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Abstract. The dynamic melting of vortex lattices in type II superconductors is considered. A
field-theoretic formulation of the pinning problem allows the average over the quenched disorder
to be performed exactly. A self-consistent theory is constructed using a functional method for the
effective action, allowing a determination of the pinning force and the vortex fluctuations. The
phase diagram for the dynamic melting transition is determined numerically. In contrast to pertur-
bation theory, the self-consistent theory is in quantitative agreement with the prediction of a re-
cent phenomenological theory and simulations and experimental data.

                                                     
                               

1 Introduction

The advent of high temperature superconductors has stimulated a renewed interest
in the dynamics of vortices in type II superconductors. In this letter we consider
the influence of quenched disorder on the dynamic melting of a vortex lattice. This
non-equilibrium phase transition has been studied experimentally [1] as well as
through numerical simulation and a phenomenological theory and perturbation
theory [2], [3], [4]. The notion of dynamic melting refers to the melting of a mov-
ing vortex lattice where in addition to the thermal fluctuations, fluctuations in vor-
tex positions are induced by the disorder. A temperature-dependent critical veloc-
ity distinguishes a transition between a phase where the vortices form a moving
lattice, the solid phase, and a vortex liquid phase.

2 Equation of motion and effective action

We consider a two-dimensional system (normal to n̂) since we have a thin super-
conducting film in mind, or a 3D layered superconductor with uncorrelated disor-
der between the layers. The description of the vortex dynamics will be based on
the Langevin equation [2], [5]

h _uRt �
P

R0
FRR0uR0t � FÿrV�R� uRt� � xRt ; �1�
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where uRt is the displacement at time t of the vortex which initially has equilib-
rium position R, and h is the friction coefficient (per unit length of the vortex).
The dynamic matrix, FRR0 , of the triangular Abrikosov vortex lattice describes the
harmonic interaction between the vortices, and is specified within the continuum
theory of elastic media by the compression modulus, c11, and the shear modulus,
c66 [6],

Fq �
j0

B

c11q
2
x � c66q

2
y �c11 ÿ c66�qxqy

�c11 ÿ c66� qxqy c66q
2
x � c11q

2
y

 !

; �2�

where j0 � h=2e is the flux quantum, and B the magnitude of the external magnetic
field, B � Bn̂, and j0=B is therefore equal to the area, a2, of the unit cell of the
vortex lattice. The force (per unit length) on the right hand side of Eq. (1) consists
of the Lorentz force, F � j0 j� n̂, due to the (assumed constant) transport current
density j, and the thermal white noise stochastic force, xRt, is specified according to
the fluctuation-dissipation theorem hxaRtx

a0

R0t0i � 2hTd�t ÿ t0� daa0dRR0 , and V is the
pinning potential due to quenched disorder. The pinning is described by a Gaussian
distributed stochastic potential with zero mean, and thus characterized by its corre-
lation function hV�x� V�x0�i � n�xÿ x0� � n0=�2pr2p� exp fÿ�xÿ x0�2=�2r2p�g, taken to
be a Gaussian function with range rp and strength n0 in our numerical calculations.

The average vortex motion is conveniently described by reformulating the sto-
chastic problem in terms of the dynamic field theory [7]. The probability functional
for a realization fuRtgR of the motion of the vortex lattice is expressed as a func-
tional integral over a set of auxiliary variables f~uRtgR, and we are led to consider
the generating functional

Z�F; J� �
�
Q

R

DuRt

�
Q

R0
D~uR0t0 e

iS�u; ~u� ; �3�

where in the action, S�u; ~u� � ~u�Dÿ1
R u� FÿrV � x� � Ju, matrix notation is used

in order to suppress the integrations over time and summations over vortex posi-
tions and Cartesian indices. The retarded Green's operator is given by
ÿDÿ1

R u � h _uRt �
P

R0
FRR0uR0t; and its Fourier transform is the matrix in Cartesian

space Dÿ1
R �q; w� � ihw1ÿFq. The average with respect to thermal noise and

quenched disorder is immediately performed and we obtain the averaged generat-
ing functional [8]

Z� f ; K� � hhZii �
�

Dj eiS�j� � ifj� i
2jKj ; �4�

where in order to obtain a self-consistent equation for the two-point Green's func-
tion, we have added a two-particle source term K. We have introduced the nota-
tion j � �~u; u� and f � �F; J�, and the source term, J, coupling to the vortex posi-
tions, u, allow us to generate the vortex correlation functions, say,

hhuRtuR0t0ii � ÿ d
2Z

dJRt dJR0t0

�

�

�

�

�

K� 0; J� 0

: �5�

The action obtained upon averaging, S � S0 � SV , consists of a quadratic term,
S0�j� � jDÿ1j=2, specified in terms of the free inverse symmetric matrix Green's
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function (where the matrix Dÿ1 in the dynamical, or Keldysh, indices in addition is
a matrix in Cartesian indices, and time and vortex positions)

