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ABSTRACT
The Hubbard model is used as a starting point for a study of an electronic

system with spin 1. Using a functional integral representation at half-filling it is
demonstrated that the spin degeneracy is equivalent to dynamic Ising spins
coupled to the fermions. A magnetic phase transition of the model is related to
a transition of the Ising spins from a paramagnetic to an antiferromagnetic phase.
A metal-insulator transition in the paramagnetic phase can be described within
this approach by the Green’s function of non-interacting fermions, coupled to
Ising spins. This picture is compared with the earlier king spin representation of
the Hubbard model by Hirsch and discussed in terms of a small hopping
amplitude.

5 1. INTRODUCTION
The Hubbard model was originally constructed to describe a metal-insulator

transition for spin-dependent fermions (Hubbard 1959, Fradkin 199 1, Rasetti
1991, Fulde 1993, Gebhard 1997). This transition reflects the competition between
interaction and kinetic energy. The model is defined on a lattice, where the potential
energy consists of a chemical potential and an on-site repulsion of fermions with
opposite spin. The kinetic energy is given by a nearest-neighbour hopping. It turned
out from a number of calculations that this model has a rich structure because of the
complicated interplay of charge and spin degrees of freedom. For instance, mean-
field calculations for a magnetic order parameter indicate paramagnetic, ferromag-
netic and antiferromagnetic states for the half-filled system (Fradkin 199 I). Thus, the
magnetic properties of the model became a central subject of investigations in solid-
state physics.

The metal-insulator transition was discussed originally by Hubbard (1 959) using
self-consistent approximations, later in terms of a variational approach (Gutzwiller
1965, Brinkman and Rice 1970) and in the limit of an infinite-dimensional lattice
(Metzner and Vollhardt 1993, Gebhard 1997). Very interesting investigations were
obtained from computer simulations which indicate an insulating phase at half-
filling for sufficiently strong fermion interaction (Hirsch 1987, Scalettar et al. 1989,
Assaad and Imada 1996, Staudt et al. 2000).

To study the metal-insulator transition, one can, in principle, start either from
the metallic or from the insulating side. As the simplest approximations, one could
use non-interacting fermions on the metallic side or the local limit on the insulating
side, where the hopping rate is zero. Unfortunately, neither of these starting points is
very useful in order to understand the interacting Hubbard model; non-interacting
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fermions are unstable against an arbitrarily weak interaction (Fradkin 1991), and the
local limit of the half-filled states are completely degenerate with respect to the spin,
that is the spins represent a paramagnetic state. Therefore, an arbitrarily weak hop-
ping rate would lift the degeneracy, leading to a new state that might be magnetically
ordered (Tasaki 1998). The main idea of this work is to start from the extreme
insulating state at low temperatures and to study the degeneracy with respect to
the spin. The most interesting is the case of a grand canonical ensemble, described
by the partition function Z = Tr [exp ( - p H ) ] ,  where on average one fermion per site
(half-filled system) is considered. Static fermions (i.e. fermions without a hopping
term) have a 2M degeneracy ( M  is the number of lattice sites) because each site can
accommodate a fermion with spin up or a fermion with spin down. Consequently, a
perturbation theory around one of these limiting states is plagued by degeneracies.
For instance, a spontaneous hop of a fermion from a site to one of its nearest-
neighbour sites in a half-filled state creates spontaneously a doubly occupied site
and an empty site. The doubly occupied site may decay again into two singly occu-
pied sites. The resulting state is twofold degenerate because of the possible two spin
orientations (figure 1). If the unperturbed state is an antiferromagnetic (Neel) state, a
hopping process at a time t l  in terms of the expansion of Z can exchange two
neighbouring fermions that leads to two pairs of neighbouring fermions with parallel
spins. At time t7 the inverse hopping process can recreate the original antiferro-
magnetic state. Therefore, the two hopping processes are not independent. Since
the intermediate state between time t ,  and t2 has the same energy as the antiferro-
magnetic state, there is a constant interaction in time. Consequently, the linked
cluster theorem cannot be applied, since it works only for independent clusters or
clusters which interact with a decaying interaction (Brydges 1986, Glimm and Jaffe
1987). The central point of this work is the development of a method that deals with
the degeneracy.

In order to control the exponential spin degeneracy it is natural to eliminate one
spin orientation. This can be achieved formally by integrating out one of the spin
orientations, for example T, in the functional integral representation of the Hubbard

4
. . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .

