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Condensation of a hard-core Bose gas
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A grand canonical system of hard-core bosons, subject to thermal fluctuations, is studied on a lattice.
Starting from the slave-boson representation with fields for occupied and unoccupied sites, an effective field
theory is derived in which a complex field corresponds with the order parameter of the condensate and a real
field with the total density of bosons. Near the boundary between the normal and the superfluid phase, we
obtain the Ginzburg-Landau functional for the superfluid order parameter. A mean-field calculation shows that
the critical temperature Tc increases with increasing density up to a maximum and decreases with further
increasing density.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
I. INTRODUCTION

Interacting bosonic quantum systems are of special inter-
est because of the effect of Bose condensation. The classical
example is the Bose-Einstein condensation in an ideal Bose
gas @1,2#. The analogous phenomenon in a real ~i.e., interact-
ing! Bose gas is the transition from a normal to a superfluid
state ~e.g., in 4He). Another related phenomenon is the con-
densation of a cold gas of bosonic atoms in a magnetic trap
@3,4#. There are a number of recent theoretical investigations
of the effect of the interaction on the critical properties of the
normal-superfluid transition based on Monte Carlo simula-
tions @5,6# and analytic calculations @7,8#. The characteristic
parameter for the effect of interaction is the ratio of the scat-
tering length a and the typical interparticle distance n21/3,
where n is the density of bosons. In the recent trapping ex-
periments, this ratio is typically an1/3'1022 @3,9# with a
scattering length a'1027 cm for alkali-metal atoms. A sig-
nificant depletion of the condensate due to interaction is ex-
pected for an1/3.0.1. This requires systems with much
higher density and/or larger scattering length than observed
in the experiments with alkali-metal atoms to date. However,
since the depletion is about 90% in helium, there is a good
reason to believe that the intermediate regime between the
trapped alkali-metal atoms and helium can be approached by
some new bosonic systems.

A fundamental model for the description of a dilute sys-
tem of interacting bosons is the Gross-Pitaevskii functional
@10,11#. On the other hand, for a dense system of bosons
~like the classical 4He superfluid!, a Ginzburg-Landau ap-
proach for the complex superfluid order parameter can be
used. This is valid very close to the phase transition from the
normal fluid to the superfluid, where the order parameter is
small. The Ginzburg-Landau functional of superfluid phase
transition is formally equivalent to the Gross-Pitaevskii func-
tional, although the parameters are different. Away from the
phase transition the interaction of the order-parameter field is
more complicated than described by this theory. Moreover,
the Ginzburg-Landau theory is only a description of the or-
der parameter ~which is related to the density of the super-
fluid! but does not take into account the interaction with the
nonsuperfluid part of the system. Consequently, it does not
provide reliable information, e.g., for the value of the critical
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temperature. The question of the effect of the interaction on
the latter has been discussed in the recent literature in great
detail and with controversial results @5#. It seems that the
critical temperature can be shifted by a variation of the den-
sity of bosons. In particular, at low density it was found that
the shift DTc /T0;(na3)a, where T0 is the critical tempera-
ture of the ideal ~non-interacting! Bose gas, n is the total
density of bosons, and a is the scattering radius of the hard-
core interaction. Depending on the calculational method and
approximations, the exponent a varies between 1/3 @12# and
1/2 @13#. Recent Monte Carlo simulations @5,6# support a
51/3. This value was also obtained by a self-consistent cal-
culation of the quasiparticle spectrum @7# and in a 1/N ex-
pansion @8#. At a high density, the critical temperature
reaches a maximum and decreases with even higher densi-
ties. The latter is a consequence of the depletion of the con-
densate due to interaction.

In order to give a complete overview of the properties of
an interacting Bose gas, we need a model that takes fully into
account all parts of the system of bosons. Close to the critical
point, however, it should lead to the Ginzburg-Landau
theory. Such a model was given by hard-core bosons, based
on a slave-boson representation @14#. Here we will briefly
discuss this model and evaluate its critical temperature for
different densities.

The paper is organized as follows. In Sec. II the slave-
boson respresentation of hard-core bosons on a lattice is in-
troduced. Then in Sec. III, two collective fields are defined.
One represents the superfluid condensate and the other, the
total density of bosons, as discussed in Sec. IV. In Sec. V,
the total density, the condensate density, and the critical tem-
perature are calculated in mean-field approximation. Finally,
concluding remarks and a discussion are given in Sec. VI.

