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Abstract. In the framework of the macroscopic simulation of
electrorheological fluids, we present an extension of the clas-
sical Bingham model which goes beyond pure shear flows
and thus enables the simulation of settings in more com-
plex geometries. Emphasis is on the numerical solution of
the resulting nonsmooth minimization problem. We propose
the method of augmented Lagrangians combined with an
operator-splitting technique which allows to confine the non-
linearity to local, low-dimensional problems. Numerical re-
sults are given that illustrate the electrorheological effects for
various shear rates and electric field strengths in case of an
electrorheological suspension rotating between two revolving
cylinders.

1 Introduction

Electrorheological (ER) fluids are microstructured liquids
whose rheological properties undergo a rapid change in less
than a millisecond under the influence of an applied outer
electric field. ER fluids usually consist of dielectric particles
with mobile surface charges suspended in a non-conducting
liquid. Currently, a wide variety of ER fluids is known on the
basis of both silica and organic polymers (cf., e.g., [9]). In ex-
periments, in particular for shear flows perpendicular to the
applied electric field, one typically observes a viscosity in-
creasing with the square of the field strength [9]. Moreover,
at high field strengths ER fluids experience a phase transi-
tion to a viscoplastic state. It is this behavior that makes ER
fluids potentially attractive for technological applications. In
particular, they can be used in the automobile industry as
an alternative to classical electromechanical devices to build
electronically controlled clutches, motor mounts, and shock
absorbers with extremely fast response times (cf., e.g., [11]).

The ER effect is due to polarization of the particles which
get oriented and aligned along the direction of the electric

field thus forming chains (cf., e.g., [4, 13]). Therefore, nu-
merical simulations of ER fluids are frequently based on
techniques of molecular dynamics including also other mech-
anisms contributing to the ER effect (see [3, 14, 16]). On
the other hand, in the macroscopic regime phenomenologi-
cal models in terms of continuum field equations have been
used for predicting the behavior of ER fluids. Up to now, such
models have been restricted to the case of pure shear flows
with the Bingham fluid model as the most prominent repre-
sentative (see [2, 9, 17]). Here, the shear stress σ is modeled
according to

σ = g+ηγ̇
where g stands for the yield stress, η represents the viscosity
and γ̇ refers to the shear rate. For σ < g, the material behaves
like a solid (rigid zones) whereas it undergoes a phase transi-
tion to viscous behavior as soon as σ exceeds the yield stress.

We note that for simple geometrical configurations as in
Poiseuille or Couette flows the continuum field equations can
be solved analytically (see, e.g., [2]). However, if the compu-
tational domain is of a more complex shape, then one has to
resort to appropriate numerical solution techniques. The pur-
pose of this paper is twofold: Firstly, in Sect. 2 we extend
the classical Bingham fluid model to more general flows in
terms of the minimization of the global energy dissipation.
Secondly, in Sect. 3 we present the method of augmented La-
grangians as an appropriate tool for the numerical solution
of that non-smooth minimization problem. Finally, Sect. 4 is
devoted to a documentation of various numerical results illus-
trating both the ER effect in case of a simple model for an ER
clutch and the viability of the model and its discretization.

2 Extension of the Bingham model

Practical ER devices rarely feature the perfect symmetry re-
quired for the pure shear flow model. Thus we need an ex-
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tension of the Bingham model that covers more general ge-
ometries. We pursue a strictly phenomenological approach
based on a few general principles of continuum mechanics.
To obtain a sound model, nevertheless, we confine ourselves
to a simple setting:
– We will only consider steady, laminar flows.
– We ignore any changes in internal energy and temperature
(isothermal regime).

– We assume that viscous forces strongly dominate forces
due to inertia.

Given these assumptions, the flow pattern will establish itself
leading to a minimal global dissipation of energy. Hence, we
have to come up with an appropriate model for the (local) rate
of energy dissipation D .

