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the 20th century. The results show high conformity with 
previous model evaluation studies. The metrics reveal that 
mean of precipitation and both temperature mean and trend 
agree well with the reference dataset and indicate improve-
ment for the more recent ensemble mean, especially for 
temperature. The method is highly transferrable to a vari-
ety of further applications in climate science. Overall, there 
are regional differences of simulation quality, however, 
these are less pronounced than those between the results 
for 50-year mean and trend. The trend results are suitable 
for assigning weighting factors to climate models. Yet, the 
implications for probabilistic climate projections is strictly 
dependent on the region and season.

Keywords Model-weighting · CMIP3 · CMIP5 · 
Mediterranean · Spatial scales · Probabilistic climate 
projections

1 Introduction

In spite of increasing knowledge of climatic processes and 
enhanced computer performances, the estimation of uncer-
tainty about future regional climate change remains a par-
ticularly challenging task (e.g. Power et  al. 2012; Knutti 
and Sedláček 2012). It is crucial to quantify uncertainty to 
allow sound adaptation strategies and sustainable political 
decisions (e.g. Hawkins et al. 2016; Clark et al. 2016).

The ideal way of evaluating climate models is still sub-
ject to discussion (e.g. Gleckler et al. 2008; Knutti 2010). 
Different metrics have been used in climate science to 
evaluate different model characteristics (e.g. Bishop and 
Abramowitz 2013; Sanderson et al. 2015; Ring et al. 2016). 
Further, the model performance does not only depend on 
the choice of metrics but of region and variable as well. 

Abstract A major task of climate science are reliable pro-
jections of climate change for the future. To enable more 
solid statements and to decrease the range of uncertainty, 
global general circulation models and regional climate 
models are evaluated based on a 2 × 2 contingency table 
approach to generate model weights. These weights are 
compared among different methodologies and their impact 
on probabilistic projections of temperature and precipita-
tion changes is investigated. Simulated seasonal precipita-
tion and temperature for both 50-year trends and climato-
logical means are assessed at two spatial scales: in seven 
study regions around the globe and in eight sub-regions 
of the Mediterranean area. Overall, 24 models of phase 3 
and 38 models of phase 5 of the Coupled Model Intercom-
parison Project altogether 159 transient simulations of pre-
cipitation and 119 of temperature from four emissions sce-
narios are evaluated against the ERA-20C reanalysis over 
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This study utilizes simple but powerful metrics, with uni-
versal applicability, based on a 2 × 2 contingency table, to 
address the assessment of uncertainty of temperature and 
precipitation changes towards the end of the twenty-first 
century. We consider 24 models from CMIP3 and 38 mod-
els from CMIP5 (Randall et  al. 2007; Flato et  al. 2013) 
which participated in the fourth (AR4) and fifth Assess-
ment Report (AR5) from 2007 to 2013, respectively. In 
addition, 18 simulations from RCMs from the World Cli-
mate Research Program Coordinated Regional Downscal-
ing Experiment (CORDEX) are considered (Giorgi et  al. 
2009). The 2 × 2 table metrics have frequently been used 
in hydrological and meteorological research (e.g. Stephen-
son 2000; Thornes and Stephenson 2001; Armistead 2013), 
however, they have barely been used in climate science 
(Woodcock 1976; Paeth et  al. 2006). Most recent studies 
utilize contingency tables for numerical weather prediction 
(NWP) (e.g. Done et al. 2004; Ghelli and Primo 2009; Gill 
and Buchanan 2014; Wilkinson 2017).

Previous studies show distinct differences in simulation 
quality for different regions and variables (i.e. Power et al. 
2012; Miao et al. 2014; Eum et al. 2014; Ring et al. 2016). 
As a consequence, Perkins et al. (2007), Gillett et al. (2015) 
and Haughton et  al. (2015) showed that sophisticated 
weighting of climate models may affect probability den-
sity functions (PDF) of future climate change and, hence, 
could decrease the range of projected climate change. How-
ever, Knutti et  al. (2010) suggested to be cautious when 
weighting multi model ensembles (MMEs). The projected 
changes of the CMIP3 and CMIP5 MMEs are estimated 
with an equally weighted PDF (Tebaldi et  al. 2007). We 
compare this PDF with a metric-weighted PDF in order 
to assess the change in uncertainty. This evaluation is per-
formed for each region, season and scenario. While most 
studies are limited to a specific region or a preselection 
of models (i.e. Sheffield et al. 2013; Miao et al. 2014) we 
explore an easily transferable metric for various sizes and 
types of study areas for all available GCMs. We analyze 
seven regions at continental level and eight sub-regions at 
sub-continental level located in the Mediterranean Basin 
to assess the metrics’ transferability. The focus is on seven 
globally distributed regions with different climatic and sur-
face characteristics.

We apply the 2 × 2 table metrics to determine and com-
pare weights for each model for 50-year trends and cli-
matological means from 1960 to 2009 of seasonal and 
annual precipitation sums and temperature means. As ref-
erence data and for the derivation of model weights, we 
use the ERA-20C reanalysis (Poli et  al. 2016) because 
they are available over the entire 50-year time period. We 
expect that in terms of temperature simulation the applied 
skill scores are higher for CMIP5 compared with CMIP3 
(Reichler and Kim 2008; Knutti et  al. 2013; Wright et al. 

2016; Koutroulis et  al. 2016). A general decrease of pre-
cipitation in the dry season of the Mediterranean was found 
by Giorgi and Lionello (2008). However, the pattern of pre-
cipitation changes is spatially quite incoherent. Therefore, 
the assessment of weighting metrics is very challenging 
(Hewitson and Crane 2006; Hawkins et al. 2016).

