariant under a shift wr→wr
1D and cr→cr1D8. The other matrix element of the
Hamiltonian HHCB is independent of the phases:

^CMFuAr
†AruCMF&5sin2hr .

The mean-field expectation of Hamiltonian ~4! with the ho-
mogeneous mean field h reads

^CMFuHHCBuCMF&

52sin2hF t~12sin2h ! (
^r,r8&

cos~ar2ar8!1(
r

mG .
The ground state is cos(ar2ar8)51 and

sin2h5H 0 for m<22dt
1/21m/4dt for 22dt,m,2dt
1 for 2dt<m .

~7!

The expression

^CMFuAruCMF&5e i(cr2wr)cosh sinh ~8!

is an order parameter for a superfluid state which vanishes in
the cases sin2h50,1. It should be noticed that in this regime
^CMFuHHCBuCMF& is independent of ar . This reflects the
absence of a superfluid. In the case sin2h50 it is an empty
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state and for sin2h51 a Mott insulator with one particle per
site. This result is in agreement with Monte Carlo simula-
tions @6#.

B. Hard-core vs Bose-Hubbard model: A two-site system

To study the tunneling between neighboring potential
wells of the optical lattice a two-site model with t↑5t↓[t is
considered. This was already discussed in great detail for the
model under consideration, using the leading order of an
expansion in t2/U @7–9#. Here the study shall be performed
without assuming t2/U!1. As a first example the single-
component hard-core Bose gas is considered in terms of the
Hamiltonian in Eq. ~4!. The ground states are

uC0&5H u0,0& for m,2t

~ u0,1&1u1,0& !/A2 for 2t,m,t
u1,1& for m.t .

This result corresponds with the three different mean-field
ground states in Eq. ~7!. Thus already the two-site system
indicates the three phases of the full d-dimensional lattice:
the empty lattice, the condensate, and the n51 Mott insula-
tor. An analogous calculation for the two-component Bose-
Hubbard model with empty and singly occupied sites gives
the ground states
uC0&5H u0,0& for m,2t

~ u0,↑&1u↑ ,0& !/A2, ~ u0,↓&1u↓ ,0& !/A2 for 2t,m,t
u↓ ,↓&,u↓ ,↑&,u↑ ,↓&,u↑ ,↑& for m.t .

~9!
For 2t,m,t there are two ~degenerate! ferromagnetic
states, where the degeneracy can be lifted by an infinitesimal
magnetic field. It is expected that these are the states which
form a condensate. The fourfold degeneracy for m.t may be
lifted when a virtual tunneling through empty and doubly
occupied sites is included. This degeneracy also raises the
question whether or not an analog of the superfluid ground
state is allowed due to virtual tunneling in this regime. A
reason for having long-range correlations is that one of the
two components, e.g., u↓&, can be formally considered as an
empty site, the other component as a hard-core boson and
since the hard-core Bose gas has a superfluid state for suffi-
ciently large tunneling rate. To study this regime, a projec-
tion of the trace in the partition function to singly occupied
states is considered subsequently. This projection allows vir-
tual tunneling through empty and doubly occupied sites.

IV. A CONTINUED-FRACTIONAPPROACH TO THE
PROJECTED PARTITION FUNCTION

The many-body system is defined by the Hamiltonian H
and the transfer matrix e2H. Physical quantities at inverse
temperature b are derived from the partition function Z de-
fined in Eq. ~3!. A continued-fraction approach shall be de-
veloped in this section to derive an effective Hamiltonian
from H that describes the physics of a projected transfer
matrix P0e2bHP0. Although H is bounded from below it
may have negative eigenvalues. A positive operator can be
obtained by adding a constant diagonal term E to shift the
ground-state energy E0 to positive values E(1)5E01E .
Then the transfer matrix can be represented by the integral

e2bH5
ebE

2piE2`

`

e ibz@z2i~H1E !#21dz .

