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Abstract. We consider the problem of minimization of energy dissi-
pation in a conductive electromagnetic medium with a fixed geometry
and a priori given lower and upper bounds for the conductivity. The
nonlinear optimization problem is analyzed by using the primal-dual
Newton interior-point method. The elliptic differential equation for the
electric potential is considered as an equality constraint. Transforming
iterations for the null space decomposition of the condensed primal-
dual system are applied to find the search direction. The numerical
experiments treat two-dimensional isotropic systems.

                                                            
                                                              

1. Introduction

The development, analysis, and implementation of efficient methods
for the optimal design of topology, shape, and material in continuous and
discrete structural mechanics have been studied intensively during the past
decade; see e.g. Bendsøe (Ref. 1). In particular, the topology optimization
of solid structures involves the determination of the optimal placement of
material in space; i.e., one has to determine which points of space are mater-
ial points and which points should remain void (no material). On the other
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hand, not much work has been done concerning the optimal design of elec-
tronic devices and systems whose operational behavior is governed by elec-
tromagnetic fields that can be described by the Maxwell equations.
Although advanced numerical techniques for the computation of electro-
magnetic fields have been developed in recent years [see e.g. Beck,
Deuflhard, Hiptmair, Hoppe, and Wohlmuth (Ref. 2) and the references
therein], the issue of structural optimization with the Maxwell equations as
state constraints has not yet been investigated.

In this paper, we consider problems concerning the topology optimiz-
ation in electromagnetic media described by the Maxwell equations sup-
plemented by the respective material laws. We are looking for an optimal
distribution of conductivity in a fixed geometrical configuration. In the
stationary case, one obtains problem formulations in electrostatics and mag-
netostatics, which are similar to elastomechanical problems. The mathema-
tical models lead to elliptic boundary-value problems corresponding to the
minimization of energy dissipation given by the Joule–Lenz law. We sup-
pose that our domain is occupied by an isotropic conductor with a finite
conductivity. To simplify the presentation, we consider the stationary case;
i.e., constant currents are available in the conductor.

We have concentrated our efforts on solving nonlinear nonconvex opti-
mization problems for the minimization of the energy dissipation. We solve
a constrained optimization problem, constituted by the objective just men-
tioned, subject to equality constraints on the elliptic electric potential equa-
tion, mass conservation, and inequality box constraints for the conductivity
(i.e., a priori given lower and upper bounds). Interior-point methods, which
generate iterates that satisfy strictly the inequalities in the problem formu-
lation, are applied. A primal-dual formulation is proposed to solve the opti-
mization problem. This formulation leads to large and sparse linear-
quadratic subproblems to be solved at each iteration, which are similar to
the problems studied by Maar and Schulz (Ref. 3), where primal interior-
point methods are mainly investigated.

The primal-dual interior-point methods have been proposed originally
by Kojima, Mizuno, and Yoshise (Ref. 4), based on the application of the
classical logarithmic barrier function method to primal and dual linear pro-
grams, which was studied earlier by Megiddo (Ref. 5). The main idea of the
algorithm is to work simultaneously on primal and dual linear programming
problems and generate a sequence of pairs of their interior feasible solu-
tions. In the last decade, primal-dual algorithms have emerged as the most
useful algorithms from the interior-point class in linear programming appli-
cations; see also Refs. 6–8.

The primal-dual method has been extended recently to nonlinear pro-
gramming by El-Bakry, Tapia, Tsuchiya, and Zhang (Ref. 9) and has



                                  

started to prove its impressive computational performance for nonlinear
and semidefinite programming; see e.g. Refs. 10–13. The results in the cited
studies indicate that primal-dual methods are very promising, although
many theoretical and practical difficulties remain to be solved.

The paper is organized as follows. In Section 2, we describe the eddy
current equations and give an expression for the energy dissipation used as
objective function in our considerations. In Section 3, we introduce the
primal-dual formulation of our nonlinear nonconvex optimization problem
based on the classical logarithmic barrier functions. The Karush–Kuhn–
Tucker first-order necessary conditions for optimality result in a nonlinear
equation for the unknown variables. Perturbed complementarity conditions
with a decreasing barrier parameter at each optimization step are used.
Transforming iterations for null space formulations, proposed as smoothers
for multigrid methods in Ref. 3, are applied in Section 4 for the iterative
solution of linear-quadratic subproblems. In Section 5, we discuss the choice
of the merit function, steplength strategy, barrier parameter, and watchdog
technique. In Section 6, we include some numerical experiments applying
the primal-dual interior-point method to the nonlinear problem and present
the respective material distributions for a two-dimensional isotropic conduc-
tor. Finally, in Section 7, we give some concluding remarks.

2. Eddy Current Equations

We consider electromagnetic fields in the low frequency regime which
can be described by the quasistationary limit of the Maxwell equations, also
known as the eddy current equations,

∂B�∂tCcurl EG0, div BG0, curl HGJ, (1)

BGµH, JGσE. (2)

Here, E and H stand for the electric and magnetic field, B and J denote
the magnetic induction and current density; µ and σ refer to the magnetic
permeability and electric conductivity, respectively [ for a justification of the
eddy current equations, see e.g. Ammari, Buffa, and Nédélec (Ref. 14)].

In the 2D case, assuming that the current density is given by

JG(J1 (x1 , x2 , t), J2 (x1 , x2 , t), 0),

the electric and magnetic fields take the form

EG(E1 (x1 , x2 , t), E2 (x1 , x2 , t), 0), HG(0, 0, H (x1 , x2 , t)).