Section  2 is dedicated to the considered reference and 
model datasets. Further, we present the seven large study 
areas as well as the eight sub-regions of the Mediterra-
nean. The applied 2 × 2 table metrics and other methods 
are explained in Sect.  3. Section  4 deals with the results, 
comprising the derived coefficients of each simulation for 
all regions and seasons, the correlation between different 
varieties of the skill scores, and the systematic differences 
between CMIP3 and CMIP5. In addition, we analyze the 
impact of the weighting schemes on PDFs of future climate 
change and extend the analysis to the eight sub-regions 
of the Mediterranean area to explore the scale effect. In 
Sect. 5, we summarize and discuss our results, while con-
clusions are drawn in Sect. 6.

2  Study areas and datasets

2.1  Study areas

The seven large regions and eight Mediterranean sub-
regions are depicted in Fig.  1. We aim to cover a broad 
spectrum of climates as well as the entire globe including 
water and land surface (Globe). Simulation performance 
over the oceans is analyzed for the tropical Atlantic (Atlan-
tic) and Pacific Oceans (Pacific), both spanning from 30°S 
to 30°N, and the polar to subpolar Arctic Ocean north of 
75°N (Arctic). The remaining three study areas cover land 
surfaces only: Africa and the Arabian Peninsula with Iran 
(Africa), North and Central America (America) and the 
Mediterranean region (Medit), which is the smallest of the 
large study areas. All of these study areas have high rele-
vance for the study of climatic phenomena and extremes, 
i.e. El Niño (Pacific), hurricanes (Atlantic, America) or 
droughts (Africa, Medit) which stresses the need to reduce 
uncertainty of climate change. In order to analyze the trans-
ferability of our results to smaller scales, we divided Medit 
into eight sub-regions (Fig. 1). The Mediterranean is a hot 
spot for future climate change and, thus, regional differ-
ences are of high relevance (Giorgi 2006; Diffenbaugh and 
Giorgi 2012; Paeth et al. 2016). The eight sub-regions have 
been identified by means of a principal component analy-
sis of annually aggregated precipitation sums for the last 
century. Thus, we received eight rather homogeneous areas 
which differ in terms of the amount of precipitation. They 
are named as follows: North Atlantic, Spain, North Africa, 
Italy, Balkans, Aegean, Black Sea, Middle East (Fig. 1).
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2.2  Validation data

We use seasonal and annual sums of precipitation and 
mean temperature from the ERA-20C reanalysis pro-
vided by the Centre for Medium Range Weather Fore-
casts (ECMWF) for validation (Poli et al. 2016). It offers a 
physically consistent data set with global coverage of tem-
perature and precipitation at a T159 resolution, provided 
in 1° × 1° grid, for the 20th century without any missing 
values. Albeit only a substitution for observational data, 
previous studies confirmed ERA-20C to be a reliable basis 
even for climatological extremes of precipitation and tem-
perature in the period after 1950 (Donat et al. 2016; Dittus 
et al. 2016). Furthermore, this study focuses on both land 
and sea surfaces and, hence, we prefer ERA-20C over other 
frequently used observational datasets such as e.g. the Cli-
mate Research Unit (CRU) dataset. Nonetheless, as a sup-
plement we use CRU TS3.23 (Mitchell and Jones 2005) 
and the E-OBS V12 dataset (Haylock et  al. 2008) for the 
Medit sub-regions to assess the sensitivity of our results 
to different reference data sets (Table 1). Both datasets are 
based on observational data provided by weather stations 
and are interpolated on a regular 0.5° × 0.5°/0.25° × 0.25°, 
respectively. CRU has a spatial resolution of 0.5°  ×  0.5° 
and E-OBS of 0.25°  ×  0.25°. All validation datasets are 
preprocessed with a REMAPCON interpolation by the Cli-
mate Data Operators (CDO) (Schulzweida et al. 2009) on a 
2° × 2° grid to enable best comparability of metrics.

2.3  Model data

In this study, we use 20th century simulations (20C3m/
Historical) and future projections with different emissions 
scenarios of all available CMIP3 and CMIP5 GCMs. Four 
emissions scenarios are taken into account: the Special 
Report on Emissions Scenarios (SRES) A1B, A2 scenarios 
for CMIP3 (Nakicenovic et al. 2000) and the representative 
concentration pathways (RCP) RCP4.5 and RCP8.5 scenar-
ios for CMIP5 (Moss et al. 2010).

The impacts of weighting metrics are assessed for the 
moderate scenarios A1B (CMIP3) and RCP4.5 (CMIP5) as 
well as for the high-end scenarios A2 (CMIP3) and RCP8.5 
(CMIP5) with a substantial increase of emissions (Randall 
et al. 2007; Flato et al. 2013). They represent a broad cov-
erage of different future climatic pathways. RCP4.5 repre-
sents rather low greenhouse gas emissions, A1B interme-
diate and RCP8.5 and A2 both high emissions. Detailed 
descriptions are published by Nakicenovic et al. (2000) and 
Moss et al. (2010). Since for some models only precipita-
tion or temperature were available, we analyze 159 simula-
tions of precipitation and 119 of temperature for the 20th 
century. For the moderate scenario A1B (RCP4.5) there are 
54 (105) simulations of precipitation and 57 (62) for tem-
perature of CMIP3 (CMIP5). A total of 39 (82) simulations 
of precipitation and 39 (55) simulations of temperature are 
available for A2 (RCP8.5) scenario. Since most historical 
simulations of CMIP3 (CMIP5, CORDEX) end in 1999 
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Fig. 1  Overview of the seven large study areas and the eight sub-regions of the Mediterranean area

Table 1  Datasets used for 
evaluation

Timeframe Spatial coverage References

ERA-20C 1900–2009 Global Poli et al. (2016)
CRU (TS3.23) 1901–2014 Global (land only) Mitchell and Jones (2005)
E-OBS (v12) 1950–2015 Europe (land only) Haylock et al. (2008)
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(2005) we use the first years of the A1B (RCP4.5) scenario 
to complete the 50-year timeframe until 2009. The main 
reason for this approach is that for each simulation of A2 
(RCP8.5) a corresponding simulation of A1B (RCP4.5) is 
available but not the other way around. Hence, we can cal-
culate a unique weight of each model which can be applied 
on both emission scenarios. Further, the prescribed forcing 
of the scenarios is rather similar in the first years of the 21st 
century.