Thermodynamic properties at low temperatures are domi-
nated by the ground states and low-energy excitations. The
trace of the grand-canonical partition function Z includes
states with all possible number of bosons. For the Hamil-
tonian H the highest statistical weight comes from the
ground state. If H5H01H1 with a perturbation H1, the Hil-
bert space is projected on the degenerate ground states of the
Hamiltonian H0 by P0. In the example of Sec. II the Hamil-
2-3
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tonian preserves the number of particles. Therefore, in this
case it is expected that the system with fixed particle filling
gives the dominant contribution to the trace, especially at
low temperatures. This situation can be described by the
P0-projected partition function with the corresponding trace
Tr0

Z5Tr0~P0e2bHP0!

5
ebE

2piE2`

`

e ibzTr0@P0$z2i~H1E !%21P0#dz . ~10!

Assuming that H is implicitly shifted by E, the P0 projection
of the resolvent (z2iH)21 reads

P0~z2iH !21P0

5@P0~z2iH !P01P0HP1~z2iH !1
21P1HP0#0

21 , ~11!

with P1512P0 . (•••)0,1
21 is the inverse with respect to the

P0,1-projected space. This identity can be directly shown by
a multiplication of the matrix and its inverse. It can be gen-
eralized to a recurrence relation @see Eq. ~A2! of Appendix
A# if the Hamiltonian H satisfies the special conditions ~A1!.
For the two-component Bose gas this is indeed the case,
since the Hamiltonian H5H01H1 of Sec. II is of the special
form

H5S P0H0P0 P0H1P1

P1H1P0 P1HP1 D , ~12!

where P0 is the projection to the degenerate ground state of
H0 with 0,m,U , i.e., one particle per site. Thus the
Hamiltonian H1 is responsible for an interaction between the
P0- and the P1-projected Hilbert spaces. H0, on the other
hand, acts only inside the P0-projected space. Starting from
singly occupied states, the tunneling Hamiltonian H1 can
only create a pair of an empty and a doubly occupied site
~PEDS!. If P2 is the projection from P1 to one with only a
single PEDS, the second term in the inverse matrix of Eq.
~11! reads

P0H1P1~z2iH !1
21P1H1P05P0H1P2~z2iH !1

21P2H1P0 .
~13!

In general, the operator P2k11H1P2k creates a new PEDS in
the Hilbert space with k PEDSs. Thus the continued-fraction
representation of Appendix A, applied to the two-component
Bose gas at single-particle filling, is based on the creation of
PEDSs.

In order to truncate the continued fraction the creation of
new PEDS and multiply occupied sites is excluded. This is
related to the approximation

P2~z2iH !1
21P2'P2~z2iH0!1

21P2

5
1

z2i@~N22 !E~1 !1E~0 !1E~2 !#
P2 ,
05360
where E(0) and E(2) are the energies of H01E for the
empty and doubly occupied sites of Sec. II. With Eqs. ~11!
and ~13! this gives for the P0-projected resolvent of the par-
tition function

P0~z2iH !21P0'$P0~z2iH0!P01P0H1P2

3@z2iH0#
21P2H1P0%0

21

5„z2iE01P0H1
2P0 /$z2i@~N22 !E~1 !

1E~0 !1E~2 !#%…0
21 .

Here it has been used that

P0H1P2H1P05P0H1
2P0 ,

which follows from the fact that H1 is off-diagonal with
respect to the P0- and P2-projected Hilbert spaces. Then the
P0-projected partition function reads for low temperatures
~i.e., b;`) ~see Appendix B!

Z; 1
2 e2b(NE01DE)Tr0@e2bHe f f~12DEHe f f

21!# , ~14!

with the effective Hamiltonian

He f f52@~DE !21P0H1
2P0#

1/252DE@1

1P0H1
2P0 /~DE !2#1/2

and

DE5@E~0 !1E~2 !#/22E~1 !.

Since P0H1
2P0 is a non-negative operator, this result implies

that the ground state of 2P0H1
2P0 is the ground state of

He f f .
If P0H1

2P0 is small in comparison with (DE)2, a pertur-
bation theory with respect to the P0H1

2P0 can be applied to
He f f . This leads to an expansion with respect to t2/U . In
leading order the approximation is

He f f'2DE2P0H1
2P0 /~2DE !,

in agreement with the results of Refs. @7–9#.
This method of deriving an effective Hamiltonian by pro-

jecting the partition function is quite general as long as the
Hamiltonian H has the structure shown in Eq. ~12!. The spe-
cific case of a two-component Bose gas will be discussed
subsequently.

