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Density of states width-parity effect in d-wave superconducting quantum wires
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We calculate the density of states ~DOS! in a clean mesoscopic d-wave superconducting quantum wire, i.e.,
a sample of in®nite length but ®nite widthN. For open boundary conditions and half-®lling, the DOS at zero
energy is found to be zero if N is even and nonzero if N is odd. At ®nite chemical potential, all chains are
gapped but the qualtitative differences between even and odd N remain.
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I. INTRODUCTION

In recent years the fabrication of nanoscale devices has
heightened interest in solid-state quantum systems where the
discreteness of the level spacing plays an important role.
Originally discussed only in semiconductor quantum dots
and quantum wires, following the work of Ralph et al.1
many fascinating consequences of the level discreteness
were also observed in ultrasmall metal particles. These in-
cluded the observation of a spectroscopic gap attributed to
pair correlations in the small grains, which depended on the
so-called number parity of the sample, i.e., whether the num-
ber of electrons in the grain was even or odd. The physics of
the levels in such grains has been quite well understood.2
Superconducting systems extended in one dimension but me-
soscopic in another have also been studied.3

In most of these studies, a gap with A1g or s-wave sym-
metry has been assumed. However, for some practical pur-
poses it may be of interest to use cuprate samples, which are
known to have dx22y2 symmetry. From a fundamental point
of view it is also expected that these systems will be different
because already in the bulk state there are states below the
maximum gap scale; the pure d-wave bulk density of states
~DOS! is linear in energy, r(E);uEu. We have studied the
DOS of mesoscopic d-wave quantum wires and found a new
kind of parity effect, not related to the number of particles in
the system, but to the parity of the number of chains across
the mesoscopic sample. In some ways, the effect is reminis-
cent of a type of mesoscopic gap effect that has been recently
discussed in the context of single-wall carbon nanotubes,
where the existence or nonexistence of a gap depends on the
intrinsic twist or chirality induced while forming the tube.5
While the d-wave systems we discuss may be considered to
be tubes if periodic boundary conditions are employed, they
do not break either time-reversal symmetry or spatial parity.
Nevertheless, at half-®lling, we observe that if the width of
the system N is even, there is a gap in the DOS whereas if
the width is odd the density of states at zero energy r(0) is
nonzero. As N is increased, both the even-N gap and the odd-
N r(0) vanish as they must to give the bulk d-wave result
r(E);uEu. Although the DOS vanishes at E50 for all N
when mÞ0, there is still a pronounced even-odd effect in the
DOS, and we argue that this effect should be observable in
quantum wires fabricated from cuprate superconductors. We
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speculate further that it may be of relevance to the study of
disorder-induced pseudogaps in bulk d-wave superconduct-
ors, which have been the subject of much controversy in
recent years.4

II. MODEL

We consider the DOS of a d-wave superconducting chain
~DWSC! that is coupled to N21 other DWSC's. The chains
form a two-dimensional ~2D! system and the ®rst chain is at
the boundary. Similar problems were considered in previous
studies of random ūx systems 8 and quasi-one-dimensional
disordered tight-binding models.9,10 In this paper we will ig-
nore the effect of disorder and study the odd-even effect in a
pure system of coupled DWSC's. Such a behavior is also
known for a system of coupled spin chains, which has a gap
~no gap! if the number of chains is even ~odd!.6,7

There are several possible geometries one can assume for
this problem. The most natural, and the one we consider
here, is a wire parallel to the 100 ~or 010! crystal direction.
In this geometry, the boundaries of the wire are aligned with
both the underlying CuO2 crystal and the gap maxima
~which are tied to the crystal lattice!. Other geometries, such
as a 110 oriented wire, are expected to show similar even-
odd effects to the ones described below, but these will be
mixed with Andreev scattering resonances11 and thus will be
more dif®cult to interpret. In addition, we anticipate that the
100 oriented wire is the most accessible to current technol-
ogy.

The Bogoliubov±de Gennes Hamiltonian of the 2D DWS

H5~2¹21m !s31Ds1

is de®ned on a square lattice with

2¹2 f ~r !52t(
j51

2

@ f ~r1e j!1 f ~r2e j!#

and the DWS order parameter

D f ~r !5D0(
j51

2

~21 ! j@ f ~r1e j!1 f ~r2e j!# .
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With this de®nition, the gap in familiar k-space representa-
tion is Dk52D0@cos(kx)2cos(ky)#. In the following calcula-
tions we will measure energies in units of t for simplicity.
Moreover, it is assumed that chains are in®nitely long and
arranged parallel to the y axis of our 2D system.