We write Ω ⊂ R3 for the domain, in which we aim to
compute the velocity field u := u(x)= (u1(x), u2(x), u3(x))T ,
x= (x1, x2, x3) ∈Ω, of the flow. The electric field E := E(x),
x ∈Ω, is supposed to be known in advance. In the current set-
ting the rate of local energy dissipation can only be a function
of the rate of deformation tensor D(u), D(u) := (Dij)

3
i, j=1,

Dij := 1
2 (∂ui/∂x j + ∂u j/∂xi), 1 ≤ i, j ≤ 3, and the electric

field E.
We note, that D must not be affected by any orthogonal

coordinate transformation (material frame indifference) and
the reversal of the direction of the flow (time frame indiffer-
ence). Similarly, replacing E by−E should not make a differ-
ence as is suggested by empirical evidence. Following [15],
we conclude that D has the following form

D(u; E)= f(I1, I2, I3, I4, I5, I6) (1)

with the invariants Iν, 1≤ ν ≤ 6 given by

I1 := tr(EET ), I2 := tr(D(u)),
I3 := tr(D(u)2), I4 := tr(D(u)3),
I5 := tr(D(u)EET ), I6 := tr(D(u)2EET )

where tr stands for the trace of a matrix.
A reasonable assumption for most practical electrorhe-

ological fluids is that of incompressibility which allows to
eliminate the dependence of the function f in (1) on I2. More-
over, the function f is subject to the following requirements:
– For a pure shear flow, i.e., u = u(x3)e1, E= Ee3 (e1, e3
denote the Cartesian unit vectors in x1- and x3-direction.),
the classical Bingham fluid model should be recovered.

– In the case of a vanishing electric field the model
should yield the energy dissipation for viscous friction
1
2η‖D(u)‖2F ( ‖ · ‖F denotes the Frobenius norm of a ma-
trix and η is the dynamic viscosity of the fluid.), which
gives rise to the classical Stokes equations.

– Additional energy dissipation due to the electrorheologi-
cal effect should be introduced into D as an extra additive
term.

– The model should reflect a quadratic dependence of the
yield stress on the applied electric field.

The simplest model that complies with these requirements is
given by

D(u; E) := γ |E||D(u)E|+ 1
2
η ‖D(u)‖2F , (2)

where γ denotes a material-dependent constant (physical
units PaV−2). A comparison with the classical Bingham
model in the case of pure shear flow establishes the desired re-
lationship g= γ |E|2 for the yield limit in this particular case.

From a physical point of view, the first term on the right-
hand side in (2) admits the interpretation as the power that is
dissipated due to the snapping of particle chains, whereas the
second takes into account viscous friction.

We note that the first term on the right hand side in (2) is
non-differentiable. However, the rate of energy dissipation is
a convex functional of D(u) so that we can formally retrieve
the non-spherical part of the stress tensor S := S(D(u), E) as
the subgradient of D with respect to D(u), c.f. [7]. For the
notion of the subgradient we refer, e.g., to [8]. By tedious
computations, which are omitted, we get

S(D(u), E)=−pI+γ |E|
2|D(u)E|

(
D(u)EET + EETD(u)

)
+ηD(u) , (3)

once D(u)E 6= 0. Obviously the stress tensor is not well
defined where D(u)E = 0, which characterizes the “rigid
zones” in this model. Yet, the term is slightly misleading,
since now a gliding of the particle chains is possible. For in-
stance, for a constant electric field in e3 direction the velocity
u in the rigid zones has to meet the constraints ∂u3

∂x3
= 0, ∂u2

∂x3
+

∂u3
∂x2
= 0, ∂u1

∂x3
+ ∂u3

∂x1
= 0. These are satisfied for velocity fields

of the form u= (u1(x1, x2), u2(x1, x2), 0)T , for example.
Remark 1. From (3) we can derive the estimate ‖S+ pI‖F ≥
γ |E|2, i.e. the shear stress has to exceed the threshold γ |E|2
outside rigid zones. Thus, γ |E|2 turns out to be a proper
equivalent of the yield limit of the standard Bingham model.