II. THE MODEL: SLAVE-BOSON REPRESENTATION

A continuous system of hard-core bosons with scattering
length a is approximated by a lattice Bose gas with lattice
constant a. Although this approximation is limited because it
restricts configurations of bosons to be commensurate with
the lattice structure, it is more suitable for the investigation
of a dense system of bosons than the usually considered uFu4

~Gross-Pitaevskii! theory. The representation of the model
©2000 The American Physical Society11-1



K. ZIEGLER PHYSICAL REVIEW A 62 023611
uses the slave-boson approach to hard-core bosons @14#.
@Originally, the slave-boson approach was invented for the
~fermionic! Hubbard model @17,18#.# The latter relies on a
picture in which a particle trades its position with an empty
site on the lattice. Both the particle as well as the empty site
are described by corresponding creation and annihilation op-
erators. In a functional integral representation of a grand ca-
nonical ensemble of bosons with chemical potential m at
temperature T, this can be formulated in terms of a complex
field bx of bosons and a complex field ex of empty sites with
the action

Ss .b .5
1
T (

x ,x8
bx*extx ,x8bx8ex8

* 2
1
T (

x
mubxu2,

where the first term describes the exchange of bosons and
empty sites in a hopping process at sites x and x8 with rate
tx ,x8 . A local constraint uexu21ubxu251 takes care of the
complementary character of the bosons and empty sites. In
Ss .b . , we consider only the thermal fluctuations ~i.e., a van-
ishing Matsubara frequency! because nonzero Matsubara fre-
quencies are separated by a gap if the temperature T is non-
zero. Here we assume that the temperature enters through the
action Ss .b . but not through the constraint. Physical quantities
can be calculated from the partition function

Z5E e2Ss .b .)
x

d~ uexu21ubxu221 !dbx dbx* dex dex* .

The local constraint implies

^ubxu2&s .b .512^uexu2&s .b .

for the expectation value

^•••&s .b .5
1
ZE e2Ss .b .

•••)
x

d~ uexu21ubxu221 !

3dbx dbx* dex dex* .

Although both fields bx and ex are complex, the action de-
pends only on their relative phase f̄x5fx

e2fx
b . If we are

interested in the physics of the boson field bx alone, the field
ex can be integrated out. This leads to the new action

Ss .b .8 5
1
T (

x ,x8
bx*A12ubxu2tx ,x8bx8A12ubx8u

2

2
1
T (

x
mubxu2,

where the integration is now restricted to ubxu<1. This ex-
pression can be compared with the Gross-Pitaevskii func-
tional on the lattice

SGP5
1
T (

x ,x8
bxtx ,x8bx8

* 2
1
T (

x
S mubxu22

u
2 ubxu4D .

The main difference between the actions is the restriction of
the fluctuations in the case of the slave-boson theory. The
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latter has a direct consequence on the density of bosons. This
quantity, which is given as the response to a change of the
chemical potential m

n5
T
N

] ln Z
]m

5
T
N

1
Z

]Z
]m

5
1
N (

x
^ubxu2&s .b . , ~1!

where N is the number of lattice sites, increases monoto-
nously with an increasing m due to the weight
exp(m(xubxu2/T). However, the growth saturates for Ss .b . be-
cause of the constraint ubxu<1. As ubxu increases, the hop-
ping term txx8 in Ss .b . decreases because of the square root
factor A12ubxu2A12ubx8u

2. This can be seen as a field-
dependent mass renormalization that increases with the field.
It represents the repulsive nature of the hard-core boson in-
teraction. In the Gross-Pitaevskii functional SGP , the inter-
action is separated from the hopping as a local term that
depends only on uFxu. Therefore, the repulsive interaction of
the Gross-Pitaevskii functional does not affect the kinetic
energy of the bosons.

To evaluate the density of the condensate rs , we must
add an external vector potential to the action Ss .b . ~i.e., a
Peierls factor to the hopping matrix t) and measure the re-
sponse to this potential @19#. We shall return to the corre-
sponding expression subsequently.