                                  

We use a potential formulation by introducing a scalar electric poten-
tial ϕ and a magnetic vector potential A according to

EG−grad ϕA∂A�∂t, BGcurl A,

where curl is the two-dimensional scalar operator

curl (A1 , A2)G∂A1�∂x2A∂A2�∂x1 ;

see e.g. Biro and Preis (Ref. 15). Then, (1)–(2) give rise to the following
coupled system of PDEs for the electromagnetic potentials ϕ and A,

div(σ grad ϕ )G0, in Ω, (3)

σn · grad ϕG�Iν , on Γν⊂∂Ω,

0, elsewhere,
(4)

σ (∂A�∂t)Ccurl µ−1curl AG�−σ grad ϕ, in Ω,

0, in R3 \Ω̄,
(5)

the latter with appropriate initial and boundary conditions. Note that, in
(4), we refer to Iû as the fluxes associated with the contacts Γν⊂∂Ω,
1⁄ν⁄Nc , satisfying the compatibility conditions

∑
νG1

Nc

IνG0.

The electric energy dissipation given by the Joule–Lenz law reads as
follows:

f (ϕ, σ , A)_�
Ω

J · E dx. (6)

In particular, in the stationary regime, this reduces to

f (ϕ, σ )G−�
Ω

J · grad ϕ dxG−�
Ω

div(ϕJ ) dx. (7)

The last equality in (7) follows from

div(ϕJ )GJ · grad ϕCϕ div J,

taking into account the fact that

div JG0



                                  

in view of (1). Using the Gauss theorem and the Neumann boundary con-
ditions from (4), we get

f (ϕ, σ )G−�
∂Ω

n · J ϕ dsG ∑
νG1

Nc

�
Γν

Iνϕ ds. (8)

3. Primal-Dual Interior-Point Method

We solve the optimization problem for the energy dissipation given by
(8),

min
ϕ, σ

f (ϕ, σ )Gmin
ϕ, σ

∑
ν
�
Γν

Iνϕ ds, (9)

s.t. ϕ satisfies (3)–(4), (10a)

�
Ω
σ dxGC (mass constraint), (10b)

σmin⁄σ⁄σmax (conductivity box constraint). (10c)

Here, σmin and σmax are a priori given positive limits for the conductivity
and C is a fixed given value. In general formulations of nonlinear program-
ming problems, the objective function f and the inequality constraints are
supposed to be twice continuously differentiable. In our case, this require-
ment is obviously satisfied.

Note that we formulate a constrained optimization problem, where the
differential equation (10a) for ϕ is part of the constraints. This is in contrast
to many standard optimization approaches, which consider ϕ as a function
of the independent variable σ via the differential equation. However, this
simultaneous optimization approach reduces the overall computational
complexity of the resulting optimization algorithm.

After a finite-element discretization of the domain with discretization
parameter h, we get the following finite-dimensional nonlinear programming
problem:

min
ϕh , σh

f (ϕh , σh), (11)

s.t. Ah (σh) ϕhGbh , (12a)

g(σh)_�
Ω
σ dxGC , (12b)

σmin⁄σ i⁄σmax, 1⁄ i⁄N, (12c)



                                  

where Ah is the finite–element stiffness matrix, bh is the discrete load vector,
and σhG(σ i)

N
iG1 is the discrete conductivity vector. The discretization par-

ameter is of order hGO(N−1), where N is the number of finite elements. We
suppose that the conductivity is a constant on each element; i.e., σ i is the
value of σ on the ith element. Note that the lower bound σmin plays a crucial
role in keeping the ellipticity of the discrete problem.

For simplicity of presentation, until the end of this section we omit the
index h for the discretization parameter. Our optimization problem has the
following form:

min
ϕ, σ

f (ϕ, σ ), (13)

s.t. A(σ ) ϕAbG0, g(σ )ACG0, (14a)

σAσmine¤ 0, σmaxeAσ ¤ 0, (14b)

where

e∈RN, eG(e1 , . . . , eN)T, eiG1, 1⁄ i⁄N.

The Lagrangian function associated with problem (13)–(14) is

L(ϕ, σ , λ , η, z, w)

_ f (ϕ, σ )CλT[A(σ )ϕAb ]Cη[g(σ )AC ]

AzT(σAσmine)AwT(σmaxeAσ ). (15)

Here λ , η and z¤ 0, w¤ 0 are the Lagrange multipliers for the equality and
inequality constraints in (14). The necessary first-order Karush–Kuhn–
Tucker (KKT) optimality conditions read as follows:

∇ϕLG∇ϕ fCA(σ )TλG0, (16a)

∇σ LG∂σ (λTA(σ )ϕ )Cη∇g(σ )AzCwG0, (16b)

∇λ LGA(σ )ϕAbG0, (16c)

∇ηLGg(σ )ACG0, (16d)

D1zG0, D2wG0, (16e)

z¤ 0, w¤ 0, (16f)

where

D1Gdiag(σ iAσmin), D2Gdiag(σmaxAσ i)

denote diagonal matrices in the complementarity conditions.



                                  

The Hessian of the Lagrangian with respect to (ϕ, σ ) is denoted by

HGH(ϕ, σ , λ )G�0 Lϕσ

Lσϕ Lσσ
� , (17)

where

LσϕGLT
ϕσG∂σ (λTA(σ )), (18a)

LσσG∂2
σσ (λTA(σ )ϕ ). (18b)

Our purpose is to find an isolated (locally unique) local minimum of
problem (13)–(14). Assume that at least one such point exists, and denote
the solution by

Φ*_ (ϕ*, σ*, λ*, η*, z*, w*).

Following the theory in Fiacco and McCormick (Ref. 16), the standard
assumptions for the application of the Newton method to our optimization
problem are these:

(A1) Existence. There exists Φ*, solution of problem (13)–(14),
satisfying the first-order KKT conditions (16).