Tables 2 and 3 show a detailed summary of which model 
participates in which scenario, which variable and how 
many simulations are available. All models are preproc-
essed with an inverse distance interpolation to a common 
2°  ×  2° grid to guarantee the spatial resolution for each 
simulation (Babak and Deutsch 2009).

In addition to the GCMs, we also apply our analysis to 
RCMs provided by the CORDEX project for the Medit 
study area and its eight sub-regions (Giorgi et  al. 2009). 
The regional climate simulations use boundary conditions 

of GCMs from CMIP5 (Jacob et  al. 2014). RCMs offer 
advantages such as high spatial resolution (0.11°–0.44°) 
but also might be influenced by uncertainty due to affection 
of coarse-scale systematic errors from GCMs (Giorgi et al. 

Table 2  Climate models of CMIP3 used in this study (Randall et al. 
2007)

The numbers indicate how many simulations of each model (scenario, 
variable) are used in this study

Models Precipitation Temperature

Scenario

A1b A2 A1b A2

BCCR_BCM2.0 1 1 1 1
CGCM3.1 (T47) 2–6 2–6 2–6 2–6
CGCM3.1 (T63) 7 – 7 –
CNRM-CM3 8 7 8 7
GFDL-CM2.0 9 8 9 8
GFDL-CM2.1 10 9 10 9
GISS-AOM 11–12 – 11–12 –
GISS-EH 13–15 10 13–15 10
GISS-ER 16–17 – 16–20 –
FGOALS-g1.0 18–20 – 21–23 –
INM-CM3.0 21 11 24 11
IPSL-CM4 (LMDZ) 22 12 25 12
INGV-SXG 23 13 26 13
MIROC3.2 (hires) 24 – 27 –
MIROC3.2 (medres) 25–27 14–16 28–30 14–16
MRI-CGCM2.3.2 28–32 17–21 31–35 17–21
ECHO-G 33–35 22–24 36–38 22–24
CSIRO-Mk3.0 36 25 39 25
CSIRO-Mk3.5 37 26 40 26
ECHAM5/MPI-OM 38–41 27–29 41–44 27–29
CCSM3 42–48 30–33 45–51 30–33
PCM 49–52 34–37 52–55 34–37
UKMO-HadCM3 53 38 56 38
UKMO-HadGEM1 54 39 57 39

Table 3  Climate models of CMIP5 used in this study (Flato et  al. 
2013)

The numbers indicate how many simulations of each model (scenario, 
variable) are used in this study

Models Precipitation Temperature

Scenario

RCP4.5 RCP8.5 RCP4.5 RCP8.5

ACCESS1-0 1 1 1 1
ACCESS1-3 2 2 2 2
BCC-CSM1.1 3 3 3 3
BCC-CSM1.1 (m) 4 4 4 4
CanESM2 5–9 5–9 5–9 5–9
CCSM4 10–15 10–15 10–15 10–15
CESM1-BGC 16 16 16 16
CESM1-CAM5 17–19 17–19 17–19 17–19
CMCC-CM 20 20 20 20
CMCC-CMS 21 21 21 21
CNRM-CM5 22 22–26 22 22
CSIRO-Mk3-6-0 23–32 27–36 23–32 23–32
CSIRO-Mk3L-1-2 33–35 – 33–35 –
EC-EARTH 36–39 37–41 – –
FGOALS-g2 40 42 36 –
FIO-ESM – – 37 –
GFDL-CM3 41 43 38 33
GFDL-ESM2G 42 44 39 34
GFDL-ESM2M 43 45 40 35
GISS-E2-H-CC 44 46 – –
GISS-E2-H 45–60 47–51 – –
GISS-E2-R-CC 61 52 – –
GISS-E2-R 62–78 53–57 – –
HadGEM2-AO 79 58 41 36
HadGEM2-CC 80 59 – –
HadGEM2-ES 81–84 60–63 – –
INMCM4 85 64 42 37
IPSL-CM5A-LR 86–89 65–68 43–46 38–41
IPSL-CM5A-MR 90 69 47 42
IPSL-CM5B-LR 91 70 48 43
MIROC5 92–94 71–73 49–51 44–46
MIROC-ESM-CHEM 95 74 52 47
MIROC-ESM 96 75 53 48
MPI-ESM-LR (ECHAM6) 97–99 76–78 54–56 49–51
MPI-ESM-MR (ECHAM6) 100–102 79 57–58 52
MRI-CGCM3 103 80 60 53
NorESM1-ME 104 81 61 54
NorESM1-M 105 82 62 55
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2009; Pielke and Wilby 2012; Ayar et al. 2016). Since the 
18 simulations of CORDEX (see Table 4) cover a shorter 
historical timeframe starting not earlier than 1970, the first 
decade of our 50-year investigation period is missing.

3  Methodology

In this study we explore six evaluation metrics based on 
a 2 × 2 table, providing insight in the differences of each 
metric and its suitability for model weighting. Originally, 
such contingency tables are used to measure correlations of 
pairwise nominal data. All metric data can be transformed 
into nominal data by implementing a threshold value (TV) 
in order to categorize the data e.g. into two groups: above 
and below or equal this TV. The applied metrics utilize a 
pairwise grid box-based comparison between observa-
tional and model data. This aspect is similar in Numerical 
Weather Prediction (NWP) where 2 × 2-table approaches 
are frequently used to estimate success of forecasts (e.g. 
Ghelli and Primo 2009; Done et al. 2004). However, gener-
ally NWP contingency tables are used to verify forecasts 
of events, e.g. observed tornadoes in terms of hit- or false 
alarm rates (Wilks 2006; Stephenson 2000). In this study, 

the basic idea is transferred to evaluate climate models. 
In contrast to NWP, we use this 2 × 2-table for calculating 
measures of proximity between the GCMs’ regional pat-
terns of precipitation and temperature with those of the 
observations.