III. PERIODIC BOUNDARIES

The ®nite set of chains can be closed periodically in thex
direction by identifying the ®rst with the (N11)th chain.
While this is not particularly physical, the calculation is
fairly transparent and therefore worthwile for pedagogical
reasons. For this translational-invariant N-chain system the
integration in y direction ~i.e., along the chains! can be per-
formed and gives the DOS at zero energy

r~E50 !52
1

pN (
kx

E
2p

p dky

2p
ImG0~k,1ie !

5 lim
e→0

er0

N (
n50

N21 1
Ae21@m14t cos~kx!#

2 , ~1!

where

r05
2t

pAt21D0
2A16t22m2 .

Here G0 is the Green's function for a clean 2D d-wave su-
perconductor, kx52pn/N (n50,1, . . . ,N21), and we have
set the lattice constant to unity. First, we consider the DOS at
half-®lling (m50). We ®nd that r(E50) is ®nite for N a
multiple of 4 since the allowed values of kx include kx
5p/2 and 3p/2, which produce ®nite contributions to Eq.
~1!. For other values of N, on the other hand, expression ~1!
always vanishes. At m50, then, we have

rN~E50 !5H 2r0 /N for N54k ,k51,2, . . .
0 otherwise.

This periodicity in N re ēcts the conditions necessary to
form a standing wave in the x direction at the Fermi energy.
For m50, it is the four nodal points at k5(6p/2,6p/2)
that produce the standing wave. The wave function at E50
is thus exactly the same as in the normal state; it is therefore
not surprising that r(E50) is only weakly dependent on D0.

For given N, there will be a discrete set of m , which
produces a ®nite density of states atE50. For generic m , the
nodal eigenstates do not contribute at E50, but we expect
on the basis of Eq. ~1! that a qualitative width-parity effect
will remain at nonzero E. As we shall see in the next section,
numerical studies on realistic models ®nd a pronounced ef-
fect of this type.

IV. OPEN BOUNDARIES

Periodic boundary conditions are not realistic for typical
experiments because the superconductor is a planar object.
Therefore, a better choice is open boundaries if we have a
situation with a ®nite number of chains. The DOS is calcu-
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lated numerically for N54,5,20,21, as shown in Figs. 1±5.
Since we have just shown that D0 plays a minor role in the
parity effect, we proceed ~for simplicity! under the assump-
tion that D0 /t51 unless explicitly stated otherwise. In nu-
merical work ~e.g., Fig. 6 below!, it is shown that this as-
sumption does not change the qualitative results. From the
®gures the alternating structure of the DOS for odd and even
number of chains is immediately obvious, and may be char-
acterized by the DOS of the end chain.

A. Recursive method

Some insight into the dependence of these gaps and re-
sidual DOS's on system size and other parameters may be
obtained from analytical methods. First, the Hamiltonian H
can be diagonalized with respect to y direction by a Fourier
transformation y→ky . Then the structure with respect to the
x direction can be expressed in a matrix form for x
51,2, . . . ,N as

HÃN5S HNN HNN21 0 . . . 0
HN21N HN21N21 � � A

0 � � � 0
A � � H22 H21

0 . . . 0 H12 H11

D .

FIG. 1. Density of states for four and ®ve chains with D0 /t
51 and m50.
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For a compact notation we introduce a block-matrix repre-
sentation

HÃN :5S HNN HÃNN21

HÃN21N HÃN21
D

with

HÃNN215~HNN21 ,0, . . . ,0 !, ~2!

HÃN21N5S HN21N

0
A

0
D . ~3!

The corresponding Green's function at zero energy, which
is required for the evaluation of the DOS, can then be written
~after a shift H→H1ies0) as

FIG. 2. Density of states for four chains: DOS of the end chain
and average over all chains with D0 /t51 and m50.
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@HÃN
21#NN5~HNN2HÃNN21HÃN21

21 HÃN21N!21

5~HNN2HNN21@HÃN21
21 #N21N21HN21N!21.

The second equation is due to the special form of the
matrices given in Eqs. ~2! and ~3!. Using GN5@HÃN

21#NN the
recurrence relation reads

GN5~HNN2HNN21GN21HN21N!21. ~4!