(A2) Smoothness. The Hessian matrices, corresponding to the
objective function, equalities, and inequalities exist and are
locally Lipschitz continuous at (ϕ*, σ*).

(A3) Regularity. The gradients of the constraints whose right-hand
side is zero (i.e., all the equalities and the active inequality con-
straints) at (ϕ*, σ*) are linearly independent.

(A4) Strict Complementarity. z*Cσ*AσmineH0 and w*CσmaxeA
σ*H0.

(A5) Second-Order Sufficiency Conditions. ηTH*ηH0, for all
vectors η∈Ker (J ), η ≠ 0, where J is the Jacobian of all con-
straints whose right-hand side is zero at (ϕ*, σ*) and
H*_H(ϕ*, σ*, λ*).

In the last few years, various primal-dual approaches have been sug-
gested. Some authors deal with the corresponding inequality constraints
adding nonnegative slack variables directly to the optimization problem; see
e.g. Refs. 3 and 9. Another approach is to apply primal-dual Newton-type
interior-point methods, based on the logarithmic barrier function method,
which was introduced by Frisch implicitly (Ref. 17) and popularized by
Fiacco and McCormick (Ref. 16) in the late 1960s. Recent studies in this
area have been reported in Refs. 11, 18, 19.



                                  

The logarithmic barrier function associated with the optimization prob-
lem (13)–(14) consists of solving a sequence of minimization subproblems
of the form

min
ϕ,σ

β (ϕ, σ , p),

β (ϕ, σ , p)_ f (ϕ, σ )Ap [log(σAσmine)Clog(σmaxeAσ )], (19)

s.t. A(σ )ϕAbG0, g(σ )ACG0, (20)

where β (ϕ, σ , p) is the barrier function and pH0 is the barrier parameter.
We suppose here that

σHσmine, σmaxeHσ ,

so that the logarithmic terms serve as a barrier. Obviously, this method is
an interior-point method, in the sense that it keeps the iterates strictly feas-
ible with respect to the inequality constraints. The subproblems (19)–(20)
are solved for decreasing values of p and have the following Lagrangian:

Lp (ϕ, σ , λ , η)_β (ϕ, σ , p)CλT[A(σ )ϕAb ]Cη[g(σ )AC].

The first-order KKT conditions for the logarithmic barrier optimiz-
ation subproblems result in

∇ϕLpG∇ϕ fCA (σ )TλG0, (21a)

∇σ LpG∂σ (λTA(σ )ϕ )Cη∇g(σ )ApD−1
1 eCpD−1

2 eG0, (21b)

∇λ LpGA(σ )ϕAbG0, (21c)

∇ηLpGg(σ )ACG0. (21d)

Comparison of (16b) and (21b) reveals that the terms pD−1
1 e and pD−1

2 e may
serve as the Lagrange multipliers z and w for the inequality constraints.
The interior-point method is now characterized by substituting the last two
complementarity conditions (16e)–(16f) by the perturbed complementarity
conditions

D1zGpe, D2wGpe. (22)

Our primal-dual interior-point algorithm is based on the Newton-type
method applied to three sets of equations: primal feasibility (ϕ, σ ), dual
feasibility (λ , η) and perturbed complementarity conditions, related to (z,
w). We denote by

Φ_ (ϕ, σ , λ , η, z, w)



                                  

the solution of the optimization subproblem. The KKT conditions (16) lead
to the following nonlinear equation:

Fp (Φ )_�
∇ϕL

∇σ L

∇λ L

∇ηL

∇zL

∇wL

�G�
∇ϕ fCA(σ )Tλ
∂σ (λTA(σ )ϕ )Cη∇g(σ )AzCw

A(σ )ϕAb

g(σ )AC

D1zApe

D2wApe

�G0, (23)

where

∇zLGD1zApe, ∇wLGD2wApe.

The search direction is given by

∆Φ_ (∆ϕ, ∆σ , ∆λ , ∆η, ∆z, ∆w).

The update Φ←ΦC∆Φ is determined by the increment ∆Φ computed by
using the Newton method for the following p-dependent system of
equations:

Kp∆ΦG−Fp (Φ ), (24)

where (24) is often referred to as the primal-dual system and is solved at
each iteration with a decreasing positive parameter p. More precisely, (24)
is equivalent to

�
0 Lϕσ Lϕλ 0 0 0

Lσϕ Lσσ Lσλ Lση −I I

Lλϕ Lλσ 0 0 0 0

0 Lησ 0 0 0 0

0 Z 0 0 D1 0

0 −W 0 0 0 D2

��
∆ϕ
∆σ
∆λ
∆η
∆z

∆w

�G−�
∇ϕL

∇σ L

∇λ L

∇ηL

∇zL

∇wL

�, (25)

where I stands for the identity matrix and

ZGdiag(zi), WGdiag(wi)

are diagonal matrices. The remaining nonzero entries of Kp are given by
(18) and the following expressions:

LλϕGLT
ϕλGA(σ ), (26a)

LλσGLT
σλG∂σ (ϕTA(σ )), (26b)

LησGLT
σηG∇Tg(σ ). (26c)



                                  

Note that LλϕGA(σ ) is the stiffness matrix of the electric potential equa-
tion, Lσσ is a diagonal matrix, and LησG∇Tg(σ ) is just one row vector.

