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Anomalous frequency-dependent conductivity near the quantum Hall transition
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The dynamical transport properties near the integer quantum Hall transition are investigated at zero tem-
perature by means of the Dirac fermion approach. These properties have been studied experimentally at low
frequencyw and low temperature near the=1 filling factor Hall transition, with the observation of an
unusual broadening and an overall increase of the longitudinal conductiviy,Beas a function ofw. We
find in our approach that, unlike for normal metals, the longitudinal conductivity increases as the frequency
increases, while the widthB (or Av) of the conductivity peak near the Hall transition increases. These
findings are in reasonable quantitative agreement with recent experiments byeEagéPhys. Rev. Lett71,

2638 (1993], as well as with recent numerical work by Avishai and Lu¢g&ond-mat/9609265
[S0163-182699)00907-9

[. INTRODUCTION characteristic quantity of a 2D conducting QH system where
Oy IS Nonzero(metallic regime. In contrast to normal met-

A two-dimensional(2D) electron gas placed in a strong als, where a Drude-like behavior is observed, the conductiv-
perpendicular magnetic field exhibits, in the presence of dty of a 2D QH system has been reported to displayiran
disordered one-particle potential, the exact quantization ofreasingbehavior with frequency? Thus it is indicative of a
the Hall conductivityo,, accompanied by the vanishing of class of systems different from normal metétsr which the
the longitudinal conductivityr,,. While this integer quan- conductivitydecreasesvith frequency, or temperaturer his
tum Hall effect(IQHE) is now fairly well understood,the  can be seen from the peak shapesgf(B,w) as a function
transition region between consecutive Hall plateaus has resf the magnetic field in the recent IQHE measurements of
cently attracted a good deal of attention from the condensedRef. 16: the widthAB of the conductivity peak broadens as
matter physics community. Extensive experimeftal, the frequencyor temperaturgis increased. Numerical simu-
theoretical’"° and numericaf-'?work has been carried out lations, based on the lowest Landau-level projection, initially
to characterize the transport properties in the transition regave indications only for a decreasifget non-Drude-like
gion. This region arises due to the existence of delocalized,(w).'® However, a more recent numerical investigation
electronic states responsible for the jump in the Hall conducby Avishai and Luck® provided strong evidence for a broad-
tivity between two consecutive Hall plateaus. Within this ening of the longitudinal conductivity peak with frequency.
region oy, takes up a narrow peaklike form. This is a convenient point where to make the case for the

The detailed study of the transition region between quantheoretical approach—based on Dirac fermions—that is to be
tum Hall plateaus is important in testing and enhancing ouused in this paper and also to put it into the right perspective.
understanding of the IQHE and of the underlying physics ofMost—although by all means not &f>—of the theoretical
localization in the presence of a magnetic field. In this papeschemes that have been so far developed to explain the IQHE
we contribute to the advance of the theoretical description byn a microscopic basis, rely on the concept of localization of
showing how the Dirac fermion approath®~°a successful the single-electron states in the presence of any finite amount
theoretical treatment in the description of the IQH transition,of disorder. Generally speaking, it is sufficient to have a
affords a detailed explanation of some puzzling recent exfinite but narrow band of extended states near the center of
perimental measurements by Engefall® and Balaban, each Landau level, and total localization everywhere else in
Meirav, and Bar-Joseph of the frequency-dependent ac the density of state€09), to explain most features of trans-
conductivity in the IQH system at low temperatures. port in the IQHE. A detailed theory, stemming from the