Based on the model (2) for the local energy dissipation the
velocity field u can be computed as the solution of the fol-
lowing nonsmooth minimization problem for the global rate
of energy dissipation:
Find u ∈ V such that

JER(u)= inf
v∈V

JER(v) , (4)

where

JER(v) := γ
∫
Ω

|E||D(v)E| dx+ 1
2
η

∫
Ω

‖D(v)‖2F dx− l(v) .

(5)

Here V := {v ∈ H1(Ω)3, div v= 0, v|ΓD = 0}, where H1(Ω)
stands for the Sobolev space of square integrable func-
tions with square integrable generalized first derivatives (cf.,
e.g., [1]) and ΓD denotes that part of the boundary Γ = ∂Ω
where no-slip boundary conditions are prescribed. The func-
tional l : V 7→ R takes into account boundary and volume
forces and is of the form [12, Ch. 5]

l(v)=
∫
Ω

〈 f , v〉 dx+
∫
ΓF

〈 fs, v〉 dσ+
∫
ΓP

fp 〈v,n〉 dσ . (6)

Here, f stands for a field of volume forces, ΓF is that part of
the boundary, where the surface force fs is prescribed. On ΓP
we impose the pressure fp.
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3 The method of augmented Lagrangians

We consider the numerical solution of the nonsmooth mini-
mization problem (4) in the case of a geometrical configura-
tion which may be thought of as a simple model for an elec-
trorheological clutch (cf., e.g., [11]): The gap between two
open conducting cylinders is filled with an electrorheological
fluid (see Fig. 1). When the outer cylinder starts revolving, the
inner, which is supposed to be at rest, experiences a torque
due to the viscosity of the fluid. Applying a voltage through
an external electric circuit, the electrorheological effect leads
to enhanced viscosity and the strength of the torque felt by the
inner cylinder will rise.

The arrangement has full rotational symmetry. This car-
ries over to the electric field, which, in cylindrical coordi-
nates, can be represented as

E(r, z, φ)= Er(r, z)er + Ez(r, z)ez

where er and ez are the coordinate vectors in radial and
axial direction, respectively. For a velocity distribution u that
solves (4) we can thus conclude that it can only feature a tan-
gential component: u= u(r, z) = u(r, z)eϕ. Please note, that
a priori such velocity fields are divergence free.

In the current symmetric setting, the global energy dissi-
pation reads as follows

JER(u)= πγ
∫
Ω

|E||E ·∇u|r d(r, z)+ 1
2
πη

∫
Ω

|∇u|2r d(r, z)

(7)

where the two-dimensional computational domain Ω corres-
ponds to the longitudinal section of the three-dimensional

Fig. 1. Model for an electrorheological clutch

physical domain with the r, z-plane. We impose zero bound-
ary values for u along the axis and the walls of the inner cylin-
der. At the walls of the outer cylinder the boundary values for
u are determined by the speed of the rotation.

The method of augmented Lagrangians (cf., e.g., [10])
relies on an equivalent formulation of the minimization prob-
lem as a saddle point problem by introducing ∇u as an ad-
ditional unknown p and by coupling the constraint p= ∇u
by means of both a Lagrangian multiplier µ and a penalty
term. Combined with an appropriate operator-splitting tech-
nique, this method allows to confine the nonlinearity to local
problems of small dimension.

We set V ⊂ H1(Ω) for the space of all eligible velocity
components satisfying the boundary conditions and define the
Lagrangian LτER : V × L2(Ω)

2× L2(Ω)
2→ R according to

LτER(u, p,µ) := πγ
∫
Ω

|E||E · p|r d(r, z)

+ 1
2
πη

∫
Ω

|p|2r d(r, z)

+
∫
Ω

µ · (p−∇u) d(r, z)

+ 1
2
τ

∫
Ω

|p−∇u|2 d(r, z) , (8)

where τ > 0 stands for the penalty parameter. Then, the saddle
point problem is given by:

Find (u, p,λ) ∈ V × L2(Ω)2× L2(Ω)2 such that

LτER(u, p,µ) ≤ LτER(u, p,λ) ≤ LτER(v, q,λ)

for all (v, q,µ) ∈ V × L2(Ω)2× L2(Ω)2, or equivalently

LτER(u, p,λ)= inf
(v,q)∈V×L2(Ω)2

sup
µ∈L2(Ω)2

LτER(v, q,µ) . (9)

