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Anomalous frequency-dependent conductivity near the quantum Hall transition

Giancarlo Jug*
Max-Planck-Institut fu¨r Physik Komplexer Systeme, Außenstelle Stuttgart, Postfach 800665, D-70506 Stuttgart, Germany

Klaus Ziegler
Max-Planck-Institut fu¨r Physik Komplexer Systeme, Außenstelle Stuttgart, Postfach 800665, D-70506 Stuttgart, Germany

and Institut für Physik, Universita¨t Augsburg, D-86135 Augsburg, Germany
~Received 15 September 1997; revised manuscript received 10 February 1998!

The dynamical transport properties near the integer quantum Hall transition are investigated at zero tem-
perature by means of the Dirac fermion approach. These properties have been studied experimentally at low
frequencyv and low temperature near then51 filling factor Hall transition, with the observation of an
unusual broadening and an overall increase of the longitudinal conductivity Re$sxx% as a function ofv. We
find in our approach that, unlike for normal metals, the longitudinal conductivity increases as the frequency
increases, while the widthDB ~or Dn) of the conductivity peak near the Hall transition increases. These
findings are in reasonable quantitative agreement with recent experiments by Engelet al. @Phys. Rev. Lett.71,
2638 ~1993!#, as well as with recent numerical work by Avishai and Luck~cond-mat/9609265!.
@S0163-1829~99!00907-8#
g
f

f

r
e

t
r

ze
uc
is

an
ou
o

pe
b

n
ex

c

te
o
h
di

d

cy
b

ere

tiv-

of
s
-
lly

on
-
.
the
be

ive.

HE
of

ount
a

r of
in

-
e
ion
by
-

on-
f

trated
I. INTRODUCTION

A two-dimensional~2D! electron gas placed in a stron
perpendicular magnetic field exhibits, in the presence o
disordered one-particle potential, the exact quantization
the Hall conductivitysxy accompanied by the vanishing o
the longitudinal conductivitysxx . While this integer quan-
tum Hall effect ~IQHE! is now fairly well understood,1 the
transition region between consecutive Hall plateaus has
cently attracted a good deal of attention from the condens
matter physics community. Extensive experimental,2–6

theoretical,7–10 and numerical11,12 work has been carried ou
to characterize the transport properties in the transition
gion. This region arises due to the existence of delocali
electronic states responsible for the jump in the Hall cond
tivity between two consecutive Hall plateaus. Within th
regionsxx takes up a narrow peaklike form.

The detailed study of the transition region between qu
tum Hall plateaus is important in testing and enhancing
understanding of the IQHE and of the underlying physics
localization in the presence of a magnetic field. In this pa
we contribute to the advance of the theoretical description
showing how the Dirac fermion approach,8,13–15a successful
theoretical treatment in the description of the IQH transitio
affords a detailed explanation of some puzzling recent
perimental measurements by Engelet al.16 and Balaban,
Meirav, and Bar-Joseph17 of the frequency-dependent a
conductivity in the IQH system at low temperatures.

Hitherto, much work has concentrated on the charac
ization of the static transport properties in the neighborho
of the transition region, where the approach to t
localization-delocalization transition is dominated by a
verging localization lengthj;uE2Ecu2n. More recently,
some attention has been devoted to frequency-depen
properties, where the approach to the critical pointEc is also
characterized by diverging time scales. The frequen
dependent ac conductivity is an interesting and proba
PRB 590163-1829/99/59~8!/5738~7!/$15.00
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characteristic quantity of a 2D conducting QH system wh
sxx is nonzero~metallic regime!. In contrast to normal met-
als, where a Drude-like behavior is observed, the conduc
ity of a 2D QH system has been reported to display anin-
creasingbehavior with frequency.16 Thus it is indicative of a
class of systems different from normal metals~for which the
conductivitydecreaseswith frequency, or temperature!. This
can be seen from the peak shape ofsxx(B,v) as a function
of the magnetic fieldB in the recent IQHE measurements
Ref. 16: the widthDB of the conductivity peak broadens a
the frequency~or temperature! is increased. Numerical simu
lations, based on the lowest Landau-level projection, initia
gave indications only for a decreasing~yet non-Drude-like!
sxx(v).18 However, a more recent numerical investigati
by Avishai and Luck19 provided strong evidence for a broad
ening of the longitudinal conductivity peak with frequency