First, we calculated the changes in each dataset for each 
grid box. This was performed for every region and season. 
Here, we defined the difference of the mean over the first 
15  years (1960–1975) and the mean of the last 15  years 
(1995–2009) as ‘trend’ to avoid the restrictions of a lin-
ear regression. This turned out to be slightly more robust 
for the sub-regions of Medit than the common regression 
coefficient. For each region and season the regional mean 
of the trends was calculated as TV. This was performed 
separately for each climate model and the evaluation data. 
Since a change of input variables offers further achieve-
ments with little effort we expand our entire study on the 
50-year mean. Finally, we compare each grid box for every 
situation (region, season) for simulation and evaluation 
data. Since both regional means are calculated individually 
for model and observational data, all 2 × 2-table approaches 
basically measure the differences of regional distribution.

We consider the regional mean of trend and climato-
logical mean as TV the most appropriate to estimate model 
performances. As an alternative the median or other per-
centiles could be used. However, those measures are insen-
sitive to outliers and extreme values, what we consider a 
disadvantage for our study. Also, mainly due to the rela-
tively small numbers of gridpoints available for the Medi-
terranean study areas, the use of more extreme percentiles 
would result in rather similar coefficients. Thus, the 2 × 2 
table is filled as shown in Table 5.

All grid boxes with values of the considered quantity 
that exceed the respective TV for both datasets are counted 
as a. Each grid box underrunning the TV in both datasets 
is counted as d. The fields b and c are filled with the counts 
of grid boxes with a disagreement between simulation and 
validation data. Therefore, any bias between observational 
and model data is removed at this point as the contingency 
table only measures the relative behavior to both individ-
ual TVs. As a result, high values for a and d are equiva-
lent to a high agreement of the respective simulation and 
the evaluation dataset. Based on these four values a, b, c, d, 
we calculate several skill scores to gain the gross weight of 
each simulation. The choice of the applied six skill scores 
is inspired by and named corresponding to Stephenson 
(2000), expended by the phi-correlation (e.g. Bortz et  al. 
2008). All metrics in Table 6 are based on the same 2 × 2 
table approach and only differ in terms of the formula and 
range. For reasons of clarity, we first show the results of 
the phi-correlation in Sect.  4.1–4.4. The results of all six 

Table 4  Regional climate models of CORDEX used in this study 
(Jacob et al. 2014)

Global model Regional model Resolution

CNRM-CERFACS-CNRM-
CM5

SMHI-RCA4 0.11° × 0.11°

ICHEC-EC-EARTH SMHI-RCA4 0.11° × 0.11°
ICHEC-EC-EARTH DMI-HIRHAM5 0.11° × 0.11°
IPSL-IPSL-CM5A-MR SMHI-RCA4 0.11° × 0.11°
MOHC-HadGEM2-ES SMHI-RCA4 0.11° × 0.11°
MPI-M-MPI-ESM-LR SMHI-RCA4 0.11° × 0.11°
CCCma-CanESM2 SMHI-RCA4 0.11° × 0.11°
CNRM-CERFACS-CNRM-

CM5
SMHI-RCA4 0.11° × 0.11°

CSIRO-QCCCE-CSIRO-
Mk3-6-0

SMHI-RCA4 0.11° × 0.11°

ICHEC-EC-EARTH SMHI-RCA4 0.44° × 0.44°
ICHEC-EC-EARTH KNMI-RACMO22E 0.44° × 0.44°
ICHEC-EC-EARTH DMI-HIRHAM5 0.44° × 0.44°
IPSL-IPSL-CM5A-MR SMHI-RCA4 0.44° × 0.44°
MIROC-MIROC5 SMHI-RCA4 0.44° × 0.44°
MOHC-HadGEM2-ES SMHI-RCA4 0.44° × 0.44°
MPI-M-MPI-ESM-LR SMHI-RCA4 0.44° × 0.44°
NCC-NorESM1-M SMHI-RCA4 0.44° × 0.44°
NOAA-GFDL-GFDL-ESM2M SMHI-RCA4 0.44° × 0.44°
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metrics are compared in Sect. 4.5. In the following, simula-
tion performance or quality is understood as a measure of 
similarity between the spatial patterns of model and evalua-
tion data indicated by the metrics.

For each simulation we get one individual coeffi-
cient for every skill score. For models that have more 
than one simulation, the mean over the coefficients of 
all simulations is used to produce the model coefficient. 
To eliminate negative values we used exponential (exp.) 
coefficients to the basis of e for all simulations. This is 
necessary for the Log Odds-metric which has a theo-
retical range from negative to positive infinity. Next, the 
final (raw) weight is calculated by dividing the respec-
tive exp. coefficient by the sum of all exp. coefficients 
of a specific situation (region, season). Thus, for each 
model a raw weight can be calculated. Finally, as a 
weighting approach (WA1) we calculate the final weight 
for each model of CMIP3 and CMIP5 by dividing each 
model’s raw weight by the sum over all raw weights 
over the MME. Based on these values the projections 
of CMIP3 and CMIP5 are weighted and a probability 
density function (PDF) is estimated. Further, we apply 
a second approach (WA2) for those metrics with a range 
starting below zero. Here, all simulations with negative 
coefficients were assigned zero weight. Sect. 4.1–4.5 are 
based on WA1, while the results of WA2 are shown in 
Sect. 4.6.