Figure 1.  Decay of a doubly occupied site in two electrons with spin and 1 has a twofold
degeneracy. The re-creation of the doubly occupied site connects the two related
hopping events by a degenerate interaction.
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model. The resulting fermion determinant of spin r can be decomposed by a space-
time lattice partition. The result of this operation reveals an important structure of
the effective spinless fermion model which is formally an expansion of the model in
terms of the degeneracy; the partitions are not degenerated, and the hopping expan-
sion can be applied independently to each of them. It turns out that the expansion is
equivalent to the summation over the 2M states of king spins at each time step. After
an approximation which is applicable to the regime of a small hopping amplitude in
the Hubbard model, the remaining fermionic degrees of freedom can be integrated
out. Thus, the physics are described by the Ising spins, where the strongly interacting
regime is characterized by an antiferromagnetic Ising structure.

The article is organized as follows. In $2  the Hubbard model is defined in a
coherent state representation for a grand canonical ensemble of fermions. The static
limit (no hopping) and the formal hopping expansion of the Hubbard model
are discussed in $3. Then in 54.1 the decoupling of the electron-electron
interaction by a Hubbard-Stratonovich transformation is briefly reviewed. In 5 4.2
the integration over the spin-up component of the model is performed. The resulting
model is analysed in 44.3, using the lattice partition and the related Ising spin
representation. In 4 5 the new effective Ising-fermion model is discussed in terms
of a hopping expansion. Appendixes A and B give details of the calculations.

4 2. THE HUBBARD MODEL
The Hubbard model describes fermions with spin D =J, T on lattice X of dimen-

sionality d .  It is defined by the Hamiltonian (Fradkin 1991, Gebhard 1997)

where cL , ~  and cu,r are fermion creation and annihilation operators respectively. t 3 0
is the hopping rate. ( r ,  r ' )  means pairs of nearest-neighbour sites on the lattice and p
is the chemical potential.

Using this Hamiltonian a grand canonical ensemble of fermions at  the inverse
temperature ,O can be defined by the partition function, given in terms of a functional
integral (coherent state representation) on a Grassmann algebra (Negele and Orland
1988). For the latter the integration over a complex Grassmann field
(Y,(r, t ) ,  Y u ( r ,  t ) )  is given as a linear mapping from a Grassmann algebra to the
complex numbers. At a space-time point ( I ,  t )  we have for integers k ,  1 3 0

The partition function Tr [exp (-,OH)] of the grand canonical ensemble of fermions
then is

Z = exp(-S)B[Y,, 'YJ,s
with the action

and the product measure
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wt, Y,] = dYu(r, t )  d W r ,  4.
r.t,a

The discrete time is used with f = A ,  2 4 ,  . . . , ,O, implying that the limit A .+ 0 has to
be taken in the end. Y u ( r ,  t )  and Y,(r, t )  are independent Grassmann fie1d.s which
satisfy antiperiodic boundary conditions in time Yl r ( r ,  /3 + A )  = -Yu(r ,  A )  and
F,(r,,O+ A )  = - Y u ( r ,  A ) .  For the subsequent calculations it is convenient to
rename Yu( r ,  t )  .+ Yn(r,  t + A )  because then the Grassmann field appears with the
same time in the Hamiltonian of the action ( 3 ) .

4 3. THE LOCAL LIMIT
Neglecting the hopping term in the Hamiltonian (i.e. for T = 0), the integration in

the partition function factorizes in space, and the corresponding expression can be
evaluated as

where

S, = Y,,(r, t)Yu(r,  t + A )  - ,iiYu(r, t )Yn( r ,  t )  + d U Y T ( r ,  t )Y t ( r ,  t ) Y Y l ( r ,  t ) Y L ( r ,  t ) ,

with ji = 1 - A p .  Zo is the partition function of the Hubbard model with one lattice
site (static, local or atomic limit):

Z ,  = 1 + 2,ii’’/’ + (,G’ - A U ) ~ / *  N I + 2 exp (-pp) + exp [-0(2p + u)] ( 5 )

for A N 0. Using the new parameters U’ = AU and P’ = P / A ,  we can define the
following weights, depending on the number of particles per site

1
14’0 = - ,

ZO
2,iiO’
zo ’

M,l = -

( j j 2  - u’)”‘
M’z =

ZO

Then the average number of particles per site is

n = 12’1 + 2H’Z.