This is a continued-fraction representation of the 232 ma-
trix GN , the Green's function of end chain labeled by N at a
given ky . It can be used even in the presence of random
terms along the x direction because no diagonalization of the
matrix is necessary.

Now we will apply the recursive method to evaluate the
DOS of the end chain of N DWSC's. The calculation is sim-
pli®ed greatly if we assumeD05t51 ~the more general case
is treated in numerical calculations!. In this special case we
have

FIG. 3. Density of states for ®ve chains: DOS of the end chain
and average over all chains with D0 /t51 and m50.
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HNN5S m12 cos ky1ie 22 cos ky

22 cos ky 2m22 cos ky1ie D
5~m12 cos ky!s322 cos kys11ies0[h1ies0

~5!

and

HNN215HN21N5S 1 1
1 21 D 5s11s3 .

The initial value ~single chain! is

G15~H11!
215

2ies01~m12 cos ky!s322 cos kys1

e21~m12 cos ky!
214 cos2ky

.

B. Few chains

By direct iteration of Eq. ~4! we can obtain the DOS
analytically for the end chain of a system of N chains, pro-
vided we restrict consideration to m50. Using c52 cos ky ,
for N51 we get

FIG. 4. Density of states for 20 chains: DOS of the end chain
and average over all chains with D0 /t51 and m50.
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r1~0 !5 lim
e→0

e

pE2p

p 1
e212c2

dky

2p
5

1
A8p

in agreement with the result in Sec. III. For N52 we have

r2~0 !5 lim
e→0

e

pE2p

p 1
e212c212

dky

2p
.

From the pole structure of the integrand, we see that there is
a gap 2Eg52A2'2.83. In the case of N53 there is again a
nonzero DOS at E50

r3~0 !5 lim
e→0

e

pE2p

p e212c212
~e212c2!214~e212c2!

dky

2p
5

1
2A8p

.

and for N54

r4~0 !5 lim
e→0

e

pE2p

p e212c214
~e212c2!216~e212c2!14

dky

2p
,

which has a gap 2Eg52A32A5'1.75 ~see Fig. 1!. In gen-
eral the energy gap observed depends on the size of the su-

FIG. 5. Density of states for 21 chains: DOS of the end chain
and average over all chains with D0 /t51 and m50.
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perconducting order-parameter maximum D0 in a nonlinear
way, although relatively simple expressions may be obtained
for a small number of chains.

The reader will notice that the even-odd effect described
here differs from the periodic-boundary case, where gapless
states arise for N a multiple of 4. This is expected, since the
effect we are reporting arises from self-interference of quan-
tum wave functions in a nanoscale system. The path length
for a constructively interfering closed path in the x direction
is 2L52np/kF for open boundary conditions, and L
52np/kF for periodic boundary conditions.

C. Many chains: Stationary behavior for N\`

While in systems mesoscopic in both directions ~®nite
length L quantum wires!, even-odd parity effects in N are
known to survive the thermodynamic limit L→` ,10 they
must disappear as N→` when we recover the fully 2D sys-
tem. This is evident from the numerical evaluation of the
DOS for large N ~Figs. 4 and 5!, and we can see this analyti-
cally by showing that as N→` , r(0)50 independent of N.

A single iteration of Eq. ~4! yields a relation between the
Green's functions of an even ~or odd! number of chains,
respectively,

GN5~HNN2HNN21@HN21N21

2HN21N22GN22HN22N21#
21HN21N!21. ~6!

FIG. 6. Density of states for four and ®ve chains with D0 /t
50.3 and m50.
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For the DWSC's this reads

GN5HHNN2F12 ~s11s3!HN21N21~s11s3!

2GN22G21J 21

.

For constant m50 we get from expression ~5!

HN21N215h1ies0

and

1
2 ~s11s3!HN21N21~s11s3!52h1ies0

such that

GN5~h1ies01@h2ies01GN22#
21!21

with the initial expressions

G15
1

e212c2 ~h2ies0!

and

G25S 11
2

e212c2D
21

G1 .

The symmetric 232 matrix h can be diagonalized by an
orthogonal transformation, leading to diagonal elements
l1/256A2c . This also diagonalizes the initial expressions
G1,2 as well as the recurrence relation

gN12,j5
1

l j1ie1
1

l j2ie1gN , j

~7!

with diagonal elements gN ,1/2 of GN . Then the recursion ~7!
has two ®xed points

gÅj
652

z j*
2 ~16A114/uz ju2!

with z j5l j1ie52(21) jA2c1ie . For e.0 a positive
imaginary part of gN , j

1 implies a positive imaginary part of
gN12,j

1 . Since the imaginary parts of the initial values are
positive, only the ®xed pointgÅj

1 can be reached in the case
under consideration.

