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ABSTRACT
A two-dimensional model for quantum percolation with variable tunnelling

range is studied. For this purpose the Lifshitz distribution is considered where the
disorder enters the Hamiltonian via the non-diagonal hopping elements. We
employ a numerical method to analyse the level statistics of this model. It turns
out that the level repulsion is strongest around the percolation threshold. As we
go away from the maximum level repulsion a cross-over from a Gaussian
orthogonal ensemble type of behaviour to a Poisson-like distribution is
revealed. The localization properties are calculated by using the sensitivity to
boundary conditions and we find a cross-over from localized to delocalized states.

$1. INTRODUCTION
The statistics of energy levels in complicated quantum systems have been the

subject of research for several decades. It started with the study of energy levels in
atomic nuclei (Wigner 1951, 1958) then the statistics of electronic states in atoms was
investigated (Rosenzweig and Porter 1960), and more recently the statistics of elec-
trons in quantum dots have been studied (also known as ‘artificial’ atoms) (Efetov
1996). A surprising result of most of these approaches was that the statistics of
energy levels are quite universal regardless of the specific system; systems can be
classified according to their symmetry properties as orthogonal, unitary and sym-
plectic. These universality classes represent strong correlations between the energy
levels due to level repulsion. This is indicated, for example, by the level spacing
distribution P(s)  which goes like sB for small s. The exponent (= 1,2,4) charac-
terizes the universality class (Metha 1991). In contrast with this repulsive behaviour
(the Wigner-Dyson distribution) the assumption of statistically independent energy
levels would lead to a Poisson distribution P(.F) = exp(-s). The correlation in nuclei
or atoms is so strong because their corresponding states have usually a large overlap,
except perhaps for the ground state. The situation is less clear if we consider a
macroscopic system of as atoms as in solid-state physics where disorder can be
present. Depending on the latter there are extended electronic states and al:jo states
which are localized in space owing to Anderson localization (Efetov 1996). In terms
of level statistics the localized states are expected to obey a Poisson distribution,
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whereas the extended states are expected to have strong level repulsion characterized
by a Wigner-Dyson distribution. Since there is a metal-insulator transition from
extended to localized states driven by disorder (the Anderson transition), it is natural
to study this in terms of the statistics of energy levels.

Approaches to the role of level statistics for the Anderson transition (Evangelou
1997) were presented by several workers, and a model for quantum percolation for
nearest-neighbour transfer was investigated by Berkovitz and Avishai (1 996).
Recently it was found (Aronov et nl. 1994, 1995) that the divergence of the localiza-
tion length E at the metal-insulator transition leads to a deviation from the Wigner-
Dyson statistics for < > L,  L being the system size. In particular it was found that the
decay of the level spacing density is weaker than that of the Wigner-Dyson statistics.
This is also found in our investigation where we look at a different system with long-
range hopping and off-diagonal disorder.

The purpose of this paper is to study a quantum percolation model where the
transfer is not only between nearest neighbours but where the transfer rate decays
exponentially with distance. Exponentially localized states (e.g. Wannier states) form
a natural basis for a system close to a localization transition. Moreover, in contrast
with Anderson's model for localization we study disorder in the off-diagonal part of
the Hamiltonian.

This model is motivated by various physical systems. One example is a two-
dimensional (2D) array of quantum dots (Duruoz 1995) where electrons can tunnel
between the individual quantum dots. The imperfections of the fabricated array
leads to disordered tunnelling rates. Numerical studies of such an array (Whan et
nl. 1996) have shown that the overlap of the electronic wavefunctions is not only
between nearest neighbours but over a much longer range. Our model is also moti-
vated by the analogous picture of variable-range hopping in solids (Mott 1974).

A third example for this model is the class of low doped high-T, cuprates. Here
the charge carriers are holes in 2D Cu02 layers. The antiferromagnetically ordered
parent materials show a charge-transfer (CT) gap between states of mainly oxygen p
character and states of mainly copper d,2+ character. Upon doping, states occur in
the CT gap which are thought to originate from localized states. There are now two
possible scenarios why disorder also plays an essential role in the insulator to metal
transition. The first scenario (I) is that dopant atoms which are added in between the
Cu02 layers (e.g. Strontium in Lal_xSr,CuOq or excess oxygen) localize additional
holes in their vicinity. The additional dopant atoms are randomly distributed and
nearly immobile at low temperatures. The second scenario (11) would be that even
without additional dopant atoms a doped hole can form a self-trapped polaronic
state (Bulaevskii et a/. 1968) and should therefore have a very low mobility. Again
such states could be distributed in a random way.