V. THE EFFECTIVE HAMILTONIAN OF THE PROJECTED
TWO-COMPONENT BOSE GAS

Numerous possibilities were discussed in the literature for
the creation of a two-component system in atomic gases
@10–13#. For instance, if 87Rb is coupled to a radiation field
there are pairs of nearly degenerate hyperfine uF ,mF& states,
namely, u↑&5u1,21& and u↓&5u2,1& @10,14# or u↑&5u1,
21& and u↓&5u2,22& @12#. u↓& and u↑& are formal notations
to specify the two ~almost! degenerate states. The interaction
of the atoms does not depend on the states but only on the
local density of the bosons. Therefore, the interaction in H0
of Eq. ~1! is a good description.
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In a dilute regime ~i.e., for a filling less than one particle
per site! the interaction is weak. This opens the opportunity
to apply a classical approach for the two-component conden-
sate order parameter, leading to a lattice version of the
Gross-Pitaevskii equation. The optical lattice means that the
kinetic term has a special band dispersion e(k) in Fourier
space, depending on the lattice, instead of the k2 dispersion
in the case without an optical lattice. It is believed that this
model has a ferromagnetic ground state with respect to the
two-component bosons @15#, a result that is also supported
by the result of the two-site system in Eq. ~9!. On the other
hand, it is well known from the theory of the fermionic Hub-
bard model that the type of spin order depends crucially on
the filling of the lattice @16,17#, and can change, for instance,
from ferromagnetic to antiferromagnetic order by changing
the filling. In particular, the fermionic Hubbard model has an
antiferromagnetic ground state at half filling. To study this
effect in the two-component Bose gas in an optical lattice,
the strongly interacting case with single-particle filling of the
lattice shall be considered here. Then the two-component
degeneracy has to be taken fully into account and the projec-
tion approach of the preceding secion for the tunneling term
H1 should be applied. In this case the Hamiltonian
2P0H1

2P0 reads

2
1
4 (

^r,r8&

tr,r8
2 (

s ,s85↓ ,↑
tsts8P0~ar,s

† ar8,s1ar8,s
† ar,s!

3~ar,s8
† ar8,s81ar8,s8

† ar,s8!P0 ~15!

and DE5U . On the P0-projected Hilbert space ~i.e., the
space with exactly one particle per site! the operators

Ar
†5P0ar,↑

† ar,↓P0 , Ar5P0ar,↓
† ar,↑P0

are creation and annihilation operators of hard-core bosons,
when u↓& is formally identified with a vacuum state u0& and
u↑& with a one-particle state u1&. As shown in Appendix C,
the operator 2P0H1

2P0 reads in terms of the hard-core Bose
operators as

2P0H1
2P052 (

^r,r8&

tr,r8
2 F t↑t↓Ar

†Ar81
t↑
21t↓

2

2

3~12Ar
†Ar!Ar8

† Ar8G . ~16!

This Hamiltonian describes a hard-core Bose gas with a re-
pulsive nearest-neighbor interaction. The competition be-
tween tunneling ~favors particles! and nearest-neighbor re-
pulsion ~favors a ground state with checkerboard order! leads
to a complex situation. Similar to the single-component hard-
core Bose gas, this can also be discussed in terms of spin-1/2
states. The representation of Hamiltonian ~16! as a spin
Hamiltonian via Eq. ~5! gives an anisotropic Heisenberg
Hamiltonian.
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A. Projected two-site model

The situation of the projected partition function of the
two-site model can be discussed and compared with the pre-
vious results for the hard-core Bose gas and the two-
component Bose-Hubbard gas. Using the hard-core Bose
Hamiltonian of the projected model in Eq. ~16! with t↑5t↓
[t and tr,r851, the corresponding 434 matrix for the four
different states with ↓ and ↑ at the two sites has the eigen-
values $22t2,0,0,0%. The unique ground state of
2P0H1

2P0 with energy 22t2 is

uC0&5
1
A2

~ u↓ ,↑&1u↑ ,↓&). ~17!