Dÿ1 � 2ihTdabdRR0d�t ÿ t0� Dÿ1
R

Dÿ1
A 0

� �

; �6�

and a term originating from the disorder

SV�j� �
ÿi

2

P

RR0

�1

ÿ1
dt

�1

ÿ1
dt0 ~uaRtrarbn�uRt ÿ uR0t0� ~ubR0t0

: �7�

In order to obtain an equation for the pinning force, we consider the effective
action G ��j;G� � W� f ; K� ÿ f �jÿ �jK�j=2ÿ i Tr �GK�=2, the generator of two-parti-
cle irreducible vertex functions, i.e., the Legendre transform of the generator of
connected Green's functions, W� f ; K� � ÿi lnZ� f ; K�, which satisfies the equations

dG

d�j
� ÿf ÿK�j ;

dG

dG
� ÿ i

2
K ; �8�

where �ja
Rt is the average field, and G is the full connected two-point matrix

Green's function of the theory, and Tr denotes the trace over all variables and
indices.

In the physical problem of interest the sources K and J vanish, and the full
matrix Green's function has, due to the normalization of the generating functional,
Z�F; J�0; K�0� � 1, the structure in Keldysh space

Gij � 0 GA

GR GK

� �

� ÿi
0 hh~ua ~ubii

hhua ~ubii hhdua dubii

� �

; �9�

where duRt � uRt ÿ hhuRtii. The retarded Green's function GR
ab gives the linear re-

sponse to the force Fb, and GK
ab is the correlation function (both matrices in Carte-

sian indices as indicated).
The effective action can be written on the form G ��j; G� � S��j� � i Tr �Dÿ1

S G
ÿ ln �Dÿ1G� ÿ 1�=2ÿ i ln heiSint��j;w�i2PIG , where Dÿ1

S � d
2S��j�=d�j d�j, and Sint��j;w�

is the part of S��j� w� which is higher than second order in w in the expansion
around the average field �j [9]. The superscript ª2PIº on the last term indicates
that only two-particle irreducible vacuum diagrams should be kept in the inter-
action part of the effective action, and the subscript that propagator lines repre-
sent G, i.e., the brackets with subscript G denote the average heiSint��j;w�iG
� �det iG�ÿ1=2 � Dw eiwG

ÿ1
w=2 eiSint��j;w�.

3 Hartree approximation

In order to get a closed expression for the self-energy in terms of the two-point
Green's function we expand the exponential and keep only the first term,
ÿi ln heiSint��j;w�i2PIG ' hSint��j; w�i2PIG , i.e., the Hartree approximation where diagrams
with propagators connecting different impurity correlators are neglected (which
can also be expressed as a Gaussian fluctuation corrected saddle-point approxima-
tion [10]).
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For the problem of interest, the two-particle source, K, vanishes, and the second
equation in (8) yields the Dyson equation, Gÿ1 � Dÿ1 ÿ S��j; G�, with the Keldysh
matrix self-energy given by

Sij � SK SR

SA 0

� �

� 2i
dhSV ��j� w�i2PIG

dGij

�

�

�

�

�

K� 0
J� 0

: �10�

The Dyson equation and Eq. (10) constitute a set of self-consistent equations for
the Green's functions and the self-energies. Since the expectation value of the aux-
iliary field vanishes due to the normalization of the generating functional, the aver-
age field entering Eq. (10) is �j � �hh~uRtii; hhuRtii� � �0; vt�, where v is the average
lattice velocity. The matrix self-energy has two independent components since
SA
ba�Rt; R0t0� � SR

ab�R0t0; Rt�. From Eq. (10) we obtain for the case of N vortices

SK
ab�Rt; R0t0� � ÿi=�Na2�

P

k

n�k�kakb eÿ~jk ; �11�

and SR�q; w� � sR�q; w� ÿ sR�q � 0; w�0�, where the Fourier transform has the
Cartesian components

sR
ab�Rt; R0t0� � 1=�Na2�P

k

n�k� kakb�kGR�Rt; R0t0� k� eÿ~jk : �12�

The influence of thermal and disorder induced fluctuations is described by the fluctua-
tion or damping exponent jk�R; t; R0; t0� � i k�GK�R; t; R; t� ÿGK�R; t; R0; t0�� k
contained in ~jk�R; t; R0; t0; v� � ÿi k � �RÿR0 � v�t ÿ t0�� � jk�R; t; R0; t0�. Using
the Langevin equation and the first equation in Eq. (8) we obtain for the pinning
force, Fp � ÿhhrVii,