For the discretization of the saddle point problem (9) we use
a finite element approximation with respect to a simplicial
triangulation Th of the computational domain Ω. In particu-
lar, we approximate V by the finite element space Vh :=
S1(Ω; Th) := {vh ∈ C(Ω̄), vh |T ∈ P1(T ), T ∈ Th} of contin-
uous, piecewise linear finite elements (see [6]). On the other
hand, for the approximation of the dual variable p ∈ L2(Ω)2

and the Lagrangian multiplier λ ∈ L2(Ω)2 we can resort to
the space Wh of, w.r.t. Th , piecewise constant, discontinuous
vectorfields.

Likewise, in (8) the supplied electric field E is approxi-
mated by Eh ∈Wh where, for instance, we may choose Eh |T ,
T ∈ Th , as the value E(C) of E in the center of gravity of
T ∈ Th . Normally, if E is obtained from another finite element
computation on the same mesh Th , it will only be available as
a locally constant function.

In the end, we are led to the following discrete saddle
point problem:

Find (uh, ph,λh) ∈ Vh×Wh×Wh such that

LτER(uh, ph,µh) ≤ LτER(uh, ph,λh) ≤ LτER(vh, qh,λh)
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for all (vh, qh,µh) ∈ Vh×Wh×Wh , or, equivalently,

LτER(uh, ph,λh)= inf
(vh ,qh )∈Vh×Wh

sup
µh∈Wh

LτER(vh , qh,µh) .

(10)

Note that (10) satisfies the Ladyzhenskaja–Babuška–Brezzi
(LBB-) condition which ensures the well-posedness of the
discrete saddle point problem (cf., e.g., [5]).

We solve (10) iteratively by means of an operator splitting
method where each iteration step amounts to the successive
solution of a global linear minimization problem and local,
i.e., elementwise nonlinear minimization problems including
appropriate updates of the discrete Lagrangian multipliers.

In particular, given startiterates (p0h,λ1h) ∈Wh×Wh and
sequences (τn)n∈N, (ρn)n∈N of penalization parameters τn > 0
and update parameters ρn > 0, n ∈N, an iteration involves the
following two steps:

1st step: Find un
h ∈ Vh such that

LτnER
(
un

h, p
n−1
h ,λn

h
)= inf

vh∈Vh
LτnER

(
vn

h, p
n−1
h ,λn

h
)

(11)

and compute λn+ 1
2

h ∈Wh according to

λ
n+ 1

2
h = λn

h+ρn
(∇un

h− pn−1
h
)
. (12)

2nd step: Find pn
h ∈Wh such that

LτnER

(
un

h, p
n
h,λ

n+ 1
2

h

)
= inf
qh∈Wh

LτnER

(
un

h, qh,λ
n+ 1

2
h

)
(13)

and compute λn+1
h ∈Wh by means of

λn+1
h = λn+ 1

2
h +ρn

(∇un
h− pn

h
)
. (14)

We note that the necessary and sufficient optimality condition
for the global minimization problem (11) of the first step is
given by the variational equation:

Find un
h ∈ Vh such that∫

Ω

∇un
h ·∇vh d(r, z)= τ−1n

∫
Ω

λn
h ·∇vhd(r, z)

+
∫
Ω

pn−1
h ·∇vhd(r, z), vh ∈ Vh .

(15)

The computation of un
h ∈ Vh requires the solution of a linear

algebraic system where the coefficient matrix corresponds to
the stiffness matrix associated with the continuous, piecewise
linear finite element approximation of the Laplacian−∆.

