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Abstract. In the framework of the macroscopic simulation of
electrorheological fluids, we present an extension of the clas-
sical Bingham model which goes beyond pure shear flows
and thus enables the simulation of settings in more com-
plex geometries. Emphasis is on the numerical solution of
the resulting nonsmooth minimization problem. We propose
the method of augmented Lagrangians combined with an
operator-splitting technique which allows to confine the non-
linearity to local, low-dimensional problems. Numerical re-
sults are given that illustrate the electrorheological effects for
various shear rates and electric field strengths in case of an
electrorheological suspension rotating between two revolving
cylinders.

1 Introduction

Electrorheological (ER) fluids are microstructured liquids
whose rheological properties undergo a rapid change in less
than a millisecond under the influence of an applied outer
electric field. ER fluids usually consist of dielectric particles
with mobile surface charges suspended in a non-conducting
liquid. Currently, a wide variety of ER fluids is known on the
basis of both silica and organic polymers (cf., e.g., [9]). In ex-
periments, in particular for shear flows perpendicular to the
applied electric field, one typically observes a viscosity in-
creasing with the square of the field strength [9]. Moreover,
at high field strengths ER fluids experience a phase transi-
tion to a viscoplastic state. It is this behavior that makes ER
fluids potentially attractive for technological applications. In
particular, they can be used in the automobile industry as
an alternative to classical electromechanical devices to build
electronically controlled clutches, motor mounts, and shock
absorbers with extremely fast response times (cf., e.g., [11]).

The ER effect is due to polarization of the particles which
get oriented and aligned along the direction of the electric

field thus forming chains (cf., e.g., [4, 13]). Therefore, nu-
merical simulations of ER fluids are frequently based on
techniques of molecular dynamics including also other mech-
anisms contributing to the ER effect (see [3, 14, 16]). On
the other hand, in the macroscopic regime phenomenologi-
cal models in terms of continuum field equations have been
used for predicting the behavior of ER fluids. Up to now, such
models have been restricted to the case of pure shear flows
with the Bingham fluid model as the most prominent repre-
sentative (see [2, 9, 17]). Here, the shear stress σ is modeled
according to

σ = g+ηγ̇
where g stands for the yield stress, η represents the viscosity
and γ̇ refers to the shear rate. For σ < g, the material behaves
like a solid (rigid zones) whereas it undergoes a phase transi-
tion to viscous behavior as soon as σ exceeds the yield stress.

We note that for simple geometrical configurations as in
Poiseuille or Couette flows the continuum field equations can
be solved analytically (see, e.g., [2]). However, if the compu-
tational domain is of a more complex shape, then one has to
resort to appropriate numerical solution techniques. The pur-
pose of this paper is twofold: Firstly, in Sect. 2 we extend
the classical Bingham fluid model to more general flows in
terms of the minimization of the global energy dissipation.
Secondly, in Sect. 3 we present the method of augmented La-
grangians as an appropriate tool for the numerical solution
of that non-smooth minimization problem. Finally, Sect. 4 is
devoted to a documentation of various numerical results illus-
trating both the ER effect in case of a simple model for an ER
clutch and the viability of the model and its discretization.

2 Extension of the Bingham model

Practical ER devices rarely feature the perfect symmetry re-
quired for the pure shear flow model. Thus we need an ex-
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tension of the Bingham model that covers more general ge-
ometries. We pursue a strictly phenomenological approach
based on a few general principles of continuum mechanics.
To obtain a sound model, nevertheless, we confine ourselves
to a simple setting:
– We will only consider steady, laminar flows.
– We ignore any changes in internal energy and temperature
(isothermal regime).

– We assume that viscous forces strongly dominate forces
due to inertia.

Given these assumptions, the flow pattern will establish itself
leading to a minimal global dissipation of energy. Hence, we
have to come up with an appropriate model for the (local) rate
of energy dissipation D .

We write Ω ⊂ R3 for the domain, in which we aim to
compute the velocity field u := u(x)= (u1(x), u2(x), u3(x))T ,
x= (x1, x2, x3) ∈Ω, of the flow. The electric field E := E(x),
x ∈Ω, is supposed to be known in advance. In the current set-
ting the rate of local energy dissipation can only be a function
of the rate of deformation tensor D(u), D(u) := (Dij)

3
i, j=1,

Dij := 1
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3 The method of augmented Lagrangians

We consider the numerical solution of the nonsmooth mini-
mization problem (4) in the case of a geometrical configura-
tion which may be thought of as a simple model for an elec-
trorheological clutch (cf., e.g., [11]): The gap between two
open conducting cylinders is filled with an electrorheological
fluid (see Fig. 1). When the outer cylinder starts revolving, the
inner, which is supposed to be at rest, experiences a torque
due to the viscosity of the fluid. Applying a voltage through
an external electric circuit, the electrorheological effect leads
to enhanced viscosity and the strength of the torque felt by the
inner cylinder will rise.