This is a convenient point where to make the case for
theoretical approach—based on Dirac fermions—that is to
used in this paper and also to put it into the right perspect
Most—although by all means not all1,20—of the theoretical
schemes that have been so far developed to explain the IQ
on a microscopic basis, rely on the concept of localization
the single-electron states in the presence of any finite am
of disorder. Generally speaking, it is sufficient to have
finite but narrow band of extended states near the cente
each Landau level, and total localization everywhere else
the density of states~DOS!, to explain most features of trans
port in the IQHE. A detailed theory, stemming from th
field-theoretic and scaling approach to Anderson localizat
in the absenceof a magnetic field, has been developed
Pruisken and co-workers21,22 and rewarded with some ex
perimental evidence for its correctness.23 This approach
makes use of the concept of composition of thesxx andsxy
conductivities, and leads to a scaling theory where these c
ductivities are both universal~although the actual value o
sxx is yet undetermined exactly at the transition! and the
degenerate extended states at each transition are concen
5738 ©1999 The American Physical Society
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into single-energy points, say in the DOS. Outside th
points, corresponding to the free-electron Landau energy
els, there is total localization, although, in the original pap
by Levine, Libby, and Pruisken21 the possibility of abandof
extended states near the plateau-to-plateau transition c
not be ruled out. This approach certainly represents a us
picture for most numerical as well as experimental studie
the IQH transition, leading to the concept of quantum criti
point that may prove useful also to other areas of researc
condensed-matter theory. The approach of Pruisken
co-workers21,22certainly remains an appealing global pictu
reproducing the pattern of the IQH transport experime
However, our point of view here is that the single-ener
extended-state picture cannot be the full story in a deta
microscopic understanding of the IQH transition. Infinite
narrow single-particle levels are a paradigm for bound sta
~point spectrum!, not for extended ones~continuous spec-
trum!. This is in line with Heisenberg’s indetermination prin
ciple; for if a quantum particle can be made to sample a b
of extended states with energy widthW ~via, e.g., an infini-
tesimal disturbance! it will acquire a momentum uncertaint

Dp5A2mW, ~1!

m being some effective inertial mass~not just in the sense o
periodic potential’s band structure!. If we take the disordered
potential to be characterized by a spatial-correlation cha
teristic lengthl , thenDpl;\ yields

m;\2/~2Wl2!. ~2!

So, an infinitely narrow band would lead to an infinite effe
tive mass or zero mobility and no conduction. Th
argument—though by no means a proof—works for
atomic as well as for the perfect periodic lattice limits. It
also important to understand conduction in doped semic
ductors, where infinitely narrow impurity levels represe
weakly bound localized states giving way to an impur
conduction band only in the limit of heavily doped sample
The outstanding example we know of a single-energylocal-
ized degenerate state is that of a Landau level in
impurity-free electron gas. There, the enormous degene
of the Landau levels is a consequence of the independen
energy on the orbital momentumLz . In our view, as soon as
impurity collisions take place there will be new states, so
of them extended and ready to accept the scattered elect
The finite bandwidth of such states ensures the mobility
the electrons being scattered, and therefore conduction.
finite bandwidth picture for the extended states would th
seem to be in agreement with basic quantum physics p
ciples. We should stress, however, that there exist 1D and
models of electrons in random potentials7,8,24–27 which do
demonstrate the possibility of single energy extended sta
Nevertheless, these models have a singular DOS~vanishing
or divergent at this energy!, a situation which is not covere
by the above qualitative argument. In this paper we aim
describing physical 2D systems with a regular DOS and
extreme behavior.

