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Abstract. A floating Wigner crystal differs from the standard one by a spatial averaging over positions of
the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes
into account rotational and/or translational symmetry of the underlying jellium background. We study
properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the
floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also
argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due
to degenerate ground states and inter-dot Coulomb coupling.

                                                                           

At sufficiently low densities a system of interacting elec-
trons on a uniform positive background forms a correlated
Wigner-crystal state. The idea of an electron crystal was
originally proposed by Wigner [1], and then extensively
studied in three- [2–14] and two-dimensional [15–24] (2D)
electron systems (experimental realizations are electrons
on liquid helium [25] and semiconductor [26] surfaces).
Recently, an interest aroused to the formation and prop-
erties of Wigner molecules in semiconductor quantum dots
– zero-dimensional systems with a finite number N of 2D
electrons [27–36].

A standard Wigner-crystal ground-state trial wave
function ΨWC(r1, r2, . . . , rN ) (for a fully-spin-polarized
electron system) has the form of a Slater determinant
constructed from single-particle orbitals ψ(r) centered at
points, corresponding to equilibrium positions of classical
particles,

ΨWC({ri}, {Rj}) =
1
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quantum dots, in the fixed and floating Wigner-crystal
states, and show that the {Rj}-averaging does lead to
an essential reduction of the variational ground-state en-
ergy. For two-, three- and four-electron parabolic quantum
dots we compare our variational results with exact results
available in the literature. We also show that the internal
rotational symmetry of the wave functions in circular dots
can be broken if the ground state is degenerate with re-
spect to the total angular momentum L: a superposition
of eigenfunctions with different L breaks the symmetry
without increasing the energy of the state. We argue that
this leads to phase transitions in quantum-dot arrays with
spontaneous symmetry breaking.

Consider a circular N -electron parabolic quantum dot.
Let Rα

j = Rj(cos(θj+α), sin(θj+α)) be a set of vectors ro-
tated around the origin by an angle α with respect to (2).
Consider a function

ΨL({ri}) =
∫ π

−π

dα
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Fig. 1. Energy difference EWC − Eexact (curves labeled as
“fixed”) and EL − Eexact (curves labeled as “floating”) for
parabolic quantum dots with (a) N = 2, (b) N = 3 and
(c) N = 4 spin-polarized electrons, as a function of the

Coulomb interaction parameter l0/aB =
p
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jellium background. For example, for an infinite 2D elec-
tron system (with periodic boundary conditions) the float-
ing Wigner crystal wave function can be written as

ΨK({ri}) =
∫

daeiK·aΨWC({ri}, {Rj + a}), (11)

where the integral is taken over the (large) area of a sam-
ple. The functions (11) are the eigenfunctions of P̂tot,

P̂totΨK({ri}) = ~KΨK({ri}), (12)

with ~K being the total momentum quantum number.
The fixed Wigner crystal wave function (1) is expanded
in terms of ΨK as

ΨWC({ri}, {Rj}) =
1