The primal-dual matrix Kp from (24) is sparse, nonsymmetric, indefi-
nite, and usually well-conditioned; i.e., it has a bounded condition number
as p→0. Recently, several ideas have been described as how to solve the
primal-dual equations, and thus compute accurate increments (search direc-
tion). For example, one can take advantage essentially of the fact that Z
and W are diagonal matrices, and hence the primal-dual matrix can be sym-
metrized easily. This approach has been proposed recently by Forsgen, Gill,
and Shinnerl (Ref.20), who have shown that the symmetric full primal-dual
matrix produced is asymptotically ill-conditioned, but that this ill-condition-
ing is benign, in the sense that the solution of the symmetrized system is
well determined. Another approach is to transform Kp to a smaller (so-
called condensed) matrix, which is inherently ill-conditioned, but the ill-
conditioning should not necessarily be avoided and has no negative conse-
quences. For detailed discussion, see e.g. Wright (Ref. 19).

Now, our approach is to eliminate the increments for z and w from the
5th and 6th rows of (25), namely,

∆zGD−1
1 (−∇zLAZ∆σ ), (27a)

∆wGD−1
2 (−∇wLCW∆σ ). (27b)

Substituting (27) into the second row of (25), we get the following linear
system for the increments of ψ_ (ϕ, σ , λ , η):

K̃p∆ψG−ξ̃p (ψ ), (28a)

∆ψ_ (∆ϕ, ∆σ , ∆λ , ∆η), (28b)

where K̃p is the matrix and ξ̃p(ψ ) is the right-hand side of the following
system:

�
0 Lϕσ Lϕλ 0

Lσϕ L̃σσ Lσλ Lση

Lλϕ Lλσ 0 0

0 Lησ 0 0
� �

∆ϕ
∆σ
∆λ
∆η
�G−�

∇ϕL

∇̃σ L

∇λ L

∇ηL
� . (29)

The σσ -entry of K̃p is now replaced by

L̃σσGLσσCD−1
1 ZCD−1

2 W,

and the modified entry for the right-hand side is

∇̃σ LG∇σ LCD−1
1 ∇zLAD−1

2 ∇wL.



                                  

4. Transforming Null Space Iterations

In this section, we explain the way in which we solve the condensed
primal-dual system (29) to compute the search direction ∆ψ . As discussed
in Section 3, the matrix Kp (in this section, we omit the subscript p and
denote the matrix by K ) is typically indefinite. Similar indefinite systems of
linear equations arise in the computation of saddle points when solving
Stokes equations and Navier–Stokes equations. Iterative methods based
e.g., on the Uzawa algorithm for solving saddle-point problems have been
proposed by Bank, Welfert, and Yserentant (Ref. 21). Direct methods for
the solution can also be applied, where direct range space and null space
methods are distinguished. In Schulz and Wittum (Ref. 22), this distinction
has been transferred to iterative methods.

First, let us consider the following range space formulation of K :

KG�A BT

B D �G�
0 Lϕσ Lϕλ 0

Lσϕ L̃σσ Lσλ Lση

Lλϕ Lλσ 0 0

0 Lησ 0 0
� . (30)

Here,

AG�0 Lϕσ

Lσϕ L̃σσ
� , DG�0 0

0 0� ,

so that, in the Schur complement

S_DABA−1BT,

the first block A of K is taken as a pivot block and its definiteness plays a
crucial role. In many practical applications such as (i) solving discrete
saddle-point problems arising in Stokes equations and Navier–Stokes equa-
tions or (ii) linear programming problems, the block A is positive definite.
For nonlinear convex problems (i.e., convex objective function, linear equal-
ity constraints, and concave inequality constraints), the Hessian of the Lag-
rangian function is positive semidefinite. Preconditioned iterative solvers for
the corresponding saddle-point problems have been proposed, for example,
by Rusten and Winther (Ref. 23) and, in the context of multigrid methods,
by Wittum (Ref. 24).

We consider also the null space formulation of K,

KG�A BT

B D �G�
0 Lϕλ Lϕσ 0

Lλϕ 0 Lλσ 0

Lσϕ Lσλ L̃σσ Lση

0 0 Lησ 0
� , (31)



                                  

where

AG�0 Lϕλ

Lλϕ 0 �
is now an indefinite, but nonsingular matrix. Moreover, we recall that

LλϕGA(σ )

is exactly the stiffness matrix corresponding to the electric potential equa-
tion (3); hence, A−1 exists and the Schur complement, in this case

SGDABA−1BT,

is correctly defined. Furthermore, iterative solvers implementing A−1 are
already available, which is a typical situation for optimization problems,
where discretized differential equations form the bulk of the constraints.
Therefore, the null space formulation turns out to be a more natural and
attractive approach for solving the condensed primal-dual system; see e.g.
Refs. 3,11,19.

We use transforming null space iterations for our problem (29), as pro-
posed by Maar and Schulz (Ref. 3) in the context of multigrid methods.
Transforming iterations have been introduced earlier as smoothers for
multigrid methods in range space formulations by Wittum (Ref. 24). Here,
these null-space iterations are used directly as iterative solvers.

The main effort is concentrated on constructing auxiliary matrices KL

and KR, respectively called, left and right transformations, so that the fol-
lowing regular splitting is possible:

KLKKRGM1AM2 , (32)

with reasonable matrix M1 and M2∼0. The left-transforming iteration corre-
sponds to preconditioning, whereas the right-transforming iteration is ident-
ical with the distributive iteration; see Wittum (Ref. 24), where also a
complete convergence theory of the proposed method can be found.

For solving the system

K ∆ψGb,

starting with an initial guess for ∆ψ , the transforming iteration is given by

∆ψnew_∆ψoldCKRM−1
1 KL(bAK∆ψold).