Fp � i
P

R0

�1

ÿ1
dt

�

dk

�2p�2
kn�k� �kGR�Rt;R0t0� k� eÿ~jk : �13�

4 Results

Let us recall the argument for determining the phase diagram for dynamic melting
of a vortex lattice [2]. There the disorder induced fluctuations were estimated con-
sidering the correlation function, kba�x; t� � hh fb�x; t� fa�0; 0�ii, of the pinning force

density of the vortices, f�x; t� � ÿ
P

n

d�xÿRn�t�� rV�xÿ vt�. Neglecting the inter-

dependence of the fluctuations of the vortex positions and the fluctuations in the
disorder potential, the pinning force correlation function factorizes, and since in
the fluidlike phase the motion of different vortices are ªincoherentº, one gets
kba�x; t� ' ÿnV d�x�rbran�vt�, nV

being the density of vortices. In analogy with
the noise correlator, the effect of disorder induced fluctuations is represented by a
ªshaking temperatureº

Tsh � 1

4hn
V

P

a

�

dx

�

dt jaa� x; t� �
n0

4
������

2p
p

Fr3p
; �14�

where in the last equality it is assumed that the pinning force is small compared to
the friction force, i.e., hv ' F . An effective temperature is then obtained by adding
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the ``shaking temperatureº due to disorder to the temperature, and according to
Eq. (14) the effective temperature decreases with increasing external force (i.e.,
with increasing average velocity of the vortices). As the external force is increased
the fluid thus freezes into a lattice. The value of the external force for which the
moving lattice melts, the transition force Ft, is in reference 2 taken to be the value
for which the effective temperature equals the melting temperature in the absence
of disorder, Teff�F � Ft� � Tm, and has, according to Eq. (14), the temperature
dependence Ft � n0=�4

������

2p
p

r3p�Tm ÿ T�� for temperatures below the melting tem-
perature of the ideal lattice (we note that the transition force for strong enough
disorder exceeds the critical force for which the lattice is pinned Ft > Fc � n

1=2
0 =r2p).

We now describe the calculation within the self-consistent theory of the physical
quantities of interest for dynamic melting. The conventional way of determining the
melting transition is to use the Lindemann criterion, which states that a lattice melts
when the displacement fluctuations reach a critical value hhu2ii � c2La

2, where cL is
the Lindemann parameter which is typically ranging in the interval from 0.1 to 0.2.
In two dimensions the position fluctuations of a vortex diverge even for a clean
system, and the Lindemann criterion implies that a two-dimensional vortex lattice is
always unstable against thermal fluctuations. However a quasi long-range transla-
tional order persists up to a certain melting temperature [3]. As a criterion for
the loss of long-range translational order a modified Lindemann criterion invol-
ving the relative vortex fluctuations, hh�u�R� a0; t� ÿ u�R; t��2ii � 2c2La

2, where a0
is a primitive lattice vector, has successfully been employed [3], and its validity
verified within a variational treatment [11]. The relative displacement fluctuations
are specified in terms of the correlation function, hh�u�R� a0; t� ÿ u�R; t��2ii
� 2i tr �GK�0; 0� ÿGK�a0; 0��, where tr denotes the trace with respect to the Car-
tesian indices. The correlation function is determined by the Dyson equation
GK

qw � GR
qw�SK

qw ÿ 2ihT�GA
qw, where the influence of the quenched disorder appears

explicitly through SK and implicitly through SR and SA in the advanced and retarded
response functions. Furthermore, the self-energies depend self-consistently on the
response and correlation functions. We have calculated numerically the Green's
functions and self-energies and thereby the vortex fluctuations for a vortex lattice
of size 8� 8, and evaluated the pinning force from Eq. (13).

We determine the phase diagram for dynamic melting of the vortex lattice by
calculating the relative displacement fluctuations for a set of velocities, and inter-
polate to find the transition velocity, vt, i.e., the value of the velocity at which the
fluctuations fulfill the modified Lindemann criterion (the determination of the Lin-
demann parameter is discussed shortly). The transition force is given by the aver-
aged equation of motion, Ft � hvt � Fp�vt�, and is then determined by using the
numerically calculated pinning force. Repeating this procedure for various tem-
peratures determines the melting curve, i.e., the temperature dependence of the
transition force, Ft�T�, separating two phases in the F-T-plane: a high velocity
phase where the vortices form a moving solid when the external force exceeds the
transition force F > Ft�T�, and a liquid phase for forces below the transition force.
In order to be able to compare the results of the self-consistent theory to the

simulation results, we choose the same parameters [2]. There the melting tempera-
ture in the absence of disorder is taken to be Tm � 0:007(2�j0=4pl�2 is chosen as
the unit of energy per unit length, where l is the London penetration depth), the
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value obtained by simulations of clean systems, and assumed equal to the Koster-
litz-Thouless temperature, TKT � c66a

2=4p, determining thereby the shear modulus
to have the value c66 � 0:088 (a is chosen as the unit of length) [12]. The the range
of the vortex interaction, l, was approximately equal to the lattice spacing, a0,
giving for the compression modulus c11 � 16pl2c66=a

2
0 ' 50c66 ' 4:4 [5]. The range

and strength of the disorder correlator in the simulations are rp � 0:2 and
n0 � 1:42 � 10ÿ5 in the chosen units.