The P0 projection has apparently selected a nondegenerate
ground state from the four degenerate ground states of the
Bose-Hubbard model with one particle per site in Eq. ~9!.
This is a consequence of the virtual tunneling to empty and
doubly occupied states in the model with the projected par-
tition function, which was not included in the derivation of
the state uC0& of Eq. ~9!. This state is not an eigenstate to Sr

z

but has a vanishing expectation for Sr
z . This reflects the fact

that the ground state has no tendency to develop a ferromag-
netic order.

The projected partition function ~14! reads for this two-
site model

Z;e2b(2E01U)(
j51

4

eb(U22E j)
1/2

;e2b(2E01U)eb(U212t2)1/2.

Z can be used to evaluate the average tunneling energy from

t
b

]

]tln Z;
2t2

AU212t2
.

Thus the interaction reduces the tunneling rate of the two-site
model by a factor (11U2/2t2)21/2.

B. Mean-field approximation of the two-component Bose gas

Using the hard-core Bose representation of the Hamil-
tonian in Eq. ~16! its mean-field approximation is studied
with the complex mean-field state ~6!. The repulsive nearest-
neighbor interaction is

^CMFu~12Ar
†Ar!Ar8

† Ar8uCMF&5cos2hrsin2hr8 .

Together with the hard-core Bose Hamiltonian of Sec. III A
the expression in the Hamiltonian of the two-component
Bose gas at single filling reads in mean-field approximation

2^CMFuP0H1
2P0uCMF&

52 (
^r,r8&

tr,r8
2 F t↑t↓cos~ar2ar8!coshrsinhrcoshr8

3sinhr81
t↑
21t↓

2

2 cos2hrsin2hr8G .
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The first term favors a homogeneous solution for hr , the
second term an inhomogeneous solution, e.g., for neighbor-
ing sites r,r8 with

sin2hr51, cos2hr851. ~18!

In this case the first term vanishes and the remaining Hamil-
tonian is

2^CMFuP0H1
2P0uCMF& i52

t↑
21t↓

2

4 (
^r,r8&

tr,r8
2 .

On the other hand, a homogeneous mean-field solution for
the ground state is sin2h51/2 such that

2^CMFuP0H1
2P0uCMF&h

52
1
4 (

^r,r8&

tr,r8
2 F t↑t↓cos~ar2ar8!1

t↑
21t↓

2

2 G .
~19!

This Hamiltonian agrees formally with the mean-field
Hamiltonian of hard-core bosons in Sec. III A at the point of
degeneracy m50. However, its interpretation in terms of the
physical bosons, given by the Bose operators a† and a, is
different. This is clearly indicated by the fact that the order
parameter of a superfluid state vanishes:

^CMFuaruCMF&h50.

Thus the long-range correlated phase fluctuations are not re-
lated to a superfluid state but to a spontaneously broken sym-
metry, associated with the order parameter

^CMFuAruCMF&h5^CMFuar,↓
† ar,↑uCMF&h .

These phase fluctuations prevent the system to become a
genuine Mott insulator, since the latter is characterized by a
gap and short-range correlated fluctuations ~cf. with the
Mott-insulating state of the single-component hard-core gas
in Sec. III A!. However, a Mott insulator can be obtained in
the limit t↑t↓50. This is a limit similar to the Falicov-
Kimball limit of the fermionic Hubbard model @17#.

Another mean-field approximation can be constructed for
a generalization of the two-site model to a modulated lattice
model, using dimers with tunneling rates tr,r85t0 as build-
ing blocks of the lattice. These dimers are weakly coupled
with tunneling rate tr,r85t1!t0. A corresponding complex
mean-field state is

uCD&5 )
^r,r8&PD

1
A2

~e iwrAr
†1e iwr8Ar8

†
!u0&, ~20!

where D is a set of dimers $^r,r8&% with tr,r85t0. This state
is a lattice generalization of the two-site state of Eq. ~17!.
The Hamiltonian of the two-component Bose gas at single
filling ~16! reads in this mean-field approximation
05360
2^CDuP0H1
2P0uCD&

52
t0
2

2 t↑t↓ (
^r,r8&PD

cos~wr2wr8!2
t↑
21t↓

2

4 (
^r,r8&

tr,r8
2 .