The Dirac fermion model with an inhomogeneous ma
as used in this paper, is a plausible representation for e
trons undergoing the IQH transition in the presence of a r
dom potential, as discussed in Ref. 8. As also explaine
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Sec. II, initial work with this model relied on perturbativ
calculations which led to unphysical results for the density
states.8 However, it was shown by one of the present auth
that a nonperturbative approach would cure this probl
yielding all the desired features with the sole random m
ingredient. Moreover, the nonperturbative calculation lea
to a narrow, but finite, bandwidth for the extended sta
~Refs. 10 and 28, see also Ref. 29!. As we have explained
we find this feature of the model rather attractive, toget
with the fact that the approach lends itself to a number
predictive analytical calculations not possible otherwise w
the single-energy picture. The Dirac fermion formulatio
was recently also strengthened by a mapping of the netw
model11 for the IQH transition onto a Dirac effective Hami
tonian, with both inhomogeneous mass and scalar as we
vector potentials.30 In our view, the inhomogeneous mass
sufficient to give the full picture, and at the same time t
simplest.

The purpose of this paper is to investigate the lo
frequency behavior of the conductivity peak on the basis o
theory accounting directly for the IQH delocalized state
using this effective and appealing approach based on D
fermions. This approach has so far been used to accoun
the static transport properties of the IQH transition, and
method can be extended to include thermal fluctuation31

Frequency-dependent behavior is, however, very simila
temperature behavior,16 since dynamics enters in the forma
ism through the Matsubara frequencies, which are the
selves proportional to temperature. We will therefore wo
only with the frequency-dependent Dirac fermion approa
A complementary approach to the frequency-dependent c
ductivity was worked out by Polyakov and Shklovskii usin
the hopping mechanism of localized states.32 They derived
power laws for the broadening of the conductivity peaks d
to frequency, current, and temperature. In contrast to
approach, which works very close to the conductivity peak
low frequency, they studied the broadening in the regime
higher frequency where the electronic states become lo
ized if the frequency goes to zero. The success of this h
ping approach calls for an extension of these ideas to
regime where the states are delocalized. This is preci
what we shall do in the following using the method of Dira
fermions which seems to afford a good deal of predict
power.

The paper is organized as follows. In Sec. II we brie
recall the basic features of the Dirac fermion approach to
IQH transition. This approach is implemented in Sec. III,
order to directly evaluate the ac longitudinal conductiv
sxx(v) from the Dirac fermion propagator in which
weakly disordered one-particle potential is accounted
The main features of the ac conductivity are described in
light of recent numerical as well as experimental investig
tions of dynamical scaling in the IQH transition region.
Sec. IV the description is specialized for the frequency
pendence of the conductivity peak width, which is found
be in agreement with some recent measurements by Sh
et al.33 carried out for the~related! temperature dependenc
of the longitudinal resistivity width and by Balaban, Meira
and Bar-Joseph17 for the frequency dependence. For nonv
nishing frequencies the results of our calculation also ag
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with the experimental data of Engelet al.,16 and the numeri-
cal data of Avishai and Luck.19 Section V contains our con
clusions and outlook.

II. MODEL AND DERIVATION
OF THE CONDUCTIVITY

The main features of the IQH transition are captured qu
effectively by a tight-binding model in which, although th
real system has no lattice, the electrons hop over a s
given by the magnetic length.8 This is closely related to the
Chalker-Coddington network model11 in which electrons hop
from region to region with random tunneling and rando
magnetic flux. Both models8,30 lead in the large-scale ap
proximation to an effective Hamiltonian describing the d
namics of Dirac fermions~with a random mass or coupled t
a random vector potential!,

HD5~ i¹11A1!s11~ i¹21A2!s21Ms3 , ~3!

where the energy is measured in units of the hopping par
eter t of the original lattice model.¹ j is the lattice differen-
tial operator in thej direction, and$s j% are the Pauli matri-
ces. This Hamiltonian, with a random mass termM and zero
random vector potentialAj , is a reasonable starting point fo
he
f

he
io
e

le

-

the description of the IQH transition between plateaus at
ing n51. One important issue consists in what type of ra
domness is realistic in the approach with Dirac fermio
Ludwig et al.8 argued that the case of a random Dirac ma
is insufficient to describe the generic IQH transition, since
has a vanishing DOS at the transition point. Yet the rand
Dirac mass is reasonable on an intuitive basis because
the most relevant random contribution to the Dirac Ham
tonian in terms of symmetry breaking34 ~see the discussion in
Ref. 8!. However, it was shown by several other authors a
approaches that the DOS becomes nonzero at the trans
when treated on a nonperturbative basis.10,28,29Therefore, the
random mass case, in contrast to that of a pure random ve
potential, ought to represent a generic model for the IQ
transition and this is the point of view adopted in this pap
We choose a random massM5m1dM with mean
m and a Gaussian distribution witĥdMrdMr 8&5gd rr 8, g
being a measure of the strength of disorder.

