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Details of Disorder Matter in 2D d-Wave Superconductors
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Within numerically exact solutions of the Bogoliubov–de Gennes equations, we demonstrate that
discrepancies between predicted low-energy quasiparticle properties in disordered 2D d-wave super-
conductors occur because of the unanticipated importance of disorder model details and normal state
particle-hole symmetry. For the realistic case, which is best described by a binary alloy model without
particle-hole symmetry, we predict density-of-state suppression below an energy scale which appears to
be correlated with the corresponding single impurity resonance.
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In metals, the many different analytic and numerical
techniques used to study disorder and electron localization
have led to a satisfyingly consistent understanding. The
same cannot be said for the theory of disorder and quasi-
particle localization in high Tc superconductors, which are
widely believed to be correctly modeled as 2D systems
with d-wave pairing. As pointed out some years ago by
Nersesyan, Tsvelik, and Wenger [1], the standard perturba-
tive approximation for the self-energy, the self-consistent
T -matrix approximation (SCTMA), breaks down in 2D
d-wave superconductors as jEj ! 0, even in the dilute
impurity limit. In response, a variety of nonperturbative
approaches have been applied [1–5], and have yielded ap-
parently contradictory results. The purpose of this Letter is
to demonstrate, by exact numerical calculation, that these
discrepancies occur for the most part because, in contrast
with the metallic case, details of the disorder model are
qualitatively important. Moreover, for a physically im-
portant class of disorder models, the seemingly innocent
assumption of particle-hole symmetric normal state bands
leads to nongeneric results.

This work focuses on the quasiparticle density of states
(DOS) r�E�, which is strongly affected by even small im-
purity concentrations. In pure materials, d-wave super-
conductivity is characterized by a gapless density of states
r�E� � jEj for jEj , D0 (D0 is the d-wave gap ampli-
tude). The SCTMA [6–8] predicts a finite DOS for dis-
ordered materials at E � 0. Nonperturbative approaches
beyond the SCTMA have variously predicted that r�E�
vanishes according to universal [1,3] power laws, that
r�E� diverges as jEj ! 0 [4,5], and that there is a rig-
orous lower bound on r�E� [2].

At first sight it seems impossible that these results could
be mutually reconciled. We will undertake to show here,
however, that most can be understood within a single
framework, and that they differ primarily because of details
in the treatment of disorder. It is natural to assume that
such dramatic discrepancies for what a priori appear to be
only slightly different physical models arise because the
d-wave system is critical. We compare models by solving
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the Bogoliubov–de Gennes (BdG) equations numerically
on large finite-size lattices. The model parameters we
vary include disorder type (see below), disorder strength,
normal state particle-hole symmetry, self-consistent renor-
malization of the local order parameter by disorder, and
the so-called “Dirac cone anisotropy” yF�yD, where yF is
the Fermi velocity and yD is the velocity of quasiparticles
transverse to the nodes. We find that binary alloy and
random site energy disorder models differ qualitatively.
For strong scatterers, in particular, random site disorder
models cannot describe the enhancement in the low-
energy DOS predicted by Pépin and Lee [4], which we
reproduce here. In addition, some of the present authors
have recently shown that self-consistent treatment of the
order parameter cannot be neglected in general [9]. We
suggest that an appropriate model for disorder in the
cuprates must involve a binary alloy treatment of strongly
scattering impurities and self-consistency, and predict in
this case a power law r�E� � Ea with disorder depen-
dent a below an energy scale set by the single impurity
resonance [9].

Method.—We consider a mean field Bogoliubov–de
Gennes Hamiltonian for electrons hopping on a tight-
binding square lattice with nearest neighbor hopping ma-
trix element t, and bond mean field order parameter Dij ,
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where Ui is the impurity potential on site i. Energies
will be measured in units of the hopping amplitude t and
lengths in units of the lattice constant. We consider both
random site energy models, in which the Ui are chosen
randomly from a distribution P�U�, and binary alloy mod-
els, in which Ui takes the value U0 on a fraction ni of the
sites and is zero elsewhere. The filling is chosen to stabi-
lize a pure d-wave ground state in the absence of disorder,
© 2000 The American Physical Society
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with homogeneous order parameter Dk � D0�cos�kx� 2

cos�ky��, where D0 � 1
2

P
6�Dii6x 2 Dii6y�. In the tight-

binding model, yF�yD � 2t�D0.
For the d-wave system, Eq. (1) has been used to calcu-

late DOS [10], superfluid density [11,12], and Tc suppres-
sion [11] numerically. It is widely assumed [10] that local
fluctuations in Dij produced by the impurity potential do
not affect the DOS qualitatively. Recent numerical work
[9,12] has suggested otherwise, and we therefore make
a distinction between self-consistent (SC) solutions of
the BdG equations, where Dij � Vij�cj#ci"� with nearest
neighbor pairing interaction Vij , and non-self-consistent
(NSC) calculations, where Dij has the homogeneous
d-wave form. With Dij determined, we can calculate
the DOS from r�E� � L22