4  Results

4.1  Annual analysis of phi-coefficients

In Fig.  2, the Phi coefficients for annual precipitation on 
the left and annual mean temperature on the right for all 
main study areas are displayed. The black circles show 
the results for the trend and the white circles those for the 
climatological mean. On the abscissa the simulations are 
numbered. The assignment of each number can be taken 
out of Table 2 for CMIP3 and Table 3 for CMIP5. Since the 
original Phi coefficients are displayed, a high positive (neg-
ative) correlation of model and evaluation dataset is indi-
cated by values close to 1 (−1) and no correlation around 
0. Throughout all simulations and regions, the coefficients 
of the 50-year mean exceed those of the 50-year trend. For 
the 50-year trend of precipitation, for almost all regions the 
coefficients are equally spread and centered around zero, 
except for Globe. Here, we find a mean over all simulations 
of 0.18. The spread of coefficients is rather small with a 
minimum of −0.02 for GISS-EH (CMIP3) and a maximum 
of 0.29 for CGCM3.1 (CMIP3). For the others six regions 
the spread of coefficients is much wider. Overall, the high-
est coefficient is 0.44 found for MRI-CGCM2.3.2 (CMIP3) 
in Medit, while the lowest value is −0.43 (HadGEM2-ES, 
CMIP5) in the Arctic. Anyway, the means over all simu-
lations are lower than for the Globe with a minimum of 
−0.04 for America and a maximum of 0.04 for Medit.

For the 50-year precipitation mean, the lowest coeffi-
cient is 0.20 for the Atlantic while the highest result is 0.91 
for Africa. For all study areas, mean values over all simu-
lations are between 0.58 for the Atlantic and 0.78 for the 
Globe. Here, the best results overall are shown with a mini-
mum coefficient of 0.67. While the Globe, America and 
Africa show rather homogenous values, the other regions 
exhibit a similar spread as for the 50-year trends but on a 
generally higher level.

For the 50-year trend of temperature, there are higher 
coefficients across all study areas. Especially the Globe, 
Medit, Arctic and Atlantic all have simulations with values 

Table 5  The basic 2 × 2 table for the applied metrics

All cells (a, b, c, d) are filled based on the over-/underrun of the 
threshold x (for evaluation data) or y (for simulation)
x regional eval. data mean, y regional sim. data mean

Evaluation data 
value ≥ threshold x

Evaluation data 
value < threshold x

Ʃ

Simulation value ≥ 
threshold y

a b a + b

Simulation value < 
threshold y

c d c + d

Ʃ a + c b + d n

Table 6  Overview of the 
applied 2 × 2 table metrics

Skillscore Formula Range References

Phi (ad−bc)
√

(a+b)(c+d)(a+c)(b+d)

[−1,1] i.e. Bortz et al. (2008)

Chi2 (CHI) (ad−bc)2

(a+b)(c+d)(a+c)(b+d)

[0,1] Doolittle (1885)

Heidke (HEI) 2(ad−bc)

(a+c)(c+d)+(a+b)(b+d)
[−1,1] Doolittle (1888) and 

Heidke (1926)
Gilbert (GSS) a

a+b+c
[0,1] Gilbert (1884)

Pierce (PIE) ad−bc

(a+c)(b+d)
[−1,1] Pierce (1884)

Log odds (LOR) log a + log d − log b − log c [−∞,∞] Stephenson (2000)
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above 0.64. For America and Africa, the majority of coef-
ficients is positive with a less pronounced spread compared 
to the other study areas. The distribution of coefficients 
for the Pacific temperature is almost similar to the one of 
precipitation. Here, the mean is 0.01 for temperature and 
−0.03 for precipitation. Further, there are differences in the 
spread between the other regions as well. While America, 
Africa and Pacific have a spread of maximally 0.65, the 
amplitude for the other four regions is 0.97 and higher. The 
highest Phi coefficients are again achieved for Medit with 

0.71 by CSIRO-Mk3-6-0 (CMIP5) while the minimum is 
−0.58 for CCSM3 (CMIP3) in the Atlantic. The results for 
the 50-year mean of temperature are very homogeneous for 
all regions. The minimum mean over all simulations is 0.73 
for the Arctic, for which we also see a minimum coefficient 
of 0.33. For the other regions, there are overall very high 
coefficients from minimum 0.59 (Atlantic) to maximum 
0.97 (Medit, Globe, America). Especially the results for 
Globe, America, Pacific and Medit are on a constantly high 
level with means from 0.84 (Medit) to 0.95 (Globe).
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Overall, we see strong differences in the evaluation 
between 50-year trends and means. The evaluation of the 
means indicates a rather good performance of GCMs for 
both precipitation and temperature for all study areas. The 
analysis of the 50-year trend shows a more differentiated 
result between temperature and precipitation and a higher 
variability of Phi coefficients among study areas. However, 
the average coefficients of temperature are on a higher level 
for both mean and trend.

4.2  Seasonal analysis of phi-coefficients

In Fig.  3, seasonal phi-coefficients for 50-year trends of 
precipitation and temperature are displayed for the Globe. 
The seasons are defined by 3 months abbreviated with the 
first letter of each month (e.g. DJF for December, January 
and February). As in Fig.  2, the simulation number on 
the abscissa can be decoded with Tables 3 (CMIP3) and 
4 (CMIP5). For precipitation the highest coefficients are 
found for annual values with a mean of 0.18. However, 
the annual coefficients are only slightly higher compared 
to those of maximally 0.16 in SON and minimally 0.10 in 