The arrangement has full rotational symmetry. This car-
ries over to the electric field, which, in cylindrical coordi-
nates, can be represented as

E(r, z, φ)= Er(r, z)er + Ez(r, z)ez

where er and ez are the coordinate vectors in radial and
axial direction, respectively. For a velocity distribution u that
solves (4) we can thus conclude that it can only feature a tan-
gential component: u= u(r, z) = u(r, z)eϕ. Please note, that
a priori such velocity fields are divergence free.

In the current symmetric setting, the global energy dissi-
pation reads as follows

JER(u)= πγ
∫
Ω

|E||E ·∇u|r d(r, z)+ 1
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for all (vh, qh,µh) ∈ Vh×Wh×Wh , or, equivalently,

LτER(uh, ph,λh)= inf
(vh ,qh )∈Vh×Wh

sup
µh∈Wh

LτER(vh , qh,µh) .

(10)

Note that (10) satisfies the Ladyzhenskaja–Babuška–Brezzi
(LBB-) condition which ensures the well-posedness of the
discrete saddle point problem (cf., e.g., [5]).

We solve (10) iteratively by means of an operator splitting
method where each iteration step amounts to the successive
solution of a global linear minimization problem and local,
i.e., elementwise nonlinear minimization problems including
appropriate updates of the discrete Lagrangian multipliers.

In particular, given startiterates (p0h,λ1h) ∈Wh×Wh and
sequences (τn)n∈N, (ρn)n∈N of penalization parameters τn > 0
and update parameters ρn > 0, n ∈N, an iteration involves the
following two steps:

1st step: Find un
h ∈ Vh such that

LτnER
(
un

h, p
n−1
h ,λn

h
)= inf

vh∈Vh
LτnER

(
vn

h, p
n−1
h ,λn

h
)

(11)

and compute λn+ 1
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the driven cylinder. Thus the angular momentum transferred
through the clutch amounts to N = JER(u)/ω, where JER is
the functional from (5). The value of this functional can be
readily computed from the finite element solution uh .

As far as the material data are concerned, we have consid-
ered an electrorheological suspension with dynamic viscosity
η = 0.90×10−1 kgm−1s−1 and γ = 1×10−9NV−2 (cf. [2,
Sect. I]). A voltage U between the two cylinders was pre-
scribed and the electric field E was approximately computed
by solving the boundary value problem for the electrostatic
potential

− div ε∇Ψ = 0 inΩ
u= 0 on the walls of the outer cylinder
u=U on the walls of the inner cylinder
∂u
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Fig. 3. Angular velocity profiles for different values of applied potential U

Now assume that there is one plug zone ]ri, x[, ri ≤ x < re,
sticking to the inner cylinder, which is at rest. This is sug-
gested by numerical evidence. Solving (21) with boundary
values u(x)= 0 and u(re)= reω we get the profile for angular
velocity

u(r)=
0 for ri ≤ r ≤ x

c0
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Fig. 4. Torque N as a function of applied potential U (solid line = analytic
solution, points = torque obtained from finite element computations)

Table 1. Discretization errors for selected test potentials U
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Fig. 8. Torque N as a function of applied voltage U (in V)

the analytical ones as given by (22)–(24) and (26) respec-
tively. Since most of the error is localized in the the drag
zone, x < r < re, where the gradients of the velocity can be

Fig. 10. Narrow gap: Computational grids and
velocity distribution for U = 3×103 V (top) and
U = 9×103 V (bottom)
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Fig. 9. Narrow gap: Angular veclocity profiles for different values of poten-
tial U

extremely high, local refinement is strongly recommended in
order to obtain reliable results with minimal computational
costs.
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Electrorheological clutch
Wide Gap.We have chosen a geometrical configuration with
the radii ri = 3.5 cm, re = 7 cm and heights `i = 25 cm, `e =
30 cm (see Fig. 2). For our computations we fixed the angular
velocity at ω= 125 rad s−1 on the inner cylinder. We carried
out the simulation for a wide range of values for the applied
voltageU . In Fig. 5 the resulting torques are plotted versusU .
In Fig. 6 the computed velocity profiles are depicted for dif-
ferent voltages. Figure 7 shows examples of computational
grids and velocity equipotentials. There, for the sake of visua-
bility, only one level of adaptive refinement is shown.
Narrow Gap. A second series of experiments uses the same
fluid but a different geometry: ri = 23.5mm, re = 24.5mm,
`i = 21.0mm, `e = 30.0mm. For ω= 125 rad s−1 we carried
out the same computations as above. Figures 8–10 show the
results of numerical computations for this case.
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