P
a d�E 2 Ea�, where Ea

are the eigenvalues of H , for samples of size L 3 L.
Our numerical calculations were performed on systems
with L # 45, and real periodic and antiperiodic boundary
conditions.

Random site energy vs binary alloy models.—We
begin by discussing the NSC models used in the vast
majority of earlier work. In field theoretical approaches
it is common to assume a Gaussian distribution P�U� �
�s

p
2p �21 exp�2U2�2s2� for the disorder potential at

each site. For technical reasons it is more convenient to
consider a uniform “box” distribution P�U� � 1��2W �,
jUj , W . We have checked that results with the box
distribution are similar to the Gaussian, with the mapping
W �

p
3 s. Disorder is thus characterized by a single

parameter, in contrast to the binary alloy model, where
chemical impurities or vacancies are characterized not
only by their individual scattering strength U0, but also
by their concentration ni . In the normal metal, a corre-
spondence between W and �ni , U0� can always be found
such that the random site energy and binary alloy models
yield similar results. This is no longer true in the super-
conducting state, because the frequency dependence of
the superconducting Green’s function can lead to midgap
resonances [13], found only in the binary alloy case and
observed in experiment [14,15].

Figure 1 shows the DOS of a d-wave superconductor at
low energies in the presence of box disorder at different
W . When W is small, the self-consistent Born limit repro-
duces the exact calculation for the box distribution quan-
titatively. For larger W , the exact calculation shows the
formation of a “disorder induced pseudogap” (DIP) over
an energy interval jEj , E1, where E1 grows rapidly with
W . The physics of the DIP is clearly not captured by the
Born limit approximation for the box distribution, which
predicts a finite residual DOS rmf. In Fig. 2, we study the
DIP in more detail. With yF � yD, and large disorder,
we can identify a second, much smaller energy scale E2
over which r�E� � jEj. This regime disappears quickly,
however, as yD is decreased, and we contrast this behav-
ior with the relatively slow scaling of E1 with yD. Earlier
field theoretical studies [3] made predictions for a linear
DOS over an energy scale �1�rmfj

2
L. The rapid scaling
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FIG. 1. Density of states for box distributed disorder. Main
figure: Exact NSC solution of the BdG equations for different
W . For comparison, the Born approximation for W � 5 is also
shown. Inset: Born approximation for different W . Line types
refer to same values of W as in main figure (W � 0 not shown).
D0 � 2 and m � 1.2.

of E2 in Fig. 2 is consistent with the predicted exponential
dependence of jL on yF�yD. It is also tempting to make
the connection between the DIP edge E1 and the much
larger predicted scale for weak localization corrections to
the DOS [5,16]. In this case, E1 is expected to scale as
D0rmf for small disorder, and it is clear from Fig. 2 that
the scaling with D0 holds even for large disorder.

Unitary limit.—There is considerable evidence that
simple defects in the CuO2 planes give rise to local
scattering centers close to the unitarity limit, indeed that
simple defects in all unconventional superconductors
scatter with phase shifts close to p�2, for reasons which
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FIG. 2. Scaling of the DOS with D0 for m � 1.2 and W � 9.
Inset: Logarithmic plots for D0�2t � 1 (circles) and D0�2t �
0.3 (diamonds; data rescaled for clarity). Lines are guides to the
eye indicating linearity.
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are not completely understood. For isolated impurities, the
signature of unitarity is a resonance in the local DOS at
E � 0; resonances close to E � 0 have been observed in
recent scanning tunneling microscopy experiments [14,15]
for both “native defects” and Zn atoms substituting on
the planar copper sites in BaSrCaCuO-2212. A point
which has not been widely appreciated is the fact that
the value of the impurity potential U0 which produces a
unitary resonance is dependent on the band structure; for
a perfectly symmetric band the unitary limit corresponds
to U0 ! 6` [13], while for an asymmetric band, U0
is a finite value dependent on the degree of asymmetry
[17–19]. There is a fundamental distinction between the
two cases, with the first exhibiting perfect particle-hole
symmetry on all energy scales [4], and the second ex-
hibiting particle-hole symmetry on energies jEj , D0.
Most analytical treatments of the disorder problem do not
distinguish between the two, using D0 as a high energy
cutoff. We show below that in the many-impurity problem
erroneous conclusions may be drawn as a result.