The frequency-dependent conductivity atT50 reads35

sxx~v!5
v

2E2v

v

ŝxx~v,E!dE ~4!

with
ŝxx~v,E!52
e2

h
lim
h→0

(
r

r 2^G~0,r ;E1v1 ih!G~r ,0;E2v2 ih!&[
e2

h
lim
h→0

¹k
2C̃~k,h2 iv,E!uk50 , ~5!
d

eal
su-
hat
ar-
whereG is the one-particle Green’s function ofHD . In the
following we will use the standard approximation of smallv
for sxx(v),7

sxx~v!'v2ŝxx~v,0!. ~6!

This approximation will be shown to be equivalent to t
Einstein relation, as can be deduced from the expression
C̃(k,h2 iv,E) which will be derived below.

According to the Dirac fermion approach of Ref. 10, t
two-particle Green’s function describes a diffusive behav
between the Hall plateaus,

C̃~k,h2 iv,0!5
p

2

r

h2 iv1Dk2 , ~7!

wherer is the average DOS andD the diffusion coefficient
~notice that we use a notation forD different from that of
Ref. 10!

D52gh8aF11aS ~m81 ih8!2

1/g22a~m81 ih8!2

1
~m82 ih8!2

1/g22a~m82 ih8!2D G , ~8!

with ~for an infinite cutoff!
or

r

a5E ~m821h821k2!22d2k/4p25
1

4p~m821h82!
.

~9!

The parametersm8 and h8[pgr have been evaluate
within a saddle point approximation.10 They obey the follow-
ing equations~taking the limith→0)

h81 iv5h8gI ~10!

and

m85m/~11gI !, ~11!

with the integralI given by

I;
1

pE0

l

~h821m821k2!21k dk

5
1

2p
ln@11l2/~h821m82!#. ~12!

Here we have cut off thek integration touku<l. This is
necessary because the integralI would not otherwise exist.
The cutoff corresponds to a minimal length scale in the r
system, i.e., the lattice constant in our model, which is u
ally the mean free path of the particles. It reflects the fact t
~quasi!particles cannot be considered as independent on
bitrary short scales.
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III. EVALUATION OF THE FREQUENCY-DEPENDENT
CONDUCTIVITY

Assuming weak disorder (g!1), from Eq.~8! we obtain

D'2gh8a@112ga~m822h82!#

5
gh8

2p~m821h82!
F11

g

2p

m822h82

m821h82G , ~13!

which for the special casem50 becomes

D5
g

2ph8
~12g/2p!5

1

2p2r
~12g/2p!. ~14!

Then the conductivity reads, according to Eqs.~5!–~7!

sxx~v!'
e2

\
Dr. ~15!

We notice that this is the Einstein relation. Going back to
general case, for the conductivity Eqs.~13! and ~15! imply
the expression

sxx~v!'
e2

hp

1

11m82/h82F11
g

2p

m82/h8221

m82/h8211
G .

~16!

This represents a simple scaling form of the type
he
e

sxx~m,v!5
e2

h
G~m8/h8!, ~17!

since only the combinationm8/h8 enters the expression.
Now we have to evaluatem8 andh8 from Eqs.~10! and

~11!. For v,h8Þ0, Eq. ~10! can also be written as

e2p/ge2p iv/h8g511
l2

h821m82
, ~18!

and since we are interested in the small frequency reg
v'0 we find it useful to work out a closed approxima
analytic solution of this equation. Forv'0, we havegI
'1 from Eq.~10!. Then Eq.~11! implies m8'm/2 and the
exponential term in Eq.~18! can be expanded to give, i
leading order,

h82'l2e22p/gS 12
2p

g
i
v

h8
D 2m2/4

5
mc

22m2

4
2

2p imc
2

4g

v

h8
, ~19!

with mc52lexp(2p/g). This is a cubic equation inh8 from
which we take the solution
h85H y1/31
a

3
y21/3, a,23~b2/4!1/3

2
1

2Fy1/31
a

3
y21/31 iA3S y1/32

a

3
y21/3D G , a>23~b2/4!1/3,

~20!
f

is
cal-

el
this
el

non-
e

ith
ich

d a

the
with

y52 i ~b/21Ab2/41a3/27!,

a5
mc

22m2

4
, b5

2pmc
2

4g
v. ~21!