The DOS of the end chain can be calculated from the
®xed point and reads

r~0 !52
1
p
lim
e→0

ImE
2p

p

~gÅ1
11gÅ2

1!
dky

2p
} lim

e→0
e ln~1/e !50.

This re ēcts the well-known result of the in®nite 2D DWSC,
which has a linear pseudogap.
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D. Realistic models

The preceding discussion has assumed a half-®lled tight-
binding band and D0 /t51; both conditions correspond to
special symmetries of the Hamiltonian that might be ex-
pected to in ūence the form of the spectrum. The assumption
D0 /t51 was in fact made simply in order to obtain the
analytical results discussed in Secs. IVA±IVC, and it may
easily be checked numerically ~Fig. 6! that for small values
of D0 /t and m50, the qualitative even-odd effect in the
chain width parity is still obtained. This is consistent with the
qualitative results in the case of periodic boundaries.

More signi®cant changes occur whenmÞ0. In Fig. 7 we
see that for an even number of chains, the full gap in all
chains is preserved, while for an odd number, those chains
that at half-®lling had a ®nite density of states have now
acquired a small gap. Analytic results for this case are com-
plicated and not particularly enlightening, but it is clear that
for m!D0, the small gap on the x5odd chains in the odd-N
case is of the order of m itself. This is also evident by anal-
ogy to Eq. ~1!, where the pole in the denominator of the
integral is shifted by the chemical potential.

A more realistic parameter choice for the optimally doped
cuprates would correspond to a doping of 15%, or about m
.0.3t for the simple tight-binding spectrum on a square lat-
tice, and a much smaller gap magnitude, of order D050.1t .

FIG. 7. Density of states for four and ®ve chains with D0 /t
51 and m/t50.3.
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In this case the large gap is set by 2D0, but in the odd-chain
systems there is a much smaller gap on alternating chains,
see Fig. 8. Thus the density of states still generally exhibits a
pronounced odd-even width-parity effect.

V. CONCLUSIONS

We have exhibited, using both analytical and numerical
means, a number-parity effect in the width N of a mesoscopic
d-wave superconducting quantum wire, wherein a ®nite DOS
is found at the Fermi level for odd N and zero DOS ~with
energy gap! is found for even N. The result should be of
some practical interest in the not-so-distant future for nanos-
cale d-wave wire structures. Superconductivity in single lay-
ers of the cuprates has already been demonstrated and it
seems plausible that a sample of controlled width might be
fabricated, and that a scanning-tunnel microscope experi-
ment on such a sample would be able to observe the effects
we predict.

It is interesting to note some unusual features of the sys-
tem we treat here, to our knowledge for the ®rst time, in the
presence of impurities. First of all, although the supercon-
ducting order parameter has d-wave symmetry, the system
may ~for N even! have a full gap in the excitation spectrum.
In such a situation, one may ask what is the effect of isolated
impurities added to the system, and at least naively would

FIG. 8. Density of states for four and ®ve chains with D0 /t
50.1 and m/t50.3.
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obtain single-impurity d-wave-like bound states in this gap
without broadening arising from coupling to the quasiparticle
continuum. Since the density of states in the odd-N systems
has an oscillatory behavior across the sample width, the ex-
istence and lifetime of these states is expected to depend
sensitively on their location in the wire as well.

In addition, the observation we make here may be of in-
terest to the study of the in ūence of disorder on the DOS of
fully 2D d-wave superconductors, a subject that has received
intense attention recently.4 The result appears to be that the
DOS is generically zero in a 2D d-wave superconductor at
zero energy, but can be constant or divergent in cases mani-
festing special symmetries. At the same time, Brouwer
et al.10 have shown in disordered quasi-1D systems with chi-
ral symmetry that r(0) is zero or divergent according to the
number parity of the wire width. It appears that the states in
05451
odd- or even-chain systems are modi®ed in different ways by
the combined effects of level repulsion and symmetry. Un-
derstanding the differences in the odd or even approach to
the thermodynamic limit in the presence of disorder may
give insight into the physics of localization and DOS supres-
sion in the 2D d-wave case, which is still poorly understood.
We will address these questions in a subsequent work.
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