Hitherto, much work has concentrated on the characterfield-theoretic and scaling approach to Anderson localization
ization of the static transport properties in the neighborhoodn the absencef a magnetic field, has been developed by
of the transition region, where the approach to thePruisken and co-workefs?? and rewarded with some ex-
localization-delocalization transition is dominated by a di-perimental evidence for its correctnéssThis approach
verging localization lengthé~|E—E¢|~". More recently, ~makes use of the concept of composition of thg and o,
some attention has been devoted to frequency-dependecdnductivities, and leads to a scaling theory where these con-
properties, where the approach to the critical p&pis also  ductivities are both universdhlthough the actual value of
characterized by diverging time scales. The frequencye,, is yet undetermined exactly at the transijicand the
dependent ac conductivity is an interesting and probablylegenerate extended states at each transition are concentrated
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into single-energy points, say in the DOS. Outside thes&ec. Il, initial work with this model relied on perturbative
points, corresponding to the free-electron Landau energy lewealculations which led to unphysical results for the density of
els, there is total localization, although, in the original paperstate€ However, it was shown by one of the present authors
by Levine, Libby, and Pruiskéhthe possibility of abandof  that a nonperturbative approach would cure this problem
extended states near the plateau-to-plateau transition cowgelding all the desired features with the sole random mass
not be ruled out. This approach certainly represents a usefihgredient. Moreover, the nonperturbative calculation leads
picture for most numerical as well as experimental studies ofy g narrow, but finite, bandwidth for the extended states
thg IQH transition, leading to the concept of quantum critica!(RefS_ 10 and 28, see also Ref.)28s we have explained,
point that may prove useful also to other areas of research if}q fing this feature of the model rather attractive, together
condensed-matter theory. The approach of Pruisken angiy, ihe fact that the approach lends itself to a number of
co-worke_ré " certainly remains an appealing global pl_cture predictive analytical calculations not possible otherwise with
reproducing the pattern of the IQH transport experlmentthe single-energy picture. The Dirac fermion formulation

However, our point of view here is that the single-energy .
extended-state picture cannot be the full story in a detailed’®s recently also strengthened by a mapping of the network

microscopic understanding of the IQH transition. Infinitely modef” for the IQH transition onto a Dirac effective Hamil-

narrow single-particle levels are a paradigm for bound statefonian, with both inhomogeneous mass and scalar as well as

(point spectrum not for extended oneécontinuous spec-  Vector potentials? In our view, the inhomogeneous mass is
trum). This is in line with Heisenberg’s indetermination prin- Sufficient to give the full picture, and at the same time the
ciple; for if a quantum particle can be made to sample a bandimplest.

of extended states with energy widii (via, e.g., an infini- The purpose of this paper is to investigate the low-

tesimal disturbangeit will acquire a momentum uncertainty frequency behavior of the conductivity peak on the basis of a
theory accounting directly for the IQH delocalized states,

Ap=+2uW, (1) using this effective and appealing approach based on Dirac

] o ) o fermions. This approach has so far been used to account for

u being some effective inertial magsot just in the sense of he static transport properties of the IQH transition, and the
periodic potential’s band structyréf we take the disordered method can be extended to include thermal fluctuafidns.

po;erjtial to be characterized .by a spatial-correlation CharacFrequency-dependent behavior is, however, very similar to
teristic lengthl, thenApl~7# yields temperature behavidf,since dynamics enters in the formal-