This solution reproduces the correct result in the limitv
→0, namely,h8→Aa for a>0 andh8→0 for a,0.31 Us-
ing the approximate values ofm8 andh8 from the above, we
can study

sxx~v!'
e2

hp

1

11m2/4h82
. ~22!

For b}v large compared to (mc
22m2)/4, we haveh8}v1/3

from Eq. ~19!. Consequently, the scaling behavior of t
conductivity is given in this regime by

sxx~m,v!5
e2

h
G~mv21/3!. ~23!
This, of course, does not hold for all values ofv, becauseh8
is not a power law for very smallv. The general behavior o
the real and imaginary parts ofsxx(v) is shown in Fig. 1, for
the illustrative valuesmc50.01 andm50.009.

IV. BROADENING OF THE sxx PEAK

Much of the experimental and numerical work on th
problem has concentrated on the conjectured universal s
ing behavior of the peak width ofsxx(B,v). It is clear from
our calculation in Sec. III that the peak width of our mod
does not vanish with vanishing frequency. There are, at
point, two possible attitudes for this fact: either our mod
does not capture the physics of the real systems, or the
vanishing width is too small to be resolved in th
experiments23 or in the computer calculations.11,12 There are
alternative models, for instance the 2D Dirac fermions w
random vector potential in place of the random mass, wh
do have a vanishing peak width.8 However, these models
have an unphysical behavior due to a singular DOS an
peak height different from experimental observations.6 Since
within a nonperturbative calculation the peak height and
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FIG. 1. Real ~upper curve! and imaginary
~lower curve! parts of the longitudinal conductiv
ity sxx(v) in units of e2/h as a function of
the dimensionless frequency parameterb
52pmc

2v/4g ~see text!.
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smooth behavior of the DOS in the case of a random m
are in good agreement with experiments, it is more lik
that the second point of view applies to our model. This
have advocated for in our presentation of the theoret
framework used in this paper, as given in Sec. I. Moreov
very recent experiments indicate that the peak width d
indeed not vanish in the zero-temperature and ze
frequency limit.33,17 The exponential dependence of th
width on the disorder parameter may explain why it is dif
cult to measure the narrow peak width, in particular
samples with weak disorder.

The broadening of the peak width can be seen in Fig
where Re(sxx) is plotted as a function of the average Dir
massm and the frequencyv for, as an illustration, a disorde
strengthg50.6 corresponding to the valuemc50.01. For
m'mc the conductivity Re(sxx) varies roughly likev2/3 as
one would expect from Eqs.~22! and ~23!. However, away
from mc the broadening does not, strictly speaking, descr
a power law.
ss
y
e
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r,
s
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e

V. DISCUSSION AND CONCLUSIONS

The broadening of the conductivity peak has also be
studied numerically by Avishai and Luck.19 They studied the
scaling of the real part of the conductivitysxx(E,v), finding
that there is indeed a scaling law of the type

Resxx~E,v!'
e2

h
G~ uE2Ecuv2k! ~24!

for the real part of the conductivity. These authors fou
values fork between 0.31 and 0.43. We can use our res
from Eq. ~16!, whereE2Ec is replaced by the parameterm
driving the IQH transition. However, in contrast to Eq.~24!,
we do not obtain a simple scaling form for arbitrarily sma
frequency~see Fig. 2!. Still, for weak disorder the agreemen
with Ref. 19 is qualitatively reasonable, at least for sm
values ofm2mc ~the numerical values quoted are for th
critical point!.