~21!

For t↑t↓50 this result agrees with the Hamiltonian of solu-
tion ~18! but has a lower energy for any t↑t↓.0. Moreover,
the state uCD& has always a lower energy than the homoge-
neous mean-field state uCMF&h . This can be summarized by
comparing the ground-state energies: The difference between
the ground-state energy of the homogeneous (Eh) state
uCMF&h and the inhomogeneous (E i) state uCMF& i is

Eh2E i5
~ t↑2t↓!2

8 (
^r,r8&

tr,r8
2

and between the inhomogeneous state uCMF& i and the dimer-
ized state uCD& is

E i2ED5
t↑t↓
2 (

^r,r8&PD
tr,r8
2 .

It should be noticed that the homogeneous state uCMF&h and
the dimerized state uCD& have the same ground-state energy
in the case of a single-component hard-core Bose gas, pro-
vided that the dimers fill half of the lattice. This means that
the difference of the ground-state energies in the Hamil-
tonian of Eq. ~16! is due to the repulsive interaction.

The Hamiltonian of Eq. ~21! creates short-range corre-
lated fluctuations, since the set D contains only isolated
dimers. Therefore, it represents a Mott insulator. If the modu-
lation of the lattice is weak ~i.e., t0't1), a summation of the
state in Eq. ~20! over different dimer configurations is re-
quired. This may lead again to long-range correlated phase
fluctuations, since the global U~1! symmetry of the phase
fluctuations can be spontaneously broken. Thus a phase tran-
sition from a Mott insulator at strong modulation to a state
with long-range correlated phase fluctuations at weak modu-
lation is expected.

VI. SUMMARY

A two-component Bose gas with creation operators a↑
† ,

a↓
† in an optical lattice with lattice modulations and one par-

ticle per site is studied. By allowing only virtual tunneling to
empty and doubly occupied sites, an effective Hamiltonian is
derived for hard-core bosons, defined by the creation opera-
tor

A†5P0ar,↑
† ar,↓P0 ,

where P0 is the projector on one-particle states. The effective
Hamiltonian describes tunneling and a repulsive nearest-
neighbor interaction between hard-core bosons. It is studied
in terms of two types of mean-field states: a product of
single-particle states and a dimerized state. The ground-state
energies of a homogeneous single-particle product state
2-6
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(Eh), of a inhomogeneous single-particle product state (E i),
and of a dimerized state (ED) are related as

ED<E i<Eh ,

where the first equality sign holds for t↑t↓50 and the second
for t↑5t↓ .

The repulsive nearest-neighbor interaction prefers the
dimerized state, indicating a Mott insulator at least in the
presence of a lattice modulation. This state is characterized
by short-range correlated phase fluctuations. For small or
even vanishing modulation, however, a superposition of dif-
ferent dimerized states may lead to a spontaneously broken
U~1! symmetry of the phase fluctuations. This would be ac-
companied by a Goldstone mode with long-range correlated
phase fluctuations, indicating the destruction of the Mott in-
sulator and the creation of an ordered state in terms of the
two components of the Bose gas.

A similar model with N components and hard-core inter-
action was studied in the N→` limit @18#. It has a Mott-
insulating phase with n̄51 and indicates a symmetry-
breaking phase for 0, n̄,1.
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APPENDIX A

Given is a sequence of projectors P j( j>0), defined by

P2k115P2k212P2k ~k>0 !

with initial condition P2151 and with the Hamiltonian H
through the properties

P2kHP2k115P2kHP2k12 , P2k11HP2k5P2k12HP2k .
~A1!

With these projectors the identity, Eq. ~11!, can be iterated.
The first step is to replace P0HP1(z2iH)1

21P1HP0 by the
right-hand side of the identity

P0HP1~z2iH !1
21P1HP05P0HP2~z2iH !1

21P2HP0 ,

such that Eq. ~11! reads

P0~z2iH !21P0

5@P0~z2iH !P01P0HP2~z2iH !1
21P2HP0#0

21 .