w~H2(2WI2) @) ism through the Matsubara frequencies, which are them-

' selves proportional to temperature. We will therefore work

So, an infinitely narrow band would lead to an infinite effec-only with the frequency-dependent Dirac fermion approach.
tive mass or zero mobility and no conduction. This A complementary approach to the frequency-dependent con-
argument—though by no means a proof—works for theductivity was worked out by Polyakov and Shklovskii using
atomic as well as for the perfect periodic lattice limits. It is the hopping mechanism of localized statédhey derived
also important to understand conduction in doped semicorpower laws for the broadening of the conductivity peaks due
ductors, where infinitely narrow impurity levels representto frequency, current, and temperature. In contrast to our
weakly bound localized states giving way to an impurity approach, which works very close to the conductivity peak at
conduction band only in the limit of heavily doped samples.low frequency, they studied the broadening in the regime of
The outstanding example we know of a single-endogpl-  higher frequency where the electronic states become local-
ized degenerate state is that of a Landau level in thdzed if the frequency goes to zero. The success of this hop-
impurity-free electron gas. There, the enormous degeneraqying approach calls for an extension of these ideas to the
of the Landau levels is a consequence of the independence rfgime where the states are delocalized. This is precisely
energy on the orbital momentulm,. In our view, as soon as what we shall do in the following using the method of Dirac
impurity collisions take place there will be new states, somdermions which seems to afford a good deal of predictive
of them extended and ready to accept the scattered electronmwer.
The finite bandwidth of such states ensures the mobility of The paper is organized as follows. In Sec. Il we briefly
the electrons being scattered, and therefore conduction. Thiecall the basic features of the Dirac fermion approach to the
finite bandwidth picture for the extended states would thudQH transition. This approach is implemented in Sec. I, in
seem to be in agreement with basic quantum physics prinerder to directly evaluate the ac longitudinal conductivity
ciples. We should stress, however, that there exist 1D and 2D,,(w) from the Dirac fermion propagator in which a
models of electrons in random potent{#$*~?"which do  weakly disordered one-particle potential is accounted for.
demonstrate the possibility of single energy extended statehe main features of the ac conductivity are described in the
Nevertheless, these models have a singular D@&ishing  light of recent numerical as well as experimental investiga-
or divergent at this energya situation which is not covered tions of dynamical scaling in the IQH transition region. In
by the above qualitative argument. In this paper we aim aSec. IV the description is specialized for the frequency de-
describing physical 2D systems with a regular DOS and ngendence of the conductivity peak width, which is found to
extreme behavior. be in agreement with some recent measurements by Shahar
The Dirac fermion model with an inhomogeneous masset al3 carried out for therelated temperature dependence
as used in this paper, is a plausible representation for eleof the longitudinal resistivity width and by Balaban, Meirav,
trons undergoing the IQH transition in the presence of a ranand Bar-Josepfi for the frequency dependence. For nonva-
dom potential, as discussed in Ref. 8. As also explained imishing frequencies the results of our calculation also agree
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with the experimental data of Enget al,® and the numeri-  the description of the IQH transition between plateaus at fill-
cal data of Avishai and Luck® Section V contains our con- ing »=1. One important issue consists in what type of ran-

clusions and outlook. domness is realistic in the approach with Dirac fermions.
Ludwig et al® argued that the case of a random Dirac mass

Il. MODEL AND DERIVATION is insufficient to describe the generic IQH transition, since it

OF THE CONDUCTIVITY has a vanishing DOS at the transition point. Yet the random

) . _ Dirac mass is reasonable on an intuitive basis because it is
The main features of the IQH transition are captured quitghe most relevant random contribution to the Dirac Hamil-

effectively by a tight-binding model in which, although the (onjan in terms of symmetry breakitfysee the discussion in
real system has no lattice, the electrons hop over a scalgef, g. However, it was shown by several other authors and
given by the magnetic lengthThis is closely related to the approaches that the DOS becomes nonzero at the transition
Chalker-Coddington network mod&in which electrons hop  yyhen treated on a nonperturbative bd8&2*Therefore, the
from region to region with rgmdom_ tunneling and randomyandom mass case, in contrast to that of a pure random vector
magnetic flux. Both mo_de‘fs” lead in the large-scale ap- potential, ought to represent a generic model for the IQH
proximation to an effective Hamiltonian describing the dy-ransition and this is the point of view adopted in this paper.
namics of Dirac fermiongwith a random mass or coupled t0 \we choose a random massl=m+SM with mean

a random vector potentigl m and a Gaussian distribution witéM,M,.Y=gé,,., g

_ (i : being a measure of the strength of disorder.
= + + + + >
Ho=(IV1t A ort(iVat Ag)ort Mo, @ The frequency-dependent conductivityTat 0 reads®
where the energy is measured in units of the hopping param-

etert of the original lattice modelV; is the lattice differen- o (e .

tial operator in theg direction, and{;} are the Pauli matri- oy @)= Eﬁwtfxx(w,E)dE 4
ces. This Hamiltonian, with a random mass tévhand zero

random vector potentia; , is a reasonable starting point for with

e? e? -
— F”m 2 r2<G(0,r;E+ o+in)G(r,0E-—w—in))=-—Ilim VﬁC(k, 7—i®,E)|k=0, (5)