Let L̃λϕ be a preconditioner for the stiffness matrix (e.g., pointwise or block-
wise ILU decomposition; Jacobi, Gauss–Seidel, or SSOR iteration). We
approximate the block A as follows:

AG�0 Lϕλ

Lλϕ 0 � ∼ �0 L̃ϕλ

L̃λϕ 0 � . (33)



                                  

Typical left and right transformations are of the form

KLGI, KRG�I −Ã−1BT

0 I �G�
I 0 −L̃−1

λϕLλσ 0

0 I −L̃−1
ϕλLϕσ 0

0 0 I 0

0 0 0 I
� .

For the regular splitting

KKRGM1AM2 ,

from (32) we obtain

KKRG�
0 Lϕλ 0 0

Lλϕ 0 0 0

Lσϕ Lσλ S̃ Lση

0 0 Lησ 0
�A�

0 0 LϕσALϕλL̃
−1
ϕλLϕσ 0

0 0 LλσALλϕL̃
−1
λϕLλσ 0

0 0 0 0

0 0 0 0
� ,

where

M1G�
0 Lϕλ 0 0

Lλϕ 0 0 0

Lσϕ Lσλ S̃ Lση

0 0 Lησ 0
�G�A 0

B S� , (34)

with

S_�S̃ Lση

Lησ 0 � ,

S̃_L̃σσALσϕL̃
−1
λϕLλσALσλL̃

−1
ϕλLϕσ.

The matrix M2 is close to 0, if a good preconditioner for the stiffness matrix
has been chosen. We solve the system (28) with

∆ψnewG∆ψoldCKRM−1
1 (−ξ̃pAK̃p∆ψold). (35)

We denote the defect by

dG−ξ̃pAK̃p∆ψold

and solve systems of the form

δGM−1
1 d, i.e., M1δGd.



                                  

Using the approximation (33) in (34), we obtain

�
0 L̃ϕλ 0 0

L̃λϕ 0 0 0

Lσϕ Lσλ S̃ Lση

0 0 Lησ 0
� �

δϕ

δλ

δσ

δη

�G�
dϕ
dλ
dσ
dη
� .

After finding

δλG+L̃−1
ϕλ dϕ , δϕG+L̃−1

λϕdλ ,

we have to solve the following problem:

�S̃ Lση

Lησ 0 � �δσ

δη
�G�dσdη �A�Lσϕ Lσλ

0 0 � �δϕ

δλ
� . (36)

Note that S̃ is a symmetric and nonsingular matrix and that Lση is a column
vector. The global matrix in (36) is symmetric and indefinite. One can also
take advantage of the LU decomposition of this matrix, namely,

�S̃ Lση

Lησ 0 �G�S̃ 0

Lησ −LησS̃
−1Lση

� �I S̃−1Lση

0 I � . (37)

In this case, solving systems with (37) requires two actions of S̃−1.
Compute now KRδ and find the increments from (35) as follows:

∆σnewG∆σoldCδσ , (38a)

∆ηnewG∆ηoldCδη , (38b)

∆ϕnewG∆ϕoldCδϕAL̃−1
λϕLλσδσ , (38c)

∆λnewG∆λoldCδλAL̃−1
ϕλLϕσδσ . (38d)

We apply the algorithm above (with a fixed number of iterations) to find
the increments of the primal and dual variables ∆ϕ, ∆σ , ∆λ , ∆η and then
use (27) to find the global search direction ∆Φ.

5. Choice of Merit Function, Steplength, and Barrier Parameter. Watchdog
Technique

In this section, we explain how to apply the Newton method to solve
the nonlinear Eq. (23), i.e.,

Fp (Φ )G0.



                                  

This problem comes from the KKT conditions, which are necessary opti-
mality conditions, so that the minimization problem (13) and the nonlinear
problem (23) are not equivalent. The Newton method may find solutions of
(23) that are not minimizers of the objective function f. These extraneous
solutions may correspond to maximizers or saddle points of f. Therefore,
the ideal variant Φ←ΦC∆Φ may not always happen, so that various modi-
fications to the basic Newton method have to be implemented to avoid
convergence to such extraneous solutions.

Two versions of the Newton method are possible, namely, trust-region
and line-search methods. Our method uses a variation of the line-search
approach; i.e., after computation of the search direction ∆Φ, we try to
choose a positive scalar α to update the solution Φ←ΦCα∆Φ measuring
the progress in minimization at each iteration.

Several different ideas have been suggested recently to define a merit
function, to control the barrier parameter p, to select the steplength α , and
to choose an appropriate convergence criterion; see e.g. Refs. 3, 9, 11, 18.
We follow mainly the strategy proposed in Ref. 11, where two merit func-
tions have been considered. Our purpose is to find simultaneously solutions
of the minimization subproblem (19)–(20) and the nonlinear primal-dual
equation (23).

To simplify the notation, we denote the primal variables by

xG(ϕ, σ ),

the dual variables by

yG(λ , η),

and the complementarity variables by

ûG(z, w).

Let the equality and inequality constraints be

c1 (x)Gc1 (ϕ, σ )GA(σ )ϕAb, (39a)

c2 (x)Gc2 (σ )Gg(σ )AC , (39b)

d1 (x)Gd1 (σ )GσAσmine, (39c)

d2 (x)Gd2 (σ )GσmaxeAσ . (39d)

Our primary merit function is based on the logarithmic barrier function
and the augmented Lagrangian term, concerning only the equality
constraints,

M_M(x, y, p, pA)

Gf (x)Ap ∑
iG1

2

log di (x)CyTc(x)C(1�2) pAc(x)Tc(x), (40)



                                  

where

c(x)G(c1 (x), c2 (x)).