On the other hand, due to the definition of Wh the min-
imization problem (13) of the second step reduces to the
simultaneous solution of the elementwise minimization prob-
lems:

For each T ∈ Th find pn
h |T ∈ P0(T )2 such that

JτnT (p
n
h |T )= inf

qT
h ∈P0(T )2

JτnT (q
T
h ),

JτnT (q
T
h ) := JτnER

(
un

h |T , q
T
h ,λ

n+ 1
2

h

)
. (16)

We write EC for the constant value of the electric field on T
and set for the solution of (16)

pn
h |T := α1EC+α2E⊥C , T ∈ Th ,

where E⊥C is an arbritrarily, but fixed vector perpendicular to
EC . Then, the coefficients αi , 1 ≤ i ≤ 2, can be easily ob-
tained by the solution of two separate quadratic minimization
problems. Indeed, setting

a := πη
∫
T

|EC|2r d(r, z)+ τn

∫
T

|EC|2 d(r, z) ,

b := τn

∫
T

∇un
h · EC d(r, z)−

∫
T

λ
n+ 1

2
h · EC d(r, z) ,

c := πγ
∫
T

|EC|3r d(r, z) ,

and defining a⊥ and b⊥ in the same way with EC replaced by
E⊥C , we obtain

α1 =
{
(b+ c)/a if b<−c
(b− c)/a if b> c

0 if −c≤ b≤ c
, α2 = b⊥

a⊥
.

4 Numerical results

We have applied the method of augmented Lagrangians to the
case of a rotating electrorheological fluid between two revolv-
ing coaxial cylinders as described in the previous section (cf.
Fig. 1).One of the cylinders rotates with a constant angular
speed ω, while the other one is supposed to be at rest.

We are interested in computing both the distribution of the
angular velocity u(r, z)eϕ of the fluid in the gap between both
cylinders and the overall torque. To compute the torque we
rely on the principle of conservation of energy: All the power
dissipated in the fluid must be supplied by the rotation of

Fig. 2. Computational domain for clutch simulation
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the driven cylinder. Thus the angular momentum transferred
through the clutch amounts to N = JER(u)/ω, where JER is
the functional from (5). The value of this functional can be
readily computed from the finite element solution uh .

As far as the material data are concerned, we have consid-
ered an electrorheological suspension with dynamic viscosity
η = 0.90×10−1 kgm−1s−1 and γ = 1×10−9NV−2 (cf. [2,
Sect. I]). A voltage U between the two cylinders was pre-
scribed and the electric field E was approximately computed
by solving the boundary value problem for the electrostatic
potential

− div ε∇Ψ = 0 inΩ
u= 0 on the walls of the outer cylinder
u=U on the walls of the inner cylinder
∂u
∂n = 0 elsewhere on ∂Ω ,

(17)

Rotational symmetry renders the potential constant in angular
direction and hence, we can assume Ψ = Ψ(r, z). The result-
ing two-dimensional problem is equivalent to the variational
equation:
Find Ψ ∈ H1

Γ (Ω)+Ψ0 such that∫
Ω

r 〈∇Ψ,∇v〉 d(r, z)= 0 , ∀v ∈ H1
Γ (Ω) ,

where H1
Γ (Ω) contains the functions of H1(Ω) with zero

trace on the inner and outer cylinder and Ψ0 is some poten-
tial that complies with the Dirichlet boundary conditions from
(17). The variational problem is discretized by means of stan-
dard piecewise continuous finite elements on Th . Then, E can
be obtained as the elementwise constant gradient of the finite
element solution for Ψ .

To enhance the resolution of the finite element method, we
employ adaptive grid refinement. The refinement process is
controlled by a simple error indicator that triggers the refine-
ment of elements where large gradients of uh occur. Thus we
can save significant computational resources compared with
finite element schemes on uniform grids.

A meaningful termination criterion for the augmented La-
grangian iteration depends on the objective of the calcula-
tion. We implemented two options: First, when one is inter-
ested in some global (integral) characteristics of the system
(torque, energy) it is reasonable to monitor the decrease of the
total dissipated energy JER(uh): Due to (8), the Lagrangian
LτER(u, p,µ) has the representation:

LτER(u, p,µ)= JER(u)+ L AU(u, p,µ) ,

with

L AU (u, p,µ)=
∫
Ω

µ · (p−∇u) d(r, z)

+ 1
2
τ

∫
Ω

|p−∇u|2 d(r, z) .