JJA. Overall, we see no simulation exceeding the others 
in all seasons. Apparently there is a ranking of seasons 
rather than a ranking of simulations in this context. This 
impression is even stronger for temperature. The annual 
mean is highest with 0.42 and the minimum is 0.25 in 
JJA. DJF and SON are similar to annual, both 0.40, while 
MAM is intermediate between JJA and the other seasons 
with 0.35. As for precipitation, no simulation outper-
forms the others in all seasons. However, there are some 
simulations with all seasons above 0.4 while others show 
several negative coefficients. For example, the mean of 
CNRM-CM3 (CMIP3) over all seasons is 0.01 against 
0.51 for CCSM4 (CMIP5). Overall, for temperature a 
much higher spread is found for all seasons in contrast 
to quite homogeneous coefficients based on precipitation. 
For the other study regions, the findings are similar to 
the ones of the Globe (not shown), even though there is 
a shift of the mean values from one region to another as 
seen in Sect. 4.1. The results for 50-year means of both 
precipitation and temperature are similar in heterogeneity 
but extend over an even smaller range than that shown in 
Fig. 3.
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4.3  Regional robustness of phi-coefficients

The regional robustness of Phi coefficients for each season 
is shown in Fig.  4. Here, the analysis of regional robust-
ness focuses on the match of weights between different 
region. For this, the Spearman rank correlation (von Storch 
and Zwiers 1999) between all weights of each study areas 
is depicted for precipitation in the upper left part of each 
matrix while temperature correlations are shown in the 
lower right part. In the first row, the 50-year trend corre-
lations are shown, while the results for the means are in 
the second row. As for the trend, most correlations are on 
a rather low level. There is an equal ratio between posi-
tive and negative correlation coefficients. However, the 
Globe shows positive correlations for almost every season 
and region for both temperature and precipitation. We find 
maximum values between 0.41 and 0.53 for the correla-
tion between Globe and Africa, Pacific as well as Arctic. 
Most positive values are found in MAM for precipitation 
and DJF for temperature. However, for most regions the 
correlation is between −0.2 and +0.2 and, hence, reflects 
a low regional robustness of this metric. Overall, 80 of 105 
(76.2%) correlations are positive for precipitation and 67 
(63.8%) for temperature. Here, the mean over all fields is 

0.11 (0.06) for precipitation (temperature). Even though the 
phi-coefficients of temperature are generally higher than 
those of precipitation (see Sect. 4.2), there are no system-
atic differences in the regional correlation of phi-coeffi-
cients between precipitation and temperature for most study 
areas.

The analysis of the 50-year mean shows 98 positive 
correlations (93.3%) for precipitation and 94 (90.0%) for 
temperature. Especially for annual, MAM and SON means 
there are almost no negative correlations for neither precip-
itation nor temperature. Overall, there is higher correlation 
between the rankings of the different regions compared to 
those of the trend. The mean over all fields is 0.36 for pre-
cipitation and 0.24 for temperature.

The ranking of Phi coefficient metric indicates that a 
simulation that captures the mean of the reference data in 
one region is likely to perform well in another region as 
well. In contrast, one cannot expect that the same simula-
tion has a high skill capturing the trend as well.

4.4  Performance of CMIP3 versus CMIP5

Figure  5 shows the mean phi-coefficients from CMIP3 
(black) and CMIP5 simulations (gray) for all study areas. 
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The results for annual, JJA and SON precipitation (left) 
and mean temperature (right) are displayed. The bars 
show the results for the 50-year trend, while the circles 
indicate the coefficients based on means. The Phi coef-
ficients are always higher for means than for trends. The 
MME results for the mean indicate only minor differ-
ences between the study areas and seasons. However, for 
both precipitation and temperature the weakest results are 
found in the Arctic with a minimum of 0.42 for JJA pre-
cipitation and a maximum of 0.74 for MAM temperature 
(not shown in Fig. 5). For the other regions, most MME 
mean coefficients are rather high with a maximum of 0.95 
for global SON temperature. Furthermore, we notice that 

CMIP5 achieves slightly better results than CMIP3 for 
almost every region and season.

The picture for 50-year trends is different. Here, 
the highest means of precipitation for both CMIP3 and 
CMIP5 are found for the Globe. On average, CMIP5 is 
slightly improved compared with CMIP3. The best result 
for precipitation is 0.19 for annual values in CMIP5 for 
the Globe while the minimum is 0.1 for the Pacific JJA 
means from CMIP3. The other regions show rather weak 
coefficients from both CMIP3 and CMIP5 within ±0.1. 
A statement on which MME shows better results appears 
inappropriate given these low values.
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For temperature trends, there is high divergence between 
study areas and seasons. The annual mean values are above 
0.3 for both CMIP3 and CMIP5 for Africa and the Globe. 
The Pacific and Arctic means are below 0.15. In SON, 
CMIP3 and CMIP5 show positive means for all regions. 
Furthermore, most regions with high annual mean correla-
tions show good results in SON as well. In JJA the weakest 
performance of CMIP3 and CMIP5 is found for America. 
In contrast, the best performance can be identified for the 
Globe and Africa throughout all seasons. In addition, we 
find the CMIP5 coefficient mean outperforming the CMIP3 
coefficient mean in all seasons and most regions. For exam-
ple, the Atlantic mean is increased by 0.21 (annual) and 
0.22 (DJF).

4.5  Comparison of different metrics

The results so far are solely based on the phi-coefficient. In 
Fig. 6, six different metrics (see Table 6) based on the same 
2 × 2 table (see Table 5) are compared with each other over 
all regions and seasons. The results are split into precipita-
tion and temperature for both CMIP3 and CMIP5.