Once the Lindemann parameter is determined, our numerical results for the
relative displacement fluctuations can be used to obtain the dynamic phase dia-
gram. In order to do so we calculate ``melting curvesº, as described above, using
the self-consistent theory for a set of different values of the Lindemann parameter.
We find that these curves have the same shape, close to the melting temperature,
as the melting curve obtained from the shaking theory, T � C1 ÿ C2=Ft. The curve
which intersects closest to the melting temperature Tm � 0:007, the one depicted in
the inset in the figure, then determines the Lindemann parameter to be given by
the value cL � 0:124. The corresponding phase diagram obtained from the self-con-
sistent theory is shown in the figure, as well as the simulation data [2], and the

24 Ann. Phys. (Leipzig) 9 (2000) 1

Fig. 1 The dynamic melting phase diagram. The points on the melting curve separates
the two phases Ð for values of the external force larger than the transition force the
moving vortices form a solid, and for smaller values a liquid. The dots in the boxes
represent points on the melting curve obtained from the self-consistent theory for an
8� 8 lattice, while the three stars represent the simulation results [2]. The crosses repre-
sent the results of lowest order perturbation theory. The dashed line is the curve
Ft�T� � 1:77 � 10ÿ4=�0:007ÿ T�, the melting curve obtained from the shaking theory. In-
set: Temperature as a function of the inverse transition force obtained from the self-
consistent theory (plus signs), close to the melting temperature, for the particular value
of the Lindemann parameter cL � 0:124, for which the curve intersects the T-axis at
Tm � 0:00701. The points lie on a straight line just as the prediction of the shaking theo-
ry, i.e., the dashed line Ft � 1=�Tm ÿ T�, yielding the value one for the critical exponent.

                    
  

            
                        

        
                                  

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



melting curve obtained from the shaking theory. The melting of the vortex lattice
was in the simulations indicated by an abrupt increase in the structural disorder, a
different melting criterion, and the agreement of the self-consistent theory with the
simulation data are therefore independently validating the use of the modified Lin-
demann criterion. The shaking theory is seen to be in remarkably good agreement
with the self-consistent theory even at lower velocities where the shaking argument
is not a priori valid, a feature which, however, is less pronounced for stronger
disorder. Whereas the deviation between the self-consistent and shaking theory for
the previous parameter values typically is five percent, in the case of a five-fold
stronger disorder, n0 � 7:1 � 10ÿ5, it is more than fifteen percent. It is also of inter-
est to recall, that while the melting curve obtained from the shaking theory was
based on arguments only valid in the liquid phase, i.e., freezing of the vortex liquid
was considered, the melting curve we obtained from the self-consistent theory is
calculated assuming a lattice, i.e., we consider melting of the moving lattice. As
apparent from the inset in the figure, the critical exponent obtained from the self-
consistent theory, 1:0, is in excellent agreement with the prediction of the shaking
theory, where the critical exponent equals one. Furthermore, we find that the self-
consistent theory yields the value 1:65 � 10ÿ4 for the constant C2, a value close to
the one predicted by the shaking theory, n0=�4

������

2p
p

r3p� � 1:77 � 10ÿ4.
The melting curve predicted by lowest order perturbation theory is also shown

in the figure. The correlation function is in this case given by
G

K�1�
qw � DR

qw�SK�1�
qw ÿ 2ihT ÿ 2ihT�SR�1�

qw DR
qw �DA

qwS
A�1�
qw ��DA

qw, where the self-ener-
gies are calculated to first order in n0. As to be expected, the perturbation theory
results are at high velocities in good agreement with the self-consistent theory.
However, we observe that the melting curve obtained from lowest order perturba-
tion theory deviates markedly at intermediate velocities from the prediction of the
self-consistent theory, and thereby the shaking theory, which is known to account
well for the measured melting curve, Hellerqvist et al. [1].

In conclusion, we have developed a self-consistent theory of the dynamic melt-
ing transition of a vortex lattice, enabling us to determine numerically the melting
curve directly from the dynamics of the system. The self-consistent theory corrobo-
rates the phase diagram obtained by the phenomenological shaking theory,
whereas lowest order perturbation theory does not. The melting curve obtained
from the self-consistent theory is found to be in good quantitative agreement with
the phenomenological theory as well as with simulations and experimental data.

This work was supported by the Swedish Natural Research Council through contracts F-AA/FU
10199-314 (SG) and F-AA/FU 10199-313 (JR).
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