‘}xx(va): h il

7—0 T

whereG is the one-particle Green’s function bfy . In the
following we will use the standard approximation of small a= f (M'?+ 72+ k) " 2d*k/AmP=—e .
for oy (w),’ 4m(m’'+7'°)

€)

Oy ©)~ 020 4(©,0). (6) The parameteran’ and n'=wgp have been evaluated

) o ) . within a saddle point approximatidfi .They obey the follow-
This approximation will be shown to be equivalent to theing equationgtaking the limit 7— 0)

Einstein relation, as can be deduced from the expression for

C(k, 7—iw,E) which will be derived below. 7' +io=7'gl (10
According to the Dirac fermion approach of Ref. 10, the d

two-particle Green’s function describes a diffusive behavior2"

between the Hall plateaus,

m’'=m/(1+gl), (11
~ . o P with the integrall given by
Clk.m Iw,O)—2 n—iw+Dk?’ @ L
A
~ 12 12 2y—1
wherep is the average DOS arid the diffusion coefficient ' Wfo (7""+m™=+k%) "k dk
(notice that we use a notation f@r different from that of
Ref. 1 1
0 =—In[1+\?%/(5'?+m'?)]. (12
2
(m'+in")? _ . -
D=2g7n'a|l+a — Here we have cut off thé integration to|k|<\. This is
Ug—2a(m'+in') necessary because the intedratould not otherwise exist.
R, The cutoff corresponds to a minimal length scale in the real
(m'—i7n’) ®) system, i.e., the lattice constant in our model, which is usu-
1/g—2a(m’—in')? ' ally the mean free path of the particles. It reflects the fact that

(quas)particles cannot be considered as independent on ar-
with (for an infinite cutoff bitrary short scales.



PRB 59 ANOMALOUS FREQUENCY-DEPENDENT CONDUCTIVITY ... 5741

Ill. EVALUATION OF THE FREQUENCY-DEPENDENT o2
CONDUCTIVITY Oy(M,w)= FG(m’/n’). (17)

Assuming weak disordemg1), from Eq.(8) we obtain
since only the combinatiom’/n’ enters the expression.
D~2g7n'a[1+2ga(m'?~5'?)] Now we have to evaluate’ and 5’ from Egs.(10) and
(11). For w, ' #0, Eqg.(10) can also be written as

gn/ g m/2_ 77/2
= — (13
2,”_(er+7]!2) 2T m/2+77/2 )\2
eZW/geZWiw/n’g:1+ , (18)
which for the special case=0 becomes 7'2+m'?

1 and since we are interested in the small frequency regime
D:L,(l—g/Zme(l—g/ZTr). (14) Si W i S i S quency regi

27y w~0 we find it useful to work out a closed approximate
analytic solution of this equation. Fan~0, we havegl
Then the conductivity reads, according to EG9—(7) ~1 from Eq.(10). Then Eq.(11) implies m’~m/2 and the
2 exponential term in Eq(18) can be expanded to give, in

e .
oxx(@)~2-Dp. (15)  leading order,
We notice that this is the Einstein relation. Going back to the 12\ 24— 2mlg 27T )
general case, for the conductivity Eq43) and (15) imply 7' ~=\"e 1- E'_, —m/4
the expression K

2_ 2 2
me—m<  2qim
VAN S PO T A - 19
Tx @ hwr 1+m12/7]/2 2 m12/7712+1 ) 9 9
(16) with m.=2\exp(—/g). This is a cubic equation i’ from
This represents a simple scaling form of the type which we take the solution
a
yl/3+ §yfl/3, a< _3(b2/4)l/3
o 1 s, @ s, vs_ 2 13 21113 29
5 +§y‘ +iy3|y —§y‘ , a=—3(b4)"",
|
with This, of course, does not hold for all valueswf becausey’
is not a power law for very smaidb. The general behavior of
y=—i(b/2+ Jb2/4+a%27), the real and imaginary parts of,(w) is shown in Fig. 1, for
the illustrative valuesn.=0.01 andm=0.009.
mZ—m? 2m2
a=—7 b= a3 @ (21
9 IV. BROADENING OF THE @, PEAK
This solution reproduces the correct result in the limit Much of the experimental and numerical work on this