Figure 6 visualizes the rank correlation of the weights of 
the 50-year trend in the top left part and equivalent of the 
50-year mean in the bottom-right part. The diagonal shows 
the Spearman correlation between the weights for trends 
and means using the same metric. For 50-year trends we 
find a very close correlation above 0.95 between the Phi-, 
Heidke-, Pierce- and Log Odds Ratio-skill scores for both 
precipitation and temperature. The correlation with the Gil-
bert metric (GSS) is slightly weaker but still very high with 

a correlation of minimally 0.89 for precipitation and 0.93 
for temperature with the four metrics mentioned before. 
However, the results of the Chi2-skill score (CHI) are dif-
ferent. Here the maximum correlation for precipitation is 
0.14 and 0.56 for temperature. The reason for this is that 
CHI is not designed to distinguish between negative and 
positive coefficients from the 2 × 2 table because all table 
entries are squared and accumulated in CHI. This effect 
is much weaker for temperature because most simulations 
show a high compliance with the reference data and, hence, 
positive values prevail in all metrics. As for the other met-
rics, the actual ranking of models over different regions 
and seasons is basically the same for five out of four skill 
scores. The results for 50-year means show for all combina-
tions a spearman correlation in the range from 0.70 to 0.99. 
Again the highest correlations are found for the combina-
tion of Phi, HEI and PIE. CHI now agrees more with the 
other metrics. The correlations for the same metric between 
the rankings based on trends and means indicates no con-
nections. Here, all metrics show values within ±0.12 for 
both CMIP3 and CMIP5. Therefore, we have to conclude 
that models with high performance in the simulation of the 
trend are not equally well performing for the climatological 
mean. This applies to both precipitation and temperature.

4.6  Impact of weighting on PDFs

Figure 7 illustrates the impact of applied weights on proba-
bilistic projections of precipitation and temperature for 
CMIP3 and CMIP5 and different emissions scenarios. All 
weights are based on Phi coefficients from 50-year trends. 
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We show the effects for annual values in the Pacific and 
America regions. The abscissa displays the changes from 
the end of the 21st compared to that of the 20th century 
for either precipitation (A) or temperature (B) while the 
ordinate shows the PDF values. Please notice the differ-
ent scales on the ordinates. In the following the spread of 
PDFs is used as a measure of uncertainty of the projections 
which is influenced by the used weights. A smaller spread 
is therefore considered as a reduction while a larger spread 
indicates an increase of uncertainty. The dark blue (red) 
lines express the equally weighted changes while the light 
and dashed blue (red) lines show weighted PDFs. WA1 is 
based on all models while WA2 only considers models that 
got a positive phi-correlation while the other models were 
set to zero weight. Generally, in all regions and seasons 
there is a considerably higher uncertainty for precipitation 
than for temperature.

For the Pacific region, both MMEs and all scenarios 
project a positive change of precipitation and temperature. 
However, for CMIP3 both scenarios are similar concerning 
both the width and peak of the PDFs. This is more differ-
entiated for CMIP5. Here, RCP4.5 shows a minor increase 
of both precipitation and temperature compared to RCP8.5. 
The WA1 weighted PDFs are almost congruent with the 
original PDFs. The WA2 weighted PDFs show a slightly 
decreased spread for CMIP5 and CMIP3 precipitation and 
an increased spread for CMIP3 temperature. The WA2 

weighted PDFs of CMIP5 temperature show no change in 
standard deviation, however, they are shifted towards lower 
numbers.

For America, precipitation shows a projected increase 
with an overall lower spread for both MMEs compared 
to the Pacific. Here, all unweighted scenarios are rather 
similar concerning the width of the PDF and the amount 
of change. The same is true for the WA1 weighted PDFs. 
Again, the WA2 weighted PDFs show a rather strong 
decrease of spread for CMIP3. For A1B (A2) the standard 
deviation of the WA2 PDF is reduced to 54.9% (79.8%) 
of that of the equally weighted PDF. In contrast, both sce-
narios in CMIP5 show a slight increase of spread. Tem-
perature in America increases throughout all PDFs. Again, 
for CMIP3 both scenarios are almost congruent for all 
PDFs, weighted or not. For CMIP5, the PDFs of RCP4.5 
and RCP8.5 are well separated by a mean change of 2 °C. 
However, both weighting approaches nearly reproduce 
the unweighted PDF. There is just a minor increase of the 
standard deviation of the WA2-weighted temperature PDF 
for RCP8.5.

Other regions and seasons show similarly small differ-
ences between the phi-weighted PDFs compared to the 
equally weighted PDFs. Phi-weighted PDFs (WA1) and 
the sub-ensemble weighted PDFs (WA2) are basically 
similar in tendency but WA2 is a more efficient weight-
ing approach. The application of weights based on 50-year 
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means lead to almost no impact of weighting at all. The 
underlying coefficients are on a very high and similar level 
(see Sect. 4.1). This results into rather equal weights for the 
models with virtually no impact on the PDF shape.

4.7  Transferability to Mediterranean sub-regions

Evaluation metrics and skill scores exhibit a higher appli-
cability and robustness when there are no constraints con-
sidering the size or type of study areas. Therefore, we apply 
the analysis to the eight sub-regions of Medit (see Fig. 1). 
Figure 8 shows the annual mean phi-coefficients of CMIP3 
(black), CMIP5 (gray) and CORDEX (white) simulations 
for all sub-regions and the entire Medit area. Again, bars 
represent the results of 50-year trends and circles those of 
climatological means. Here, there is a wider spread of phi 
coefficients based on means among the sub-regions com-
pared to the large study areas (see Fig. 5). The minimum 
is 0.0 for North African annual precipitation from CMIP3. 
The maximum is 0.85 (CORDEX) for precipitation over 
Spain. There is a systematic improvement from CMIP3 
to CMIP5 and in many regions CORDEX performs best: 
in five sub-regions and the whole Mediterranean area the 
RCMs slightly outperform the GCMs.

In general, all MMEs have a higher skill for tempera-
ture than for precipitation. For the GCMs, this is consistent 
with the results of the main study areas (Sect. 4.4). The best 
results are found for Spain and Medit in CORDEX, both 
amounting to 0.80. However, the absolute minimum of 
−0.27 in the Middle East is also given by CORDEX. This 
area appears to be most challenging for CORDEX simula-
tions since the precipitation skill is also quite small. Both 
GCM ensembles show rather good results here, with an 
improvement in CMIP5 compared to CMIP3. In the other 
sub-regions, CORDEX performs well with highest coeffi-
cients in four out of eight study areas.