The parameter pA is a fixed positive scalar, which can be changed during
the iteration in the case when

∆xG(∆ϕ, ∆σ )

is not a descent direction for the primary merit function. It is easy to show
that ∆x can be guaranteed to be a descent direction for M; i.e.,

∆xT∇xMF0,

if pA is sufficiently large. The gradient of M with respect to x is

∇xM_∇xM(x, y, p, pA)

G∇f (x)ApJT
inD

−1eCJT
eq yCpAJT

eqc(x), (41)

where

JeqG�Lλϕ Lλσ

0 Lησ
� , JinG�0 I

0 −I� ,

and Jeq and Jin are the Jacobian matrices corresponding to the equality and
inequality constraints, respectively. The nonzero entries are given by (26).
Then, we have

∆xT∇xMG∆xT(∇fApJT
inD

−1e)C∆xTJT
eq yCpA∆xTJT

eqc(x)

G∆xT(∇fApJT
inD

−1e)Ac(x)TyApAc(x)Tc(x), (42)

taking into account that

Jeq∆xG−c(x),

which is equivalent to the third and fourth rows of the system (25). Hence,

∆xT∇xMF0,

if

pAH[∆xT(∇fApJT
inD

−1e)Ac(x)Ty]�c(x)Tc(x).

Since pA can become unacceptably large as ��c�� is small, in our practical
implementation we choose

pAGmin {(5�cTc)[∆xT(∇fApJT
inD

−1e)Ac(x)Ty], 100} (43)

only in the case when

∆xT∇xM¤ 0.



                                  

If ∆x is a descent direction for M, then pA does not change and its value is
stored as chosen at each iteration.

Our secondary merit function used for the line-search procedure is the
l2-norm of the residual, given by (23). The stopping criterion ��Fp ��Ftol for
a given tolerance is considered in recent studies; see e.g. Refs. 3 and 9.
Similarly to the implementation done in Gay, Overton, and Wright (Ref.
11), we apply the watchdog technique, originally proposed by Chamberlain,
Lemaréchal, Pedersen, and Powell (Ref. 25). The main idea is to allow some
iterations to choose steplengths that are much larger than those that would
be allowed normally. More precisely, for an a priori given integer positive
parameter watchdog, we allow the primary merit function not to decrease.
However, if after watchdog iterations the primary merit function has not
been decreased, the watchdog barks, and the algorithm ensures the progress
of M with a parameter pA, as chosen in (43).

We comment now on the choice of steplengths, so that all the iterates
satisfy

d1 (x)H0, d2 (x)H0, zH0, wH0,

and the updated solution lies inside the feasible region. In El-Bakry, Tapia,
Tsuchiya, and Zhang (Ref. 9), the flexibility of choosing different step-
lengths for the various components of the solution is allowed. We consider
only two separate parameters serving as steplengths for the primal variables
and the complementarity conditions. For yG(λ , η) and ûG(z, w), we use
equal steplengths.

Let α̂σ , γ̂ z , γ̂ w be defined as

α̂σGmax{α �σmine⁄σCα∆σ⁄σmaxe}, (44a)

γ̂ zGmax{γ �zCγ ∆z¤ 0}, (44b)

γ̂ wGmax{γ �wCγ ∆w¤ 0}. (44c)

More precisely, we find that

α̂σGmin[ min
∆σ iH0

(σmaxAσ i)�∆σ i , min
∆σ iF0

(σminAσ i)�∆σ i , 1], 1⁄ i⁄N,

γ̂ zG−1�min(Z−1∆z,A1),

γ̂ wG−1�min(W−1∆w,A1),

and we define

α̂Gα̂σ , γ̂ Gmin(γ̂ z , γ̂ w).



                                  

To ensure strict feasibility, we choose a positive parameter τF1 and define
the steplengths as follows:

αGmin(1, τα̂ ), γ Gmin(1, τ γ̂ ). (45)

Some authors consider values for τ very close to unity, for example

τG0.99, or τG0.999, or τG0.9995.

Our choice of τ allows at each iteration a dependence on p, i.e.,

τG1Amin(0.01, 100p2). (46)

Now, we describe briefly the pseudo-code primal-dual algorithm from
Gay, Overton, and Wright (Ref. 11), adding some modifications. During a
given iteration, we do not require that the primary and the secondary merit
functions decrease simultaneously. First, we test if the primary merit func-
tion decreases. If so, the trial steplength is accepted and a damping of the
form α←α�2; γ ←γ �2 is not necessary. If the primary merit function does
not decrease, we check the secondary merit function. If the latter has
decreased, the steplength is successful, except when watchdog iterations
have occurred without a reduction in the primary merit function. Our
numerical experiments show that, in almost all the tests, the watchdog does
not bark, but the watchdog technique is applied to improve the reliability
of the primal-dual algorithm.

Note that a descent in the primary merit function is sought only with
respect to x, taking into account the original optimization problem. If the
iteration is successful, x and û retain their final values, and the Lagrange
multipliers for the equality constraints y are defined as the least-squares
solution of

yGmin��∇f (x)CJT
eqyAJT

inû��. (47)

Let integers itmax and Ismax are a priori given limits on the global
number of iterations and the line search loop, respectively. The value tol is
a given tolerance, taking part in the stopping criterion.

Algorithm PD.

Step 1. Let x be an initial primal variable satisfying d1 (x)H0 and
d2 (x)H0. Initialize pG1, pAG10, and set yG0, zGp�d1 ,
wGp�d2 , iterG0, watchG0, IstepsG0. For iterG0, 1, . . . ,
do, the following steps.

Step 2. Test for convergence. Choose the following stopping cri-
terion:

��Fp (x, y, û) ��Ftol, or pFtol2, or iterHitmax, or
IstepsHIsmax.



                                  

Step 3. Compute ∆x and ∆y from (38), ∆ûG(∆z, ∆w) from (27), and
find the parameters α and γ from (45).