—0, namely,’ —+/a for a=0 and ' —0 fora<03' Us-  problem has concentrated on the conjectured universal scal-
ing the approximate values af’ and»’ from the above, we ing behavior of the peak width af,,(B,). It is clear from

can study our calculation in Sec. lll that the peak width of our model
does not vanish with vanishing frequency. There are, at this

e? 1 point, two possible attitudes for this fact: either our model
Oy @)=~ = CYPINEL (22 does not capture the physics of the real systems, or the non-

T 1+m4y vanishing width is too small to be resolved in the

_ . 4s experiments or in the computer calculatiorts:'” There are
Forb=w large compared tonf;—m®)/4, we havey' o alternative models, for instance the 2D Dirac fermions with
from Eq. (19). Consequently, the scaling behavior of the \an4om vector potential in place of the random mass, which
conductivity is given in this regime by do have a vanishing peak widthHowever, these models
o2 have an unphysical behavior due to a singular SDOS and a
_ 13 peak height different from experimental observatio@nce
T M, @) = FG(mw )- 23 within a nonperturbative calculation the peak height and the



5742 GIANCARLO JUG AND KLAUS ZIEGLER PRB 59

FIG. 1. Real(upper curvg¢ and imaginary
(lower curve parts of the longitudinal conductiv-
ity o (w) in units of e2/h as a function of
the dimensionless frequency parametdr
=27mZwl4g (see text

conductivity

0.1 |

0 1 1 1 1 1 1 1 1 1
1x108  2x108  3x108 4x108 5x108 6x108 7x108 8x108 o9x108  1x107
frequency

smooth behavior of the DOS in the case of a random mass V. DISCUSSION AND CONCLUSIONS

are in good agreement with experiments, it is more likely The broadening of the conductivity peak has also been
that the second point of view applies to our model. This we tudied numerically by Avishai and LudR They studied the
have advocated for in our presentation of the theoreticaicaIing of the real part of the conductivity,(E, ), finding
framework used in this paper, as given in Sec. I. Moreoverihat there is indeed a scaling law of the t)glpe: '

very recent experiments indicate that the peak width does
indeed not vanish in the zero-temperature and zero- e2
frequency limit*1” The exponential dependence of the Reffxx(E.w)NFG(|E—Ec|w_K) (24)

width on the disorder parameter may explain why it is diffi-
cult to measure the narrow peak width, in particular infor the real part of the conductivity. These authors found

samples with weak disorder. values forx between 0.31 and 0.43. We can use our result
The broadening of the peak width can be seen in Fig. 2from Eq. (16), whereE—E; is replaced by the parameter
where Reg,,) is plotted as a function of the average Dirac driving the IQH transition. However, in contrast to Eg4),

massm and the frequency for, as an illustration, a disorder we do not obtain a simple scaling form for arbitrarily small
frequency(see Fig. 2 Still, for weak disorder the agreement

strengthg=0.6 corresponding to the valua.=0.01. For : . =l

m~m, the conductivity Ref,,) varies roughly likew?®as  With Ref. 19 is qualitatively reasonable, at least for small

one would expect from Eq$22) and (23). However, away Values ofm—m, (the numerical values quoted are for the

from m, the broadening does not, strictly speaking, describ&'itical poin. o _ _

a power law. In general, if we insist on a scaling law, the exponerns
related to the dynamical exponeni@and to the localization

FIG. 2. Broadening of the conductivity peak
with frequency. Ref,,) is plotted vs the Dirac
massm (in units of the hopping parameter and
the dimensionless frequency paramdier

conductivity

3753

02
!