At zero temperature (p  + 03) and in the continuous-time limit A --f 0 this gives the
well-known result (Gebhard 1997)

0 if 0 < p,

2 if p <  -U.
1 i f - U < p < O ,
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3.1. Degenerate hopping expansion
If one assumes that -U < p < 0, the system has an average of one fermion per

site. Then the projection on the singly occupied ground state yields for the partition
function in the absence of hopping Zo = 2pP . The factor 2 is the degeneracy of the
(unperturbed) ground state because each singly occupied site can accommodate a
fermion with either spin T or with spin 4. This degeneracy must be handled with care.
The expansion of Z = Tr [exp ( -pH)]  for p = -U/2  gives

M d M t 2  [ !? + sinh ($!)I + o(i3)}
= zo {'+ cosh2(PU/4) 2

On the other hand, one can set up a non-degenerate perturbation theory expression
7 M

j=  1

with

The unperturbed partition function is degenerate: Zoj  = C. For each of the non-
degenerate states we can apply the linked cluster theorem (Glimm and Jaffe 1987)
to write

~,(t) = CMexp [t'z/ + . ( T ~ ) ] .

This gives eventually for the total partition function
2 M

z = cM C exp [t2z/ + o(t3)]

Naive exponentiation of equations (7) and (6) results in

j= 1

The exponent in equation (8) is a series of linked clusters due to the linked cluster
theorem. In contrast, the exponent in equation (9) is a series of linked clusters
averaged over the degenerate states. Subsequently, an expansion analogous to equa-
tion (8) will be derived.

5 4. FERMIONS AND ISING SPINS
The aim of this section is to obtain a model for fermions coupled to Ising spins.

As a first example, the decoupling of the electron-electron interaction by a
Hubbard-Stratonovich transformation with dynamic Ising spins is briefly reviewed.
Then a new approach is developed through the partition of the space-time lattice;
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the summation over the lattice partitions is equivalent to the summation over the
configurations of dynamic Ising spins. It turns out that this is also equivalent with
the summation over degenerate states of the Hubbard model.

4.1. Hubbard-Stratonovich transformation: fermions coupled to Ising spins
It was observed some time ago that the fermion-fermion interaction of the

Hubbard model can be represented by a dynamic Ising spin that couples to non-
interacting electrons (Hirsch 1983). In terms of the functional integral (2) this fact is
formally related to a Hubbard-Stratonovich transformation

exp ( r ,  t )  y, ( r ,  t )  q ( r ,  t )  ( r ,  t)l

= 4 C exp { - a 1 ’ 2 ~ ( r ,  t ) [ Y r ( r ,  t ) ~ T ( r ,  t )  - (YL(r, t ) ~ L ( r ,  t) l>
S(r. t)=fl

with a = d U .  In physical terms, the king spin S(r ,  t )  couples to the z component of
the electron spin. Going back to the partition function 2, the latter becomes after
integration over the Grassmann field

with the Green’s function Go of a free fermion (i.e. U = 0)

4.2. Integration over the spin-up ,field YT
An electron with spin J. is considered in the ‘bath‘ of the other electrons. For this

purpose the Green’s function G(r,  t ;  r ’ ,  t’)  = ( Y  1 ( r ,  t )  YL ( r ’ ,  t’))  can be studied under
a systematic integration over the electrons with T. It will lead to an effective theory
for the spin J, electrons. In this case the action S can be divided into three pieces as

s = ST + SL + SI,

with

for n = 7, J, with T = At. The interaction between the two spin orientations is given

S, = u’C Y u r ( r ,  t )YT(r , t )YL(r ,  t ) y L ( r , t ) .

Now it is possible to integrate out the spin-up field YT, since it appears in S only as a
quadratic form. The integration over this Grassmann field gives a determinant

by

r,f

where d, is the time-shift operator
Y ( r , t + d ) t  d < t < P

-Y(r ,  d ) t  t = p.&Y( r ,  t )  =
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The last equation is due to the antiperiodic boundary condition of the Grassmann
field. This definition gives

(at)-’ = a:, det (-al) = 1.

The hopping matrix i has elements i , , ,  = 7 if r ,  Y’ are nearest neighbours and is zero
otherwise. Expressions in the determinant which do not have a specified matrix
structure are implicitly multiplied by the corresponding unit matrix. For instance,
ji is multiplied by the space-time unit matrix whereas is multiplied by the time-like
unit matrix.