Step 4. If ∆xT∇xM(x, y, p, pA)H0 [see (42)], update pA by (43).
Step 5. Set IstepsG0.
Step 6. If watchGwatchmax, restore x, y, û, ∆x, ∆y, ∆û, α , γ , pA ,

and Isteps from saved. Set watchGwatchC1, αGα�2,
γ Gγ �2.

Step 7. If IstepsHIsmax, go to Step 12.
Step 8. If M(xCα∆x, y, p, pA)FM(x, y, p, pA), set watchG0. Go to

Step 12.
Step 9. If watchFwatchmax and

��Fp (xCα∆x, yCγ ∆y, ûCγ ∆û) ��F��Fp (x, y, û) ��,

check the relation watchG0. If the latter is satisfied, set
MsaveGM(x, y, p, pA) and save x, y, û, ∆x, ∆y, ∆û, α , γ , pA ,
and Isteps as saved. Otherwise, set watchGwatchC1. Go
to Step 12.

Step 10. Choose new steplengths αGα�2 and γ Gγ �2.
Step 11. Set IstepsGIstepsC1.
Step 12. If watchH0 and M(xCα∆x, y, p, pA)FMsave, set watchG0.
Step 13. Find new iterates xGxCα∆x, ûGûCγ ∆û and define y from

(47).
Step 14. Update p by either procedure ETTZ or GOW (see below) and

set iterGiterC1. Go to Step 2.

Note that the restore operation from Step 6 of Algorithm PD cannot
take place before the save operation in the inner loop on Isteps (see Steps
7–11). We consider two different ways to decrease the barrier parameter p,
namely, procedures ETTZ and GOW in accordance with Refs. 9 and 11,
respectively.

Procedure ETTZ. We consider ζGmin(0.2, 100 dTû) and choose a
barrier parameter pGmin( p, ζ (dTû)�(2N )), where N is the number of finite
elements in the discrete model.

Procedure GOW. The parameter p is allowed to remain constant for
no more than 10 iterations. Otherwise, at each iteration, p decreases by a
certain amount. For more details, see Ref. 11.

6. Numerical Experiments

In this section, we give some details concerning our computations. We
solve the optimization problem (13)–(14b) with an objective function



                                  

defined in (5). The first equality constraint is related to solving the elliptic
differential equation for the electric potential ϕ; see (3)–(4). We allow here
some modification in the conductivity; namely, we consider

div(h(σ ) grad ϕ )G0, in Ω, (48a)

n · h(σ ) grad ϕG�Iν , on Γν⊂∂Ω,

0, elsewhere,
(48b)

where

h(σ )G[(σAσminC()�(σmaxAσmin)]
m, 0F([1, (49)

with mG1, 2, is treated as a conductivity. The computations were done for
(G0.01. Neumann boundary conditions were imposed, assuming the com-
patibility relation for the currents (see Section 2) on the boundary
Γν , νG1, . . . , Nc , where Nc is the number of contacts.

The computations have been carried through a rectangular domain Ω
decomposed into N uniform quadrilateral finite elements. We suppose that
the domain is an isotropic conductor. The rotated bilinear basis functions,
proposed by Rannacher and Turek (Ref. 26), were used to construct the
finite element space. The reason is that this discretization fits well with the
curl-conforming edge element discretization of equation (5) for the magnetic
vector potential, since in both cases the degrees of freedom are associated
with the edges of the elements. In the case of rotated bilinears, for a given
grid node i, iG1, 2, 3, 4, the corresponding basis function

{φ i}∈span{1, x1 , x2 , x
2
1Ax2

2}

has a value one, vanishing on the remaining midpoints. A quadrature rule
(exact for polynomials of degree three) was used to assemble the stiffness
matrix. The conductivity σG(σ i)

N
iG1 was computed at the center points of

the finite elements. Note that the diagonal matrix Lσσ from (18b) is equal
to zero when mG1 in (49), whereas it does not vanish in the case mG2.

Our primal-dual code is written in C++ using double precision binary
arithmetic. All numerical tests were run on Alpha PC164LX machine. We
choose lower and upper limits for the conductivity σminG0.01 and
σmaxG1, respectively. In all runs, an initial homogeneous distribution was
proposed with σG0.45. The constant C in (12b) is computed in accordance
with this initialization.

We apply the primal-dual Algorithm PD described in Section 5 with
itmaxG200, IsmaxG15, watchmaxG4, and tolG10−8. The ETTZ pro-
cedure from Section 5 was used to define the barrier parameter p at each
iteration. Tests with the GOW strategy show a similar behavior of the con-
vergence. Both approaches may fail when p is made too small. To avoid



                                  

this difficulty, the stopping criterion in Algorithm PD includes pFtol2,
and the parameter τ from (46) was redefined as τG0.99999 in the case
τH1A10−8.

The most time-consuming part of the algorithm during a given iteration
is to solve the condensed primal-dual system finding the increments. Two
transforming iterations were used in (35) with an initial ∆ψoldG0. Various
iterative techniques for solving systems with symmetric and indefinite
matrices of the type (36) can be implemented. We have applied the
MINRES method first developed by Paige and Saunders (Ref. 27); see also
Rusten and Winther (Ref. 23). The method generates at the kth iteration a
new solution such that the corresponding l2 residual norm decreases at each
step. An appropriate preconditioner can be used to accelerate the rate of
convergence. Note that we can also use the LU decomposition (37) and
solve systems with S̃ twice. This variant turned out to be more expensive
than the application of MINRES to the global system (36). We used a few
(for example, 20) iterations as a stopping criterion in the MINRES method.