In the unitary limit, the SCTMA predicts that a plateau
forms in the DOS over an energy interval jEj , g. Recent
nonperturbative calculations by Pépin and Lee [4] found
that unitary scatterers produce a divergent DOS r�E� �
1�jEj ln2�jEj�D0� as jEj ! 0. This feature was not found
in recent numerical work by some of the current authors
[9], who considered only tight-binding bands with m fi 0.
In Fig. 3, we show that a divergent DOS occurs only in
models with particle-hole symmetry at all energy scales,
for m � 0 and U21

0 � 0 in our case. The effects of break-
ing particle-hole symmetry are illustrated in Fig. 3. For
m � 0 and U21

0 fi 0, the divergent peak splits, and moves
away from E � 0 as jU21

0 j grows. This is qualitatively
similar to what happens in the single impurity limit [13],
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FIG. 3. NSC calculation of DOS near the unitary limit for
D0 � 2 and ni � 0.05. Main figure: m � 0. Inset: m �
0.2 with U21

0 � 0.001 (solid line), 0.01 (dotted line), and 0.02
(dashed line).
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although the peak splitting occurs more rapidly in the bulk
disordered case. An alternative means of breaking particle-
hole symmetry is to let m fi 0, in which case the peak
structure rapidly disappears (inset, Fig. 3). This differs
from the single impurity limit where there always exists
some finite U0 at which a zero energy divergence occurs. A
remnant of the isolated impurity resonance remains, how-
ever, as a broad accumulation of states at low energies. The
extra spectral weight is not reproduced by SCTMA calcu-
lations, and it gradually vanishes as we move farther away
from perfect symmetry. Evidently the low-energy effective
action is unstable both to deviations from unitarity and to
deviations from full band particle-hole symmetry.

Local order parameter suppression.— In the above dis-
cussion, we have concentrated on the artificial case in
which the order parameter was not allowed to vary spa-
tially, with the purpose of understanding a set of dis-
parate theoretical results obtained under this assumption.
As discussed in Ref. [9], allowing Dij to respond self-
consistently to the impurity potential introduces a new
source of scattering in the off-diagonal channel, which ul-
timately leads to a suppression of the DOS at low energy.
This effect highlights the complex nature of multi-impurity
scattering resonances, and is opposite to the expectations
of the naive “Swiss cheese” picture, in which the impu-
rity simply produces a small region of normal metal. In
Fig. 4 we show the effect of self-consistency in the unitary
limit. In the case of a symmetric band, self-consistency
moves the resonance towards the Fermi level (consistent
with what is seen in the single impurity case [19,20]), and
suppresses the DOS at low energy on roughly the same
scale. This kind of DOS suppression is also seen in SC
solutions with box distributed disorder [Fig. 4(b)]. In the
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FIG. 4. Exact solutions of BdG equations with (SC) and with-
out (NSC) order parameter self-consistency, for D0 � 0.39:
(a) Binary alloy, symmetric band, near unitarity, U0 � 100,
ni � 0.05, and m � 0. (b) Box distribution, W � 2, m � 1.2.
(c) Realistic binary alloy model, U0 � 5, ni � 0.04, m � 0.6.
(d) As in (c) but with m � 1.2.



VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000
binary alloy model, however, it is possible to make an
empirical connection between the energy scale for DOS
suppression and the energy of the single impurity reso-
nance. The energy scales are not equal, but clearly scale
together [9]. One interesting implication is that for scatter-
ers sufficiently close to the unitary limit, the DIP will be
unobservable, as illustrated in Fig. 4(c), but that the same
impurity doped into a different host may cause the DIP to
open [Fig. 4(d)]. We speculate that this may be the case
with Zn, which is clearly a unitary scatterer in BSCCO
[14], but appears to produce a depression in the DOS at
small energies in LSCO, as seen in recent specific heat
experiments [21].