In the following subsets of the space-time lattice A = X €4 { A ,  2 4 , .  . . p}  will be
considered. For a subset n k  C A the determinant of the projected matrix PkAPk is
defined as

detA, A = detA, ( P k A P k ) ,

where Pk is the projector on to A k .

4.3. Lattice partitions
The partition function is now a functional integral of the spin-down Grassmann

field

Z = exp (-SL) det (-at + ji + t - U’YyI!P1-) D[Y, ] .J
As shown in appendix A, the determinant can be expanded in terms of the partitions
Ak C A of the space-time lattice A as

The partitions & include the empty set which gives detaA = 1. It is possible to
express the projector Ik ( r ,  t )  = 0 , l  as I(r, t )  = [l + S(r ,  t ) ] / 2  with the Ising spin

and to consider I ( { S ( r , t ) } )  as a new field that couples to the fermion fields. This
expansion is the most important step for the treatment of the Hubbard model in this
work. The immediate consequence is that the partition function Z is now given by a
summation over configurations of Ising spins as

with

Z ( { S ( r ,  t ) } )  = Sexp (-SL) det [l - I - I(p + - U’Y,!P,)@I] D[!P,]. (12)

The determinant in the integrand can be rewritten with the help of the Grassmann
field YT as
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where the action is

S I M  = SJ - YT [ 1 - 1 + I( f i  + t - U'YL y,)aTI] y, 3 S,  + ST1. (14)
The scalar product refers to space and time. An interpretation of the new action can
be given in terms of random walks (Glimm and Jaffe 1987); particles with J, propagate
with the propagator given in S,. The second term S,, describes the propagation of
the particles with r .  It is crucial for the understanding of the absence of degeneracies
that there is no term diagonal in time on Ak due to the factor 8:.

Equation (14) can be used as a starting point for a hopping expansion or an
expansion in powers of U .  For the latter one can expand S I M  and obtain in first
order in the action

S I M  MSL-YylT[l-I-I(fi+2-U'g)~fI]yf, ,

where g = (-af + 0 + t ) - ' ( r ,  t ,  r ,  t ) .  This can be evaluated in a self-consistent
approach along the lines of the Hartree-Fock approximation (Fradkin 1991).

Thus, the summation over lattice partitions Ak is equivalent to a summation
over configurations of Ising spins { S ( r ,  t ) } .  Unfortunately, the Grassmann field
Y1 couples to Y ,  such that the integration over the Grassmann field in
Z({S ( r , t ) } )  cannot be performed directly. From this point of view the Ising spin
model introduced by Hirsch is simpler because the Grassmann field can be integrated
out, as shown in equation (10). On the other hand, the advantage of the king spin
from the lattice partition is the control of the degeneracy in terms of the hopping
expansion.

4 5. HOPPING EXPANSION
An advantage of the absence of degeneracies for a given realization of the Ising

spins {S ( r ,  t ) }  is the possibility to apply the Linked Cluster Theorem (Glimm and
Jaffe 1987) to Z ( { S ( r ,  t ) } ) .  This allows us to write

where C ( r ,  t )  is a connected cluster centred at r ,  t . ,fi(r,t) is a function of all Ising spins
on these clusters. It can be shown (Glimm and Jaffe 1987) that this function grows
exponentially with the cluster size IC(r, t)I and is proportional to ilC(rir)l. Therefore,
the function can be controlled if i is sufficiently small. Equation (15) represents an
Ising model with cluster interaction in space and time. The leading term is of order
t2, including two hoppings. Using the expression Z({S(r ,  t ) } )  in equation (13), we
begin with the Y ,  integral

(-srm"rl. (16)
STL is diagonal in time if Y r ( r ,  t - A )  is renamed as Y,(Y, t )  on Ak:

STL = - c [ 1 - l)] YT ( r ,  f) y T  ( I ,  t ,
r, f

-cYYr(r, t ) I ( r ,  t ) { [ p  - u ' Y , ( ~ ,  t ) y J ( r ,  t)]6r,rt + t , r r } ~ ( r ' ,  t - A ) Y ~ ( ~ ' ,t ) .
r ,r ' . t
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Equation (16) can be expanded in terms of the hopping matrix 2, and then the
integration over YT can be performed, leading to

+ 0(t3),  (17)11 (1 .f c I(y,  t ) V ’ ,  t ) ( p ~ ( r ,  t ) ir ,r iy , (r’ ,  ~)FT(Y’, f ’ ) b , r y ~ ( ~ ,
t,f‘,r,r‘

with

Here it has been used that, for a given site Y, I(Y, t )  # 0 for all t ,  otherwise the
expectation value