In such a disordered state (which quickly loses its long-range order because of
doping,) one has exponentially localized wavefunctions for each hole. With further
doping, these states start to overlap more and more while disorder seems to play an
essential role (spin-glass phase) until one finally reaches the conducting state
(Hizhnyakov and Sigmund 1988, Sigmund and Muller 1994). The 2D copper
oxide plane may be separated into hole-rich conducting and magnetically correlated
(insulating) areas. A possible origin for phase separation are polaronic states more
(I) or less (11) tightly bound to dopant atoms that have been discussed by Gooding
(1991) and Kleimer et al. (1994). Therefore our model can describe a transition or at
least a cross-over from strongly insulating (localized) states to states with infinite or
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at least very large localization length. This picture can be applied to the physics of
the normal state in the low-doped high-T, materials. Indeed, conductivity measure-
ments by Chen et al. (1995) of low-doped Laz_,Sr,Cu04 with s M 0.002 have
shown that for temperatures below 50K the transport properties are governed by
a hopping-type conduction. Also earlier measurements by Keimer et nl. (1992) for a
sample with doping concentrations of s M 0.04 found a conductivity of hopping type
near localization below 20 K. Further the origin of the so-called pseudogap phase in
the underdoped cuprates has been discussed among other origins also as a result of
disorder (Abrahams et al. 1970, Huscroft and Scalettar 1997).

$2. THE MODEL
Our model for quantum percolation corresponds to the Hamiltonian

with the following off-diagonal (hopping) matrix elements:

texp [ -a(r i j  - y o ) ]  for r j j  > ro,

t for rij < ro,
tij = {

between the lattice sites r, and r, (with r,, = Ir, - r , ] ) .  The lattice sites i and j can
be randomly occupied with quasiparticles in Wannier states, leading to random
hopping elements f,,. This type of randomness is also known as Lifshitz (1965)
type disorder. The exponential decay of the localized wavefunctions leads to an
exponential decay of the hopping rate with distance on the inverse decay length a.
The spatial extension of the localized states, for example given by the size of a
polaron, is expressed by ro. A hopping matrix element t,, is non-zero only if the
sites i and j of the 2D lattice are both occupied by localized states.

An advantage of the long-range hopping of our model, at  least for small enough
a,  is the fact that the density of states is smoothed out in contrast with the sharp
peaks found for nearest-neighbour transfer (Berkovits and Avishai 1996). The rea-
son for this is that in a system with nearest-neighbour hopping only configurations of
1,2,  . . . localized states can occur completely disconnected from the percolation
backbone. The energy levels of such configurations show up as sharp peaks in the
density of states in a model with short range transfer only. Owing to the long-range
nature of our transfer such disconnected configurations are rare in our model.

The smooth density of states is easier to analyse with the methods of random
matrix theory. The density of states is shown in figure 1. It shows a broad peak near
the lowest eigenvalue. This peak is due to the 2D nature of the system. For infinite a
and all lattice sites occupied. only a nearest-neighbour transfer remains. In this case
the density of states is the elliptical integral with the logarithmic singularity at the
centre. For finite a, also next-nearest-neighbour and further transfers are included.
This shifts the peak in the density of states to the lower band edge. The density of
states drawn in figure 1 shows a remnant of this peak.

$ 3. NUMERICAL RESULTS
The numerical calculation is performed as follows. The N (typically N = 400,

N < L2)  localized states are randomly chosen with probability c (= NIL') on an
L x L square lattice with lattice constant a. In this procedure, periodic boundary
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Figure 1. The density of states for two different concentrations is drawn. The increase in the

density of states towards small energy values is due to the two-dimensionality of the
system. Since N = 0.5/a (as in figure 1 and in figure 2) was chosen, no peaks arising
from dangling bonds occur.

conditions are used. The coordinates of the localized states are distributed randomly
while multiple occupation is prohibited.

For example, for ro = a the classical (bond) percolation threshold is near c = 0.5.
For any combination of pairs the off-diagonal elements have to be computed for the
Hamiltonian (1) with the hopping element (2). The resulting matrix is diagonalized
numerically using standard orthogonal decomposition methods. It is important to
note that, in contrast with the corresponding matrix of the Anderson model, we do
not obtain sparsely occupied matrices. This requires more numerical effort and leads
to a limitation of the matrix size. We diagonalized matrices not larger than
400 x 400. As a result the distribution curves fluctuate more strongly than in the
case of nearest-neighbour hopping models, where the matrices can be significantly
larger. However, in order to improve the statistics, we performed an average over
typically 30 diagonalizations.

3.1. Level spacing distributiori
The level spacing distribution P(s)  of our model is analysed and compared with

the Poisson distribution and with the distribution of the Gaussian orthogonal ensem-
ble (GOE) (PG(s)  = (ns/2) exp (-ns2/4)). The choice of the GOE is because our
Hamiltonian obeys time reversal symmetry. As one can see in figure 2 the level
statistics for the quantum percolation regime do not follow the GOE regime. In
particular, for s > 2 the distribution decays more weakly than the GOE. This is in
agreement with the prediction by Aronov et al. (1994, 1995) for the situation near the
Anderson-type metal-insulator transition. It can be interpreted as the domination of
the statistics for larger level spacings by weakly overlapping states. According to our
results not only is this a feature near the metal-insulator transition but it is present in
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Figure 2. For different concentrations, below and above the classical percolation threshold,
the level spacing distribution is drawn. It is compared with the Wigner and the Poisson
distributions. Note that for s > 2 the distribution decays slower than predicted by the
Wigner distribution. The parameters for this plot are n = 0 S / a  with the lattice con-
stant a and ro = a. For comparison we show the result for the GOE of a matrix of the
same size.