For heuristic reasons we assume that the iterates are close to
the stationary point once we have

| L AU (un) |
JER(un)

< tol , (18)

for a small threshold tol.
On the other hand the criterion (18) may not be sufficient

to resolve local features of u, for instance, large gradients. In
this case it makes sense to require

‖p−∇u‖L2 < tol . (19)

Before we present the results of numerical simulations for
pure shear mode (Couette flow) and a more complicated flow
structure in case of an electrorheological clutch, let us com-
ment on the observed convergence behavior of the augmented
Lagrangian approach. The numerical experiments revealed
a mesh independent convergence, i.e., the convergence rates
do not depend on the granularity of the triangulations. On the
other hand, in accordance with the findings in [10], we did
observe a dependence on the choice of the penalty param-
eter τ . In particular, we found that there exists a threshold
value τ∗ such that for τ ≥ τ∗ we have monotone convergence
whereas for τ < τ∗ the convergence shows an oscillatory be-
havior. Moreover, this value τ∗ depends on the the strength of
the applied electric field E in the sense that it increases with
increasing field strength.

Couette flow

The first suite of numerical experiments studies Couette flow,
i.e., l := li = le and natural boundary conditions are imposed
on the top and the bottom of the gap between the cylinders.
Consequently, we end up with an inherently one-dimensional
setting, where only radial dependence remains: u = u(r)eφ.
This is also true for the electric field, which reads

E= E(r)= U
ln(re/ri)

1
r
er .

The simplified energy dissipation functional (7) now runs

JER(u)= πγl
(

U
ln(re/ri)

)2 re∫
ri

1
r

∣∣∣∣∂u∂r
∣∣∣∣ dr

+ 1
2
πηl

re∫
ri

∣∣∣∣∂u∂r
∣∣∣∣2 r dr . (20)

In this particular setting, the problem can even be solved
analytically: Any function minimizing (20) has to be mono-
tone so that we can assume u′(r) := ∂u

∂r ≥ 0. In a flow zone
I ⊂]ri, re[, where u′ > 0, we can derive the following varia-
tional problem:
Find u ∈ H1

0 (I), u fixed at the endpoints of I , such that

c0
∫
I

v′

r
dr− c1

∫
I

ru′v′ dr = 0 , ∀v ∈ H1
0 (I) .

Here c0 := πγl
(

U
ln(re/ri)

)2
and c1 := πηl. This yields the

Euler equation

c1
(
ru′
)′− c0

1
r2
= 0 . (21)
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Fig. 3. Angular velocity profiles for different values of applied potential U

Now assume that there is one plug zone ]ri, x[, ri ≤ x < re,
sticking to the inner cylinder, which is at rest. This is sug-
gested by numerical evidence. Solving (21) with boundary
values u(x)= 0 and u(re)= reω we get the profile for angular
velocity

u(r)=
0 for ri ≤ r ≤ x

c0
c1

1
r
+ A(x) ln r+ B(x) for x ≤ r ≤ re

, (22)

with parameters A(x) and B(x) defined by

A = 1

ln
re

x

(
reω+ c0

c1

(
1
x
− 1

re

))
B =− 1

ln
re

x

(
reω ln x+ c0

c1

(
ln re

x
− ln x

re

))
.

(23)

The end of the plug zone x as a function of input parameters
x = x(U, γ, ω, ri , re) is defined from the condition u′(x)= 0,
which yields the the following equation to determine x:

−c0
c1

1
x
+ A(x)= 0 ⇐⇒ ln

re

x
c0
c1
= xreω+ c0

c1

(
1− x

re

)
.