The preconditioned conjugate gradient (PCG) method was applied to
solve systems with the stiffness matrix. Our stopping criterion was

��rk ��B−1⁄10−6��r0 ��B−1 ,

where r0 and rk are the initial and kth residuals, respectively. As a precondi-
tioner B in the PCG method, we used the symmetric successive overrelax-
ation (SSOR) iteration with a relaxation parameter ωG1.5. All iterative
procedures in our computations started with a zero initial guess.

The results from our numerical experiments for various numbers of
contacts Nc and various number of grid points on the coordinate axes Ox
and Oy, denoted by Nx and Ny , respectively, are reported in Table 1 when

Table 1. Results from applications of Algorithm PD, mG1.

Nc Nx Ny Iter p M ��Fp��2 ��û��2

2 25 25 17 4.92E−17 4.69 9.64E−4 E−9
2 30 40 19 1.97E−17 4.47 3.49E−5 E−9
4 30 40 17 2.59E−17 26.01 6.70E−5 E−9
2 50 50 19 1.28E−18 5.10 2.99E−4 E−10
3 50 50 30 6.44E−19 3.78 2.40E−4 E−11
5 50 50 20 4.57E−17 86.08 9.52E−4 E−9
6 50 50 20 9.85E−17 85.99 1.27E−3 E−9
2 60 80 38 7.76E−17 4.79 5.62E−5 E−9
3 60 80 89 7.79E−17 3.43 4.34E−3 E−9
5 60 80 20 1.81E−17 78.58 3.59E−4 E−9
3 100 100 84 3.68E−17 4.05 3.35E−4 E−9
6 100 120 24 3.46E−17 84.30 7.62E−4 E−9



                                  

Table 2. Results from applications of Algorithm PD, mG2.

Nc Nx Ny Iter p M ��Fp��2 ��û��2

2 25 25 19 4.29E−18 4.83 2.85E−5 E−9
2 30 40 44 1.22E−9 4.55 2.63E−2 E−6
4 30 40 26 8.36E−18 26.41 3.10E−5 E−10
2 50 50 90 1.18E−9 5.23 5.70E−3 E−6
3 50 50 75 1.07E−6 4.33 9.67E−3 E−4
5 50 50 57 1.10E−7 90.68 9.21E−2 E−5
6 50 50 45 9.64E−7 97.46 1.61E−2 E−4
2 60 80 29 1.35E−7 5.06 6.18E−3 E−5
3 60 80 59 2.66E−9 3.49 1.10E−2 E−6
5 60 80 64 1.22E−14 80.30 5.18E−2 E−8
3 100 100 24 1.78E−7 4.20 9.69E−3 E−5
6 100 120 43 4.18E−7 89.12 1.64E−2 E−5

mG1 and in Table 2 when mG2. The number of finite elements
NGNxNy and the dimension of the stiffness matrix (i.e., the number of grid
points where the approximated electric potential is computed) is equal to
Ny (2NxC1)CNx . We report as well the global number of iterations in the
main optimization loop (denoted by iter), the last value of the barrier par-
ameter p, the final value of the primary merit function, the norm of the
residual ��Fp�� as a secondary merit function, and the l2-norm ��û��2 related to
the complementarity conditions at the last iteration. In all the experiments,
the number of times with active watchdog mechanism, i.e., when the step
was accepted without a reduction of the primary merit function, was zero.

The numerical simulation provides a material distribution that can be
visualized by gray scales ranging from black (σGσmax) to white (σGσmin)
and by corresponding height profiles. Figures 1 and 2 display the material
distribution (50B50 mesh, 2 contacts) for mG1 and mG2, respectively.

Fig. 1. Material distribution, 50B50 mesh, 2 contacts, mG1.



                                  

Fig. 2. Material distribution, 50B50 mesh, 2 contacts, mG2.

Obviously, the observed resolution of the interface ‘‘material–no material’’
is sharper in the case mG2. Hence, comparing both figures, one can notice
easily the effect of using a higher penalty parameter mH1 in the expression
(49) for the modified conductivity. Figures 3–5 illustrate the corresponding
material distribution (50B50 mesh, mG1) for 3, 5, 6 contacts, respectively.
On the axis Oz of the height profiles, one can see the resulted values of the
conductivity running from σmin up to σmax. The convergence of the solutions
of the discretized problems to the solution of the infinite-dimensional optim-
ization problem, resulting from grid refinement, is demonstrated in Figs. 5–
6 where the latter shows the material distribution for a refined mesh
(100B100, 6 contacts, mG1) taking twice more grid points in each direc-
tion. In some experiments for mG2, we reach a small decrease in the sec-
ondary merit function. However, ��û��2 was of small order and the visualized
final optimal design appeared to be reasonable.

Fig. 3. Material distribution, 50B50 mesh, 3 contacts, mG1.



                                  

Fig. 4. Material distribution, 50B50 mesh, 5 contacts, mG1.

Fig. 5. Material distribution, 50B50 mesh, 6 contacts, mG1.

Fig. 6. Material distribution, 100B100 mesh, 6 contacts, mG1.



                                  

7. Conclusions

Summarizing, we have considered problems concerning topology opti-
mization in a conductive electromagnetic system described by the Maxwell
equations which have not been studied in the literature before. The aim of
our work has been to find an optimal distribution of the conductivity in a
two-dimensional model with a fixed shape. Since widely used structural top-
ology optimization algorithms are tailored to the underlying elasticity equa-
tion, a novel algorithmic approach had to be developed. We have used a
primal-dual Newton interior-point method featuring simultaneous sequen-
tial quadratic programming with a hierarchy of merit functions and a
watchdog strategy for convergence monitoring. The performance of the
approach has been documented by several numerical results displaying both
the optimal material distribution as well as the convergence history.
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