Now the expression P2(z2iH)1
21P2 on the right-hand side

can be rewritten by applying again Eq. ~11! as

P2~z2iH !1
21P2

5@P2~z2iH !P21P2HP3~z2iH !3
21P3HP2#2

21 ,

with P35P12P2. Moreover, application of Eq. ~A1! to the
right-hand side yields
05360
P2~z2iH !1
21P2

5@P2~z2iH !P21P2HP4~z2iH !3
21P4HP2#2

21 .

Iteration of this procedure leads to the recurrence relation

P2k~z2iH !2k21
21 P2k5@P2k~z2iH !P2k1P2kHP2k12

3~z2iH !2k11
21 P2k12HP2k#2k

21 .

~A2!

Together with Eq. ~11! this gives a continued-fraction repre-
sentation of P0(z2iH)21P0.

APPENDIX B

To evaluate integral ~10! it is convenient to define

E15
2
N DE1E~1 !, DE5@E~0 !1E~2 !#/22E~1 !.

Moreover, the spectral representation of P0H1
2P0 is used

with the eigenvalues l j . This leads to

Z5(
j

I~l j!,

with the integral

I~l !5
1

2piE2`

` e ibz~z2iNE1!

@z2iNE~1 !#~z2iNE1!1l
dz .

The poles of the integrand are

z65
i
2 $N@E~1 !1E1#6AN2@E12E~1 !#214l%,

such that the integral itself is

I~l !5
e ibz1~z12iNE1!2e ibz2~z22iNE1!

z12z2
.

The second term of the numerator dominates at large values
b:

I~l !;2
e ibz2~z22iNE1!

z12z2
. ~B1!

Since

z12z25iAN2@E12E~1 !#214l ,

z22iNE15
i
2 $N@E~1 !2E1#2AN2~E12E0!214l%

and

E12E~1 !5
2
N DE ,

the expression in Eq. ~B1! reads
2-7
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I~l !;
1
2 e2b(NE(1)1DE)ebA(DE)21lF11

DE
A~DE !21l

G .
APPENDIX C

It is convenient to split the summation (s ,s8 in Eq. ~15!
into a diagonal part and an off-diagonal part:

2P0H1
2P052

1
2 (

^r,r8&

tr,r8
2 F (

s5↓ ,↑
ts
2P0ar,s

† ar,sar8,sar8,s
† P0

12t↑t↓P0ar,↓
† ar,↑ar8,↑

† ar8,↓P0G .
The projection P0 acts individually at each lattice site r, i.e.,
for r8Þr one can write

P0ar,s
† ar,sar8,sar8,s

† P05P0ar,s
† ar,sP0P0ar8,sar8,s

† P0

and

P0ar,s
† ar,s8ar8,s8

† ar8,sP05P0ar,s
† ar,s8P0P0ar8,s8

† ar8,sP0 .

With this it is possible to define operators on the
P0-projected Hilbert space ~i.e., the space with one particle
per site! as

Ar
†5P0ar,↑

† ar,↓P0 , Ar5P0ar,↓
† ar,↑P0 .
05360
When u↓& is formally identified with a vacuum state and u↑&
with a particle, A† (A) is a creation ~annihilation! operator
for a hard-core boson on the P0-projected Hilbert space.
Moreover, it is

P0ar,sar,s
† P05P02P0ar,s

† ar,sP0 , ~C1!

and the operators satisfy the identities

Ar
†Ar5P0ar,↑

† ar,↓P0ar,↓
† ar,↑P0

5P0ar,↑
† ar,↑P05P0ar,↓ar,↓

† P0 , ~C2!

ArAr
†5P0ar,↓

† ar,↑P0ar,↑
† ar,↓P0

5P0ar,↓
† ar,↓P05P0ar,↑ar,↑

† P0 . ~C3!

Thus Ar
†Ar is the particle number operator for the hard-core

bosons. With ~C1! and ~C2! the Hamiltonian 2P0H1
2P0 can

be written in terms of the hard-core Bose operators as

2P0H1
2P052 (

^r,r8&

tr,r8
2 F t↑t↓Ar

†Ar8

1
t↑
21t↓

2

2 ~12Ar
†Ar!Ar8

† Ar8G .
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