(24)
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An exact solution of the nonlinear problem (24) can be easily
computed. We point out that the solution of (22)–(24) is dif-
ferent from the analytical solution computed in [2], because
in the current model inertia has been neglected. From (20)
and (22) we determine the total rate of energy dissipation as
a function of the applied voltage and the angular speed ω of
the outer cylinder:

Ediss = Ediss(U, γ, ω, ri , re)= JER(u;U, γ, ω, ri, re) . (25)

Finally, we obtain the torque

N : = N(U, ω, ri , re)= Ediss(U, γ, ω, ri , re)/ω

= N (re)−N (x)
ω

, (26)

with

N (r)= c1
2

A2 ln r+ 1
4r2

c20
c1
.

We computed the Couette flow in a fully two-dimensional
fashion, also employing a finite element approximation of
the electrostatic potential. The plots in Fig. 3 show the ana-
lytical versus the computed values for the angular velocity
as a function of r. Here we used l = 70 cm, ri = 3.5 cm,
re = 7 cm, ω = 125 rad s−1, η = 0.90×10−1 kgm−1s−1 and
γ = 1×10−9NV−2.



Simulation of ERFs 217

0

10

20

30

40

0 20000 40000 60000 80000 100000

To
rq

ue
 [N

*m
]

Potential [V]

Analytical
Numerical

Fig. 4. Torque N as a function of applied potential U (solid line = analytic
solution, points = torque obtained from finite element computations)

Table 1. Discretization errors for selected test potentials U

Number Velocity Torque
of elements ‖uh −u‖H1 | Nh − N |

U = 2×104 U = 8×104 U = 2×104 U = 8×104

166 1.37 15.2 4.7×10−3 6.1×10−1
664 0.71 9.0 1.2×10−3 1.9×10−1
2656 0.34 5.3 3.2×10−4 4.7×10−2

10624 0.16 2.7 8.1×10−5 1.3×10−2

For the same geometry, Fig. 4 shows the analytical and
computed torque as a function of the applied voltage U .

The approximation properties of the finite element scheme
and the discretization errors on regularly refined grids for the
velocity and the torque are given in Table 1. Here, uh and Nh
denote the finite element solutions whereas u and N refer to

Fig. 7. Wide gap: Computational grids
and velocity distribution for U = 0 V
(left), U = 1×104 V (middle) and U =
4×104 V (right)

0

1

2

3

4

5

6

7

8

9

10

0 20000 40000 60000 80000 100000

To
rq

ue
 [N

*m
]

Potential [V]

Torque

Fig. 5. Wide gap: Torque N as a function of applied voltage U
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Fig. 6. Wide gap: Angular veclocity profiles for different values of potential
U (in V)



218 B. Engelmann et al.

0

1

2

3

4

5

6

0 3000 6000 9000 12000

To
rq

ue
 [N

*m
]

Potential [V]

Torque

Fig. 8. Torque N as a function of applied voltage U (in V)

the analytical ones as given by (22)–(24) and (26) respec-
tively. Since most of the error is localized in the the drag
zone, x < r < re, where the gradients of the velocity can be

Fig. 10. Narrow gap: Computational grids and
velocity distribution for U = 3×103 V (top) and
U = 9×103 V (bottom)
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Fig. 9. Narrow gap: Angular veclocity profiles for different values of poten-
tial U

extremely high, local refinement is strongly recommended in
order to obtain reliable results with minimal computational
costs.
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Electrorheological clutch
Wide Gap.We have chosen a geometrical configuration with
the radii ri = 3.5 cm, re = 7 cm and heights `i = 25 cm, `e =
30 cm (see Fig. 2). For our computations we fixed the angular
velocity at ω= 125 rad s−1 on the inner cylinder. We carried
out the simulation for a wide range of values for the applied
voltageU . In Fig. 5 the resulting torques are plotted versusU .
In Fig. 6 the computed velocity profiles are depicted for dif-
ferent voltages. Figure 7 shows examples of computational
grids and velocity equipotentials. There, for the sake of visua-
bility, only one level of adaptive refinement is shown.
Narrow Gap. A second series of experiments uses the same
fluid but a different geometry: ri = 23.5mm, re = 24.5mm,
`i = 21.0mm, `e = 30.0mm. For ω= 125 rad s−1 we carried
out the same computations as above. Figures 8–10 show the
results of numerical computations for this case.
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