Conclusions.—We have shown that a number of differ-
ent approaches to the d-wave disorder problem which pro-
duce apparently contradictory results can be understood
within a single framework when the appropriate symme-
tries of the Hamiltonian, and, in particular, of the particular
realization of disorder, are accounted for. The most impor-
tant question we hope to settle here is which of the pre-
ceding results, if any, are of relevance to experiment. We
remind the reader that experiments which probe the DOS
most directly are consistent with the existence of a con-
stant DOS at the Fermi energy [22]. We have shown that
a true constant DOS cannot be understood in 2D d-wave
superconductors with any of the disorder models discussed
here [23], and we suggest several possible reasons for the
discrepancy. The first possibility is that experiments are
unable to access the DIP regime in the optimally doped
materials because of native near-unitarity defects [14]. In
this case, the only effects of weak localization on the DOS
would be the weak nonmonotonicity shown in Figs. 4(c)
and 4(d), which is reminiscent of effects seen in the spe-
cific heat [24]. The second possibility is that weak cou-
pling to the third dimension destroys the DOS anomalies
described above; we expect on general grounds that the
influence of the crossed diagrams identified by Nersesyan
et al. [1] will become negligible in the dilute limit in 3D,
and the validity of the SCTMA will be restored. In this
context we note that almost all the experiments indicating
finite residual DOS in the cuprates have been performed on
YBCO, the most 3D of the cuprate materials. We hope our
work will serve as an incentive to examine the low-energy
properties of disordered 2D materials like BSCCO-2212.
Finally, we mention the possibility that many-body effects
beyond the BCS approximation play an important role at
low energies. There is some speculation that this might be
the case in the underdoped cuprates, and the formulation
of a relevant theory is an interesting but difficult problem
which must be left to future research.
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Note added.— In the final stages of preparation of this
manuscript, we received a preprint from Zhu et al. [25] in
which similar results for the unitarity limit of the symmet-
ric band were obtained.

[1] A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Nucl. Phys.
B438, 561 (1995); Phys. Rev. Lett. 72, 2628 (1994).

[2] K. Ziegler, M. H. Hettler, and P. J. Hirschfeld, Phys. Rev.
Lett. 77, 3013 (1996); Phys. Rev. B 57, 10 825 (1998).

[3] T. Senthil, Matthew P. A. Fisher, Leon Balents, and Chetan
Nayak, Phys. Rev. Lett. 81, 4704 (1998); T. Senthil and
Matthew P. A. Fisher, Phys. Rev. B 60, 6893 (1999).

[4] C. Pépin and P. A. Lee, cond-mat/0002227; Phys. Rev.
Lett. 81, 2779 (1998).

[5] M. Bocquet, D. Serban, and M. R. Zirnbauer, cond-mat/
9910480.

[6] L. P. Gor’kov and P. A. Kalugin, JETP Lett. 41, 253 (1985).
[7] S. Schmitt-Rink, K. Miyake, and C. M. Varma, Phys. Rev.

Lett. 57, 2575 (1986).
[8] P. J. Hirschfeld, D. Vollhardt, and P. Wölfle, Solid State

Commun. 59, 111 (1986).
[9] W. A. Atkinson, P. J. Hirschfeld, and A. H. MacDonald,

preceding Letter, Phys. Rev. Lett. 85, 3926 (2000).
[10] T. Xiang and J. M. Wheatley, Phys. Rev. B 51, 11 721

(1995).
[11] M. Franz, C. Kallin, A. J. Berlinsky, and M. I. Salkola,

Phys. Rev. B 56, 7882 (1997).
[12] Amit Ghosal, Mohit Randeria, and Nandini Trivedi, cond-

mat/0004481.
[13] A. V. Balatsky, M. I. Salkola, and A. Rosengren, Phys.

Rev. B 51, 15 547 (1995); A. V. Balatsky and M. I. Salkola,
Phys. Rev. Lett. 76, 2386 (1996).

[14] E. W. Hudson, S. H. Pan, A. K. Gupta, K.-W. Ng, and J. C.
Davis, Science 285, 88 (1999); S. H. Pan, E. W. Hudson,
K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Nature
(London) 403, 746 (2000).

[15] Ali Yazdani, C. M. Howald, C. P. Lutz, A. Kapitulnik, and
D. M. Eigler, Phys. Rev. Lett. 83, 176 (1999).

[16] P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).
[17] R. Fehrenbacher, Phys. Rev. Lett. 77, 1849 (1996); R. Feh-

renbacher and M. R. Norman, Phys. Rev. B 50, R3495
(1994); R. Fehrenbacher, Phys. Rev. B 54, 6632 (1996).

[18] R. Joynt, J. Low Temp. Phys. 109, 811 (1997).
[19] W. A. Atkinson, P. J. Hirschfeld, and A. H. MacDonald,

cond-mat/9912158.
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