Using the slave-boson theory as a starting point, an effec-
tive field theory will be derived that distinguishes between
the condensate and the normal part. This can be understood
as a field-theoretic version of the two-fluid theory @15,16#.
Near the critical point, the condensate can be described by
the usual Ginzburg-Landau theory.

III. COLLECTIVE-FIELD REPRESENTATION

Since the fields bx and ex are subject to the local con-
straint, we cannot treat them in a conventional way as order-
parameter fields. It is necessary to eliminate the constraint in
the partition function, which can be achieved by integration
over the fields. For this purpose we introduce a complex
collective field Fx and a real field wx that break up the bi-
quadratic term in the action Ss .b . . This can be written as the
~Hubbard-Stratonovich! transformation

Ss .b .→S85T(
x ,x8

Fx~12t !x ,x8
21 Fx8

* 1T(
x

wx
21(

x
S ex

bx
D

3S 2wx1T21 Fx

Fx* 2mT21D S ex*

bx*
D . ~2!

The new action S8 gives the same partition function that can
be seen by integrating over the collective fields. The field w
is necessary in order to invert the hopping term that is now
the positive matrix 12t . Then we can perform the integra-
tion of the slave-boson fields. This becomes simple if the
232 Hermitian matrix in Eq. ~2! is diagonalized by a unitary
transformation. The latter leaves the constraint ubxu21uexu2

51 invariant and gives the eigenvalues

lx ,65wx11/2T2m/2T6A~wx11/2T1m/2T !21uFxu2.
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Now the partition function reads

Z5Z0E e2Sb)
x

d~ ubxu21uexu221 !e2Twx
2
2lx ,1uexu22lx ,2ubxu2

3dbx dbx* dex dex* dwx dFx dFx* ,

where the only nonlocal term is

Sb5T(
x ,x8

Fx~12t !x ,x8
21 Fx8

* .

The ex and bx integration can be carried out ~see Appendix
A!, which yields

Z5Z0E e2Sb)
x

e2Twx
2 e2lx ,12e2lx ,2

lx ,12lx ,2
dwx dFx dFx*

5Z0E e2Sb)
x

e21/4T1m/2T

3E e2Twx
2 sinh@A~wx1m/2T !21uFxu2#

A~wx1m/2!21uFxu2

3dwx dFx dFx* .

The constant Z0 is the normalization factor of the Hubbard-
Stratonovich transformation of Eq. ~2!. It is convenient to
separate the field-independent factor ) xe21/4T1m/2T to define
the partition function

Z̄5E e2Sb)
x

3E e2Twx
2 sinh@A~wx1m/2T !21uFxu2#

A~wx1m/2T !21uFxu2 dwx dFx dFx* .

This partition function has the effective action for the collec-
tive field Fx

S5Sb1S0 ,

where Sb is its nonlocal ~i.e., hopping! part and

S05(
x

ln@Z1~ uFxu2!#

is its local ~i.e., potential! part with

Z1~ uFu2!5E e2Tw2 sinh@A~w1m/2T !21uFu2#

A~w1m/2T !21uFu2 dw .

IV. INTERPRETATION OF THE FIELDS

The introduction of the collective field has completely
separated the hopping part Sb from the potential part S0. The
latter does not depend on the phase of the collective field.
The hopping part alone describes free bosons ~ideal Bose
gas! with the usual complex field. This can be seen by writ-
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ing the partition function of the ideal Bose gas as

Z IBG5)
k

F (
nk>0

e2nk(ek2m0)/TG5)
k

@12e2(ek2m0)/T#21,

where k is a quantum number that characterizes the system of
bosons. This can also be expressed in terms of an integral
over a complex field as

Z IBG5E expS 2(
k

@12e2(ek2m0)/T#uFku2D
3)

k
dFk dFk*/p .

~Notice that a rescaling of the field yields only a factor to
Z IBG .) For the translational-invariant Bose gas, k is the wave
vector and we have the energy

ek5
\2k2

2m

with the boson mass m.
Using the Fourier components (12 t̃ k)21 in the nonlocal

term Sb , we can compare the latter with the corresponding
expression of the ideal Bose gas

(
k

@12e2(ek2m0)/T#uFku2. ~3!

By setting the hopping term (12 t̃ k)21 equal to 1
2e2(1/T)(ek2m0), we obtain

t̃ k5~12e (ek2m0)/T!21.