the whole doping range. In general the level repulsion of the quantum percolation
model is weaker than that for the GOE. In order to investigate this behaviour in
more detail we analyse the A statistics of the eigenvalue spectra. The latter is the
mean square deviation of the energy levels from a straight line and is defined for a
different number of levels / I  as (Metha 1991)

I1 A,B (3)
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Figure 3. For the same concentrations and parameters as in figure 2 the results of the

calculated A statistic are plotted. The transition from more Poisson like to more
Wigner like and back to a Poisson-like distribution can be clearly seen in this plot.
The level repulsion is strongest near the classical percolation threshold. Again for
comparison the GOE is shown in the inset.

Here N ( E )  is the integrated density of states. The result is shown in figure 3. The A
statistics indicate the following behaviour for the doping dependence of the system.
For low doping, far below the classical percolation threshold, the system shows only
weak level repulsion and a tendency towards Poisson statistics. This is expected from
usual arguments because well separated localized states are almost independently
distributed, leading to a Poisson distribution. For moderate doping. in the vicinity of
the classical percolation threshold, the level repulsion increases and the system shows
a tendency towards the Wigner statistics. This behaviour indicates the beginning of
the formation of overlaps between the states. As a result the eigenvalues experience
level repulsion. However, this tendency is reversed when the doping concentration is
further increased above the percolation threshold. A possible explanation is a ten-
dency towards uncorrelated k-space states of the fully doped (pure 2D) system.

3.2. Localization properties
To investigate the transition between spatially localized states and extended

states the sensitivity of the eigenvalues with respect to a change in the boundary
conditions is considered (Hatsugai and Lee 1993). The Peierls substitution of the
hopping matrix elements t + texp(iq5 Ax) is used to vary continuously the boundary
conditions in the Hamiltonian. Expanding the exponential function enables us to use
perturbation theory (Edwards and Thoules 1974):

H + H + H,, (4)

H, = C [iti,,(.xi - xj)q5c~cj + hc],
i j
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where xi is the x coordinate of sitej. Since H, is purely imaginary, the eigenvalues of
the Hermitian Hamiltonian are affected only in second-order perturbation theory:

For the numerical calculation the average is taken over an ensemble of (typically 30)
matrices. N runs from M - 10 to M + 10 since mainly the nearest energy levels
contribute to AE.  LIE, can be identified with the conductivity via the Kubo-
Greenwood formula (Thouless 1974). Equation (6) is also known as the Thouless
formula for the conductivity.

-

9 4. DISCUSSION
A numerical investigation can give only information about localization lengths

smaller or comparable with the system size (Montambaux 1995). The transition from
localized to delocalized states, shown in figure 4, may indicate a real transition to
delocalized states in the infinite system. At least it will indicate a transition from
exponentially to algebraically decaying states. Furthermore, figure 4 shows that with
increasing cy the cross-over from localized to extended states becomes more abrupt
while the absolute value of the energy shift decreases. Q-' , the characteristic length
scale of the hopping processes, is always much smaller than the system size.

In conclusion, we find a clear indication of a qualitative change of the system in
terms of the level statistics as we go through the percolation threshold as shown in
figures 2 and 3. This effect depends on the strength c of doping as well as on the
range cy of the transfer. To explain the onset of delocalization for the normal state of
the high-T, cuprates with our model the diameter of the polaronic states should be
chosen as yo z 4a. This size is motivated by spatial inhomogeneities seen in experi-

I +

doping concentration S
Figure 4. For different values of o (in units of the inverse lattice constant) the sensitivity to

the boundary conditions is shown as a dependence on the doping concentration c. A
transition from localized to delocalized states can be seen. which for larger a becomes
more abrupt as is shown in the inset. For this calculation. again r,, = a.
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mental observations (see for example the inelastic neutron scattering data on
ErBa2Cus0, obtained by Mesot et al. (1993) which were interpreted with similar
cluster sizes). Such polaronic states will give a percolation threshold for a doping
concentration c = 0.05. Therefore, the transition from localized to delocalized states
will occur near this concentration if yo NN 40. We note that the size ro of the localized
states can always be chosen in a way such that the insulator-metal transition can be
explained. Therefore the major aim of this paper is not to describe this transition in
the cuprate superconductors but to investigate the level statistics around such a
transition.

$ 5 .  CONCLUSION
A quantum percolation model realized with disorder of Lifshitz type which

differs from the intensively investigated Anderson model owing to the inclusion of
long-range transfer and non-diagonal disorder shows interesting aspects when its
level statistics are investigated. We find level repulsion which is largest near the
classical percolation threshold and also upon doping a cross-over from weak to
strong dependence of the energy levels on the boundary conditions.
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