0.1 R

0 1 1 1 1 1 1 1 1 1
0 x107  2x107  3x107  4ax107  s5x107  ex107  7x07  8xi07  ox107  1xi0®
frequency



PRB 59 ANOMALOUS FREQUENCY-DEPENDENT CONDUCTIVITY ... 5743

0.02 T T
'm=0.002" —

0.018 - B

0.016 - B

0.014 ]
w0
i)
5
oW
S ;2 1 FIG. 3. Average density of states for
g m.=0.01.
o

0.01 - —

0.008 B

0.006 g

0.004 L 1

-1x10% -5x108 0 5x10% 1x105

frequency

length exponeni by k=1/zv. From k=% we could evalu- via o~4x 10" Hz for a value oft=1 eV. (Note, how-
atev because the usual argument for the dynamical exponent o that our choicer.= 0 01(i.e.,g=0.6) is probably only
1 c . «C.y .

,?r: nomnteratptlngt;hp?{r'[]lclg_sfflz_—2. T?f_e _Iattter %”tshesgg)g] qualitatively significant, since it is difficult to estimate the
€ assumption that the diffusion coetlicient and the ArGalue of disorder strengtly in a real sample. The above

constant near the critical point in the two-particle Green'’s, -
) ) . ' “value may be too large for real systems that have less disor-
function of Eq.(7). However, if the DOS itself behaves like den y 9 y
a power law,p~ w®, then the exponergdepends onx. For :
instance, the pure system of Dirac fermions laas1 and
there is an effective exponent= 3 in the case of a random . . ;
mass, according to thepdiscusssion below E2P) (and see by t_he_ hopping rate. The latter is of the order of 1 eV in
also Fig. 3. Then Eq.(14) implies D~ %, and from a realistic systems; thus we expect a crossover frequency of

simple calculation for the two-particle Green’s function of @boutw~10"> Hz. Typical experiments were performed for

Our assumption of small frequency breaks dowrf i
becomes of the order of the characteristic energy scale given

Eq. (7), with k~L~* and =0, we obtain frequencies between 0.2 and 14 GHRef. 16 this is well
below the crossover frequency, and our small frequency ap-
C(L L w)= o IC(LZ1+a)y,), (25)  proximation should hold.

In a recent paper Shahat al®® studied the behavior of

where C is the scaling function. Withe=1 (pure system the longitudinal resistivity, in the neighborhood of the tran-
this impliesz=1, and witha=1% it givesz=3. The above sition from the QH liquid to the Hall insulator, known to be
scaling form does not describe the asymptotic behavior foof the form
w~0, but rather the effective behavior probably relevant for
most of the numerical calculations. pyx=e" 277, (28)

The result in Eq.(22) is also different from the Drude o ]
theory® suitably adapted to accommodate the presence O?fhese authors found a deviation from the conventional scal-

experimental data with the form

l-iwT

(1—ia)7')2+ a)gTz,

o w)=0g (26) vo(T)=pB+aT, (29

wherea, >0 (both parametera and 8 depending strongly

on sample propertigsA very similar result was found by

Balaban, Meirav, and Bar-Joséphfor the frequency-

dependent conductivity at zero temperature. These results are
ne?r eB consistent with our finding of a deviation of the broadening

oo= . we=—. (27)  from a power law for very low frequencies. It is a conse-

m mc quence of the nonzero bandwidth of delocalized states in the

. . . disorder-dependent interval [ —2\ exp(—/g), 2\ exp
The frequency scale in our study is determined by th — mlg)] present in our model.

value Of' the h08pp|ng para.metmn the t|g_h't—b|nd|ng model In conclusion, we have developed a theoretical treatment
of Ludwig et al.” The physical frequency is related to the  for the dynamical transport properties of the IQH system
dimensionless frequency via w=fw/t. Moreover, if we near the plateau-to-plateau transition. Our results indicate an
employ the parameteln=27-rm§w/4g with the illustrative increase of the longitudinal conductivity accompanied by the
value ofm,=0.01, the dimensional frequency is relatecbto broadening of the conductivity peak as the frequency is in-

where the zero field dc Drude conductivity, and the cyclo-
tron frequencyw, are defined in the usual way s a colli-
sion time:
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creased. At large frequencies, this behavior follows a poweAvishai and Luck® These results follow from a theoretical
law also found in recent experimeftsand numerical treatment in which the delocalized states responsible for the
studies'® However, for very low frequency we found devia- IQH transition are properly accounted for.

tions from a power law, similarly to what was found in re-
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