The chemical potential of the ideal Bose gas is restricted to
m0<0 whereas it can have any real value in the interacting
Bose gas. In particular, we can choose m0>0 such that t̃ k
.0. Moreover, in the Bose gas we can now apply the con-
tinuum approximation

Sb /T5(
x ,x8

Fx~12t !x ,x8
21 Fx8

*

'E F2
\2

2m Fx~¹2F*!x1auFxu2Gd3x , ~4!

where a5(x(12t)x ,x8
21 . It is important to notice that a

5(12 t̃ 0)21 is positive because 12t was defined as a posi-
tive matrix. This implies that Sb is a positive quadratic form.
Sb can be compared with the expression of the ideal Bose
gas if we replace a by 2m0. Then the expression in Eq. ~4!
is an approximation of Eq. ~3! for small (ek2m0)T , which
applies, e.g., to high temperatures. This approximation is
very common in the literature @20,15# and can also be used in
the case of hard-core bosons.
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Physical quantities can be expressed as expectation values
of the new fields w and F . For instance, we obtain from Eq.
~1! for the total density of bosons, the expression ~see Ap-
pendix B!

n5
1
2 1T^wx&,

where

^•••&5
1
Z̄
E •••e2Sb

3)
x

e2Twx
2 sinh@A~wx1m/2T !21uFxu2#

A~wx1m/2T !21uFxu2

3dwx Fx dFx* . ~5!

Thus wx , which is conjugate to uexu2 according to Eq. ~2!, is
related to the total density of bosons. Conversely, Fx , which
is conjugate to exbx* according to Eq. ~2!, corresponds to the
density of the condensate @14,19# and can be expressed as the
expectation value

rs5Ta^uFxu2&5
Ta

Z̄
E uFxu2e2Sb2S0)

x
dFx dFx* .

We notice that the potential part of the partition function S0
is symmetric with respect to m→2m . This implies that the
expectation value ^wx& is an odd function of m . Therefore,
the density varies monotonously with m , as it should. The
symmetry of S0 with respect to m→2m implies that rs is an
even function of m . This is a characteristic feature of our
lattice hard-core bosons in which bosons and empty sites are
dual to each other.

Near the critical point

The w integration in Z1 can be performed numerically in
order to obtain an effective potential

2(
x

ln@Z1~ uFxu2!# .

It is interesting to notice that the expression ln@Z1(uFxu2)# is
linear for large values of uFxu ~cf. Fig. 1!. Therefore, the
quadratic term in Sb suppresses the large fluctuations. This
means that the uFxu4 approximation of the Ginzburg-Landau
theory provides a stronger suppression of large fluctuations
than the complete theory.

Near the critical point we can expand the free energy
around uFxu50 because the order-parameter field F is
small. The result of this expansion is the Ginzburg-Landau
functional for the collective field with
02361
T(
x ,x8

Fx~12t !x ,x8
21 Fx8

* 2(
x

~b1uFxu21b2uFxu4!

'E F2
T\2

2m Fx~¹2F*!x1~Ta2b1!uFxu2

2b2uFxu4Gd3x , ~6!

where

b15
Z18~0 !

Z1~0 !
, b25

1
2 FZ19~0 !

Z1~0 !
2S Z18~0 !

Z1~0 !
D 2G .

Expression ~6! is also known as the Ginzburg-Landau func-
tional, which has the same form as the Gross-Pitaevskii func-
tional, often used as a model of a dilute Bose system @10,11#.
In our derivation we have m- and T-dependent coefficients.
As one can see in Fig. 1, the term with uFu2 can change its
sign with a changing m . On the other hand, away from F
50 the behavior is controlled by the confining part uFu4.
This is the typical Ginzburg-Landau picture of a second-
order phase transition.

The effect of the uFu4 interaction on Tc in the model of
Eq. ~6! was recently investigated in detail in a self-consistent
calculation @7# and in a 1/N expansion @8#. In this model it is
assumed that the coefficient of the uFu4 term depends on the
scattering length a and the total density by a factor a3n . This
is valid at low density. The calculation shows that the critical
temperature of the interacting system Tc , normalized with
the critical temperature of the ideal Bose gas, is shifted as
~see Table I!

12T0 /Tc;c0an1/3. ~7!