In general, if we insist on a scaling law, the exponentk is
related to the dynamical exponentz and to the localization
k
FIG. 2. Broadening of the conductivity pea
with frequency. Re(sxx) is plotted vs the Dirac
massm ~in units of the hopping parametert) and
the dimensionless frequency parameterb.
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FIG. 3. Average density of states fo
mc50.01.
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length exponentn by k51/zn. Fromk5 1
3 we could evalu-

aten because the usual argument for the dynamical expo
of noninteracting particles isz52.19 The latter arises from
the assumption that the diffusion coefficient and the DOS
constant near the critical point in the two-particle Gree
function of Eq.~7!. However, if the DOS itself behaves lik
a power law,r;va, then the exponentz depends ona. For
instance, the pure system of Dirac fermions hasa51 and
there is an effective exponenta5 1

3 in the case of a random
mass, according to the discussion below Eq.~22! ~and see
also Fig. 3!. Then Eq.~14! implies D;v2a, and from a
simple calculation for the two-particle Green’s function
Eq. ~7!, with k;L21 andh50, we obtain

C̃~L21,v!5va21C̄~L2/~11a!v!, ~25!

where C̄ is the scaling function. Witha51 ~pure system!
this impliesz51, and witha5 1

3 it gives z5 3
2 . The above

scaling form does not describe the asymptotic behavior
v;0, but rather the effective behavior probably relevant
most of the numerical calculations.

The result in Eq.~22! is also different from the Drude
theory,36 suitably adapted to accommodate the presence
the Lorentz force on the scattered electrons,

sxx~v!5s0

12 ivt

~12 ivt!21vc
2t2

, ~26!

where the zero field dc Drude conductivitys0 and the cyclo-
tron frequencyvc are defined in the usual way (t is a colli-
sion time!:

s05
ne2t

m
, vc5

eB

mc
. ~27!

The frequency scale in our study is determined by
value of the hopping parametert in the tight-binding model
of Ludwig et al.8 The physical frequencyv̄ is related to the
dimensionless frequencyv via v5\v̄/t. Moreover, if we
employ the parameterb52pmc

2v/4g with the illustrative
value ofmc50.01, the dimensional frequency is related tob
nt

re
s

r
r

of

e

via v̄'431016b Hz for a value oft51 eV. ~Note, how-
ever, that our choicemc50.01~i.e.,g50.6) is probably only
qualitatively significant, since it is difficult to estimate th
value of disorder strengthg in a real sample. The abov
value may be too large for real systems that have less di
der!.

Our assumption of small frequency breaks down if\v̄
becomes of the order of the characteristic energy scale g
by the hopping ratet. The latter is of the order of 1 eV in
realistic systems; thus we expect a crossover frequenc
aboutv̄'1015 Hz. Typical experiments were performed fo
frequencies between 0.2 and 14 GHz;~Ref. 16! this is well
below the crossover frequency, and our small frequency
proximation should hold.

In a recent paper Shaharet al.33 studied the behavior o
the longitudinal resistivity, in the neighborhood of the tra
sition from the QH liquid to the Hall insulator, known to b
of the form

rxx5e2Dn/n0~T!. ~28!

These authors found a deviation from the conventional s
ing form n0(T)5T1/zn. Instead, they suggested fitting the
experimental data with the form

n0~T!5b1aT, ~29!

wherea,b.0 ~both parametersa andb depending strongly
on sample properties!. A very similar result was found by
Balaban, Meirav, and Bar-Joseph17 for the frequency-
dependent conductivity at zero temperature. These result
consistent with our finding of a deviation of the broadeni
from a power law for very low frequencies. It is a cons
quence of the nonzero bandwidth of delocalized states in
disorder-dependent interval @22l exp(2p/g), 2l exp
(2p/g)# present in our model.

In conclusion, we have developed a theoretical treatm
for the dynamical transport properties of the IQH syste
near the plateau-to-plateau transition. Our results indicate
increase of the longitudinal conductivity accompanied by
broadening of the conductivity peak as the frequency is
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creased. At large frequencies, this behavior follows a pow
law also found in recent experiments16 and numerical
studies.19 However, for very low frequency we found devia
tions from a power law, similarly to what was found in re
cent experiments by Shaharet al.33 and Balaban, Meirav,
and Bar-Joseph.17 For larger values of the frequency, th
scaling behavior of the conductivity is recovered with a
exponent1

3 which is in agreement with the recent work b
rAvishai and Luck.19 These results follow from a theoretic
treatment in which the delocalized states responsible for
IQH transition are properly accounted for.
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