1 1  (. . . ) 0

would vanish. Thus, I ( r , t )  depends in this approximation only on Y and can be
replaced by I(r). The expression in (17) can also be written as

Since (YVT(r, t )YT( r ,  t ’ ) )o  o( St,,, because the quadratic form in YT is diagonal in time,
one of the summations over time drops out. Consequently, the remaining summation
provides a factor / ? / A  but the two hopping factors are proportional to A 2 .  Therefore,
equation (1 8) is of the order of A .  As will be seen later (appendix B), the correspond-
ing hopping term from the Y l  integration is of the order of do. Thus, we have

1exp (-Sd 7 v T l - 11

z %1 p b ’ x r ~ ( r )  Sexp (-s:) D[YJ,

(19)

or

(20)
{&I

where the factor Il has been absorbed in the effective action of electrons with 1:
U’

P r , ,
s; = s, + y c I(Y) FL (Y, t )  ‘y, (Y, t )  3 Yl

After performing the Y,  integration in the local limit t = 0 of equation (20) the result
agrees with equation (5).

The Green’s function

GI(Y, t ;  Y‘, t’) = (YL(r, t)YL(r’,  t’))

can be written in this approximation and the limit A + 0 as the matrix
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with the hopping matrix h,,,, = 1 for nearest neighbours r ,  r’ and h,,,, = 0 otherwise.
This expression can be understood as the averaged resolvent

(( - ; - p + i h l u ) - l )  Ising ,

where the average (. . is taken with respect to the distribution

In a final step the integral over Yyl has to be performed. It is convenient to do that
again in a hopping expansion. The result for /I = - U / 2  and large /3 is (see
appendix B)

5.1. The antiferromagnetic phase
The distribution (23) is the Boltzmann weight of a classical Ising model with

nearest-neighbour antiferromagnetic coupling t’/ U .  This model has an antiferro-
magnetic phase in dimensions d 3 2 if the temperature T is T < T,. The critical
temperature is

For T > T, the Ising spins are in a paramagnetic phase. The phase boundary is
qualitatively the same as that obtained from the Heisenberg model (Fulde 1993,
Gebhard 1997). It will be discussed subsequently that the antiferromagnetic phase
creates a gap for the fermions, whereas the paramagnetic phase creates a (correlated)
disorder potential for the fermions.

5.2. The metal-insulator transition
The metal-insulator transition in the paramagnetic regime (Hirsch 1987,

Scalettar et al. 1989, Gebhard 1992, Staudt et al. 2000) can now be seen in the
Green’s function of free fermions, coupled to the fluctuating Ising spins, given in
equation (2 1). Formally, it represents a criterion for insulating versus metallic beha-
viour of the Hubbard model in a form of an average Green’s function; an exponen-
tial decay of G corresponds with insulating and a non-exponential decay with
metallic (i.e. diffusive) behaviour. Although this looks similar to the problem of
Anderson localization, where non-interacting electrons live in a random potential,
there are two major differences. Firstly, the criterion for metallic versus insulating
behaviour in the case of the Hubbard model is given by the one-particle Green’s
function whereas the criterion for localization versus delocalization in the case of
Anderson localization is the two-particle Green’s function (Lee and Ramakrishnan
1985). Secondly, the distribution of the random variables is more complicated in the
case of the Hubbard model because they (i.e. the Ising spins) are correlated and can
form an antiferromagnetic state at low temperatures. These correlations do not exist
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for the random potential in the models of Anderson localization. An important
consequence is the generation of a gap at low temperatures ( /3 t2 /U >> 1) when the
king spins order antiferromagnetically. Then the maximal contribution to 2 comes
from S, = -S,t on nearest-neighbour sites Y, Y'.  This describes an antiferromagnet
state of the Ising spins with S, = (-l)rl+."+rd . If VAFM is the staggered antiferro-
magnetic potential in the limit A --+ 0 given by

the Green's function (21) is in frequency representation

(iw + th + V A F M ) - ] .