FIG. 1. Behavior of the local part of the action S loc5aT uFu2

2ln@Z1(uFu2)# for T50.1 K, a51.02 K21 and three different val-
ues m/T50,0.07,0.1. There is a critical point at m'0.

TABLE I. The coefficients of the critical temperature shift in
Eq. ~7! from different works.

Reference @5# @6# @7# @8#

c0 0.34 2.2 1.5 2.33
1-4
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Numerical investigations @5# show that the critical tempera-
ture must decrease at higher densities. This depletion effect,
which cannot be seen in the Gross-Pitaevskii approach, will
be discussed in the slave-boson approach subsequently.

V. MEAN-FIELD APPROXIMATION

Since wx is a field that appears only in local terms, it can
be integrated out at each site independently for a given value
of the condensate field Fx . The treatment of Fx is more
difficult since it appears in nonlocal term Sb . It can be stud-
ied in terms of the classical field equation

F2
\2T
2m ¹21Ta2

Z18~ uFxu2!

Z1~ uFxu2!
GFx50,

which is the extremum of the action Sb1S0. A further sim-
plification is the additional assumption that the condensate
field varies only weakly in space: ¹2F'0. This gives the
mean-field or Thomas-Fermi approximation. Both densities,
n and rs , can be evaluated in mean-field approximation. The
mean-field free energy reads

FMF52
1
N ln Z5

1
4 2

m

2T1TauFu22ln@Z1~ uFu2!# , ~8!

where uFu must be at the minimum of FMF . For a given
chemical potential m there is a critical value Tc that separates
two regimes: one regime for T,Tc in which the minimum of
the mean-field free energy is uFu2.0 and another regime
with uFu250 for T>Tc . This can be seen by plotting
TauFu22ln@Z1(uFu2)# ~Fig. 1! which has, depending on m ,
either a minimum at uFu50 or another one at uFuÞ0 @14#.
The minimal value uFu varies continuously as one goes
through Tca . The behavior of the densities as functions of m
at a fixed temperature is shown in Fig. 2.

Near the critical point

For a very dilute system, the mean-field approximation is
insufficient and the calculations of Refs. @7,8# should be ap-
plied. However, at higher densities ~more than n'0.2) the

FIG. 2. Mean-field result of the total density n ~full curve! and
the superfluid density rs ~dashed curve! at aT50.1. The densities
are measured in units of the scattering volume a3.
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mean-field approximation should be reliable. Then the criti-
cal temperature Tc of the mean-field calculation is

Tc5b1 /a[Z18~0 !/@aZ1~0 !# .

The decreasing behavior of Tc /T0 (T0}n2/3 is the condensa-
tion temperature of the ideal Bose gas! is shown in Fig. 3.
Our mean-field result for Tc /T0 agrees qualitatively with the
Monte Carlo result of Ref. @5#. However, we expect that
fluctuations might reduce the critical temperature substan-
tially close to n51.

We can expand the mean-field free energy ~8! in powers
of uFu2 up to uFu4. Then the minimum of F must satisfy the
mean-field equation

uFu2;2
TaZ1~0 !2Z18~0 !

TaZ18~0 !2Z19~0 !
5

Tc2T
~T2Tc!b122b2 /a

;
Tc2T

22b2 /a ~T;Tc! ~9!

if the right-hand side is nonnegative and uFu250 otherwise.
Since b2<0 in a typical situation ~cf. Fig. 1!, there is a
nonzero solution. The coefficient on the right-hand side of
Eq. ~9! can be evaluated numerically for a given value of m .

VI. DISCUSSION

The slave-boson representation is given by two fields bx ,
ex that are subject to a constraint: one represents empty, the
other, singly occupied sites. These two fields are replaced by
two collective fields wx and Fx that have a direct physical
interpretation. The former couples to uexu2 and the latter
couples to the product exbx* . The introduction of the collec-
tive field Fx enables us to integrate the slave-boson fields
and to eliminate the constraint of these fields. The effective
field theory provides a ‘‘two-liquid’’ theory that is repre-
sented by the fields wx and Fx . These fields correspond with
the total density n and and the superfluid density rs , respec-
tively. The latter is the order parameter of the condensation
whereas the total density n does not indicate a critical behav-
ior at the condensation point ~cf. Fig. 2!. Therefore, n can be

FIG. 3. Mean-field result of the critical temperature Tc of the
hard-core bosons in arbitrary units, normalized with the critical
temperature of the ideal bose gas T0}n2/3. This behavior is similar
to the result found in a Monte Carlo simulation of Ref. @5#.
1-5
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fixed near the critical point and the theory can be expanded
in terms of a small order-parameter field Fx . This yields the
well-known Ginzburg-Landau theory with density-dependent
parameters. In other words, there is a phase boundary in the
m-T phase diagram that separates the normal from the super-
fluid phase. In the vicinity of this phase boundary we can
apply the Ginzburg-Landau approach.

The condensate field can be treated in mean-field approxi-
mation, assuming a homogeneous order parameter. This re-
veals the phenomenon of depletion of the condensate due to
a strong interaction among the bosons that has been observed
in superfluid 4He. In the slave-boson representation, it is a
consequence of the duality of empty and singly occupied
lattice sites, which is reflected by the constraint ue xu2

1ub xu251. Thus, physical quantities are symmetric with re-
spect to a half-filled system ~i.e., n51/2 or m50).

The lattice theory is not very accurate at densities n
'0.5 because it reduces the motion of bosons significantly in
comparison with a continuous system. Moreover, the mean-
field approximation neglects vortices and flucuations of the
order parameter. From this point of view, we can only expect
a qualitative agreement of our results with those, e.g., ob-
tained from experiments. Nevertheless, the mean-field ap-
proximation should be reasonable if the density is not too
low. However, the critical exponent of the order parameter
should be renormalized due to fluctuations, using the renor-
malization group for the three-dimensional uFu4 model.

The main result is that the phase diagram of the slave-
boson theory of the strongly interacting bose system has two
normal phases ~i.e., a dense and a dilute one! and a super-
fluid phase for intermediate densities. Near the transition
points a Ginzburg-Landau approach can be used to describe
the physics of a small order-parameter field. The superfluid
density is low in our hard-core system. This might be a con-
sequence of the strong interaction that suppresses the super-
fluid component.

In conclusion, we established an effective field theory that
enables us to evaluate the properties of a strongly interacting
system of bosons. It takes into account the order parameter
of the condensate and the total density by interacting fields.
It describes the phase transition between a normal phase and
a condensed phase. The phase transition was studied in
mean-field approximation. We evaluated the density-
dependent critical temperature at densities n.0.2 in which
the mean-field approximation of the order parameter is reli-
able.
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APPENDIX A

The integration of the e and the b fields can be performed
in Z for each point x independently

E d~ ub xu21ue xu221 !e2lx ,1ue x u22lx ,2ub x u2db x db x* de x de x* .
~A1!
02361
The integrand does not depend on the phases of the field.
Therefore, the phase integration contributes a factor 4p2.
Moreover, we set sªub xu2 and tªue xu2, which yields for Eq.
~A1!

p2E
0

`E
0

`

d~s1 t21 !e2lx ,1t2lx ,2sds d t

5p2E
0

1
e2lx ,1t2lx ,2(12 t )d t

52p2 e
2lx ,12e2lx ,2

lx ,12lx ,2
.

APPENDIX B

To write the total density of bosons we have to evaluate

T
N

] ln Z
]m

5
1
21

T
N

1
Z̄

] Z̄
]m

.

Differentation yields

] Z̄
]m

5E (
x̄

]Z 1~ uF x̄u2!

]m F )
xÞ x̄

Z 1~ uFxu2!G)x dFx dFx* .

Since

]Z 1~ uF x̄u2!

]m
5E we2Tw2 sinh@A~w1m/2T !21uF x̄u2#

A~w1m/2T !21uF x̄u2 dw ,

we can write for the previous expression

] Z̄
]m

5E (
x̄

w x̄e2Sb

3)
x

e2Tw2 sinh@A~w1m/2T !21uF x̄u2#

A~w1m/2T !21uF x̄u2

3dwx dFx dFx* .

This implies

1
Z̄

] Z̄
]m

5
1
Z̄

(
x̄
E w x̄e2Sb

3E e2Tw
x̄
2 sinh@A~w x̄1m/2T !21uF x̄u2#

A~w x̄1m/2T !21uF x̄u2 dw x̄

3F )
xÞ x̄

Z 1~ uFxu2!G)x dFx dFx*

5(
x̄

^w x̄&.
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