There is a gap due to the staggered potential, implying an exponential decay of the
Green's function G.  This can be seen, for instance, in the special case of a two-
dimensional lattice. Then the eigenvalues of G-' are

with hI2 = 1 + exp (ik,) + exp (ik,) + exp (ik, + ik,) (-TC d kj < 71). This result is in
agreement with the Hubbard I approximation (Gebhard 1997) and describes the
physics of an insulator with a gap U .  The antiferromagnetic state becomes less
and less stable as the interaction U increases, since the Ising spin interaction
t 2 / 2 U  decreases. This can result in a phase transition where the antiferromagnetic
state is destroyed because the Ising spin fluctuations become too large. Inside the
paramagnetic state, but near the phase boundary, the fermions still feel a 'fluctuating
gap' of the antiferromagnetic state.

In a simple approximation, reasonable at high temperatures, one can ignore the
correlation of the Ising spins and calculate the average Green's function (21) in a
hopping expansion. The latter leads to a random walk between the two sites of the
Green's function. The average over the local Ising spins can be performed at each site
independently. Moreover, the average of multiple visited sites is approximated by the
product of the averaged terms (iw + z = E + ic):

1 1 1((2 + U / 2  - U1,)J (( z + u/2 - UI, ) I n  = ( z  - U2/(4z))"

This leads to

where -U2/4z is a self energy. This gives an opening of a gap at arbitrary small U .
The band edges of this Green's function are shown in figure 2.

In more general terms, the Green's function (21) is characterized by the competi-
tion between the hopping term, parametrized by the hopping rate t, and the spin
term, parametrized by U .  This leads to the following qualitative picture: if t / U  is
larger than a certain value, the hopping term wins and creates a metallic state; on the
other hand, if t / U  is smaller than a certain value, disorder due to the random Ising
spin wins and creates an insulating state (figure 3) .
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Figure 2. Band edges calculated from the self-consistent approximation. A gap is opening
with interaction U around E = 0.
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Figure 3. Sketch of the phase diagram of the antiferromagnetic insulator AI, the paramag-

netic metal PM and the paramagnetic insulator PI. It is based on the interacting Ising
spins ((AI-PM)-PI boundary (-)), and the coupling of the electrons to the Ising
spins (PM-PI boundary (- - - -)).
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0 6 .  CONCLUSIONS
Considering quantities of the Hubbard model which depend only on one spin

direction, for example spin down, it is possible to integrate out the other spin direc-
tion in the functional integral. This idea was carried out for the partition function Z.
The result of this integration is a functional integral which has a representation in
terms of king spins, coupled to fermions with spin i. The advantage of this approach
is that the degeneracy of the special case without hopping, which is difficult to handle
in the hopping expansion, is now controlled by the Ising spins. In other words, each
Ising spin configuration leads to a non-degenerate hopping expansion. For small
hopping rates t the effective Ising spin interaction is

which favours an antiferromagnetic Ising spin configuration at  low temperatures and
a paramagnetic state at high temperatures. The Green’s function of an electron with
1 is now a Green’s function of non-interacting electrons coupled to the Ising spins.
Apart from the magnetic transition of the king model the Green’s function may also
undergo a transition from a non-exponentially decaying behaviour at  small Hubbard
coupling U to an exponentially decaying behaviour with gap U at large U .  This
picture corresponds to a metal-insulator transition in the paramagnetic regime. The
effective Ising model can be a useful starting point for further numerical investiga-
tions of this transition.
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APPENDIXA
The space-time determinant on the right-hand side of equation (1 1) can also be

written as

with the matrix A = -(p + 2 - U ‘ Y ,  Yu,)#.  The product over the lattice sites gives a
sum over all subsets Ak C A of the space A and their complements A;, = A \ Ak

The Kronecker delta dn(r,tl,(r,t) on A; implies that r ( r ,  t )  E A,  for ( r ,  t )  E A,+.
Therefore, only that part of the matrix A contributes which is projected on to A k .
This leads to an expansion of the determinant in terms of all partitions of the space-
time lattice A as

with deto A = 1 for the empty set Ak
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APPENDIXB
The integral

and Vr = i i  - U’I(r) /p .  For j-c = - U / 2  (half-filling) and A + 0 the expectation
value is

for Vr = V r l ,- P2
4 cosh2 (PU/4)

P sinh(PU/2)
2U cosh2(PU/4)

- for V, # V,J.

This can also be written as

-- -’ { -+=sinhP’ P . (y) + [ T c . s m h ( ~ ) j $ S , ~ } ,P2 P . 
4cosh2(pU/4) 2

which is approximated for large /3 by

P P
2u 2u+ - SrSrI-_

In this case the integral of equation (22) is
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