The coefficients based on 50-year trends are more het-
erogeneous for temperature than for precipitation. In terms 
of precipitation, most mean coefficients are rather low 

with a maximum in Spain of 0.23 as given by CMIP5. The 
models’ skill seems to be negatively correlated with the 
annual amount of precipitation, e.g. North Atlantic ver-
sus Middle East. There is no apparent improvement from 
CMIP3 to CMIP5 nor to CORDEX. For temperature, the 
minimum of −0.04 is in the Black Sea region by COR-
DEX. The GCMs show rather bad results here as well, even 
though on a higher level. The maximum of 0.55 in North 
Africa (CMIP5) is even higher than the maximum of the 
main study areas (0.45, annual Globe). Further, there is an 
increase of performance from CMIP3 to CMIP5 in most 
sub-regions. The strongest increase is found in the North 
Atlantic region and Italy by more than 0.2. The overall best 
results are found in Middle East and North Africa, both 
arid regions with high mean temperature. The results of 
the other seasons (not shown) show a similar behavior. For 
the temperature trend, CORDEX has mostly values below 
both CMIP3 and CMIP5. Here, the reason is the shorter 
data availability of CORDEX starting 1970 (for an evalu-
ation period of 1960–2009). For an evaluation period of 
1970–2009 CORDEX shows stronger results than CMIP3 
and CMIP5 in most situations. However, note that a 40-year 
period (1970–2009) might be severely influenced by natu-
ral climate variability in this region which is not captured 
in GCMs (Paxian et al. 2013).

Figure 9 depicts the spearman correlation of the annual 
and seasonal weights based on 50-year trends between the 
sub-regions and the whole Mediterranean region over all 
simulations including CORDEX. Again, there are mainly 
low values of correlations for both precipitation (top-left) 
and temperature (bottom-right). However, they are mostly 
positive with slightly higher values compared to those in 
the global regions in most seasons. The maximum value of 
0.62 is for precipitation in MAM between Italy and Medit. 
The minimum of −0.22 is for annual precipitation between 
Aegean and Spain. Overall, 131 of 180 (72.8%) of correla-
tions of precipitation weights are positive. For temperature 
there are even 153 (85.0%) positive correlations. The mean 
over all correlations is 0.09 for precipitation and 0.16 for 
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Fig. 8  Comparison of mean phi-coefficients from CMIP3, CMIP5 and CORDEX for the sub-regions of Medit area
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temperature. To sum up, as for the results of the climato-
logical means, the correlation of coefficients between dif-
ferent regions is on the same level as for the main study 
areas or even slightly higher. The spearman correlations 
between the regions of the 50-year mean (not shown) are 
similar to those of the 50-year trend. There are neither 
stronger correlations nor a noticeable change in the amount 
of positive values.

4.8  Sensitivity to the reference data

In contrast to observational data such as CRU or E-OBS, 
ERA-20C covers the entire globe without missing values 
enabling the analysis of important study areas as Global or 
Pacific. However, the differences between reference data-
sets might be a relevant source of uncertainty in model 
evaluation. Figure 10 shows the 50-year trend for DJF pre-
cipitation (left) and temperature (right) for the Mediter-
ranean area for three different datasets. For precipitation, 
there is strong decrease in most parts of the area. ERA-20C 
has its maximum decrease over Italy and Portugal. CRU 
and E-OBS show a similar pattern. However, for E-OBS 
the maximum over Portugal is much stronger while another 
maximum is apparent over eastern Turkey. For CRU and 
E-OBS, there is also a minor increase of precipitation in 
the North- and South-Eastern parts of the Mediterranean. 
All in all, there are differences between the datasets but the 
main tendency of the trend is the same in most cases and 
for all seasons. Similar results are shown for temperature. 
Here, Fig. 10 shows for all datasets a rather strong increase 
in the North-Western part of the area. A slight decrease is 

found in the Western part of the study area. This is of larger 
extent in CRU and E-OBS compared to ERA-20C. Again, 
the regional distribution and tendency is on a homogene-
ous level for all datasets and seasons. The accordance of 
the climatological mean of precipitation and temperature is 
even on a higher level as for the trend, shown in Fig. 10. 
For further details, Table 7 shows the Pearson correlation 
(von Storch and Zwiers 1999) for the Mediterranean area. 
The pattern of annual precipitation and temperature show 
positive results for both trend and climatological mean 
between all evaluation datasets. Best results are found for 
mean temperature with a maximum correlation of 0.96 for 
ERA-20C/CRU and CRU/E-OBS. Precipitation results are 
on a similarly high level with 0.93 (CRU/E-OBS) and 0.90 
(ERA20-C/CRU). The trend correlations are between 0.24 
(ERA-20C/E-OBS) and 0.56 (CRU/E-OBS). Overall, the 
correlations show positive and often high correlation for all 
seasons. Note that for the trend we find noticeable discrep-
ancies between the evaluation datasets. We want to under-
line that the results of the applied performance metrics are 
dependent on reliable evaluation data and observational 
uncertainty must be considered for any further conclusions. 
Nevertheless, as presented in Fig. 10 and Table 7, we found 
high consistency between all datasets for the mean and low 
to mid correlations of the trend for the Mediterranean area. 
Considering the different characteristics of the study areas 
and models, ERA-20C therefore turned out to be most suit-
able as the reference data for this study.

Further, aside from discrepancies between the evaluation 
datasets, we wanted to assess how climate models perform 
with respect to different validation data. Therefore, Fig. 11 
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illustrates the robustness of phi-skill scores across three 
different validation datasets of precipitation and tempera-
ture for Medit and its sub-regions. We calculated the spear-
man correlation of phi-coefficients for each sub-region 
and season between each combination of ERA-20C, CRU 
and E-OBS. In Fig. 11, the circles refer to 50-year means 
while the squares stand for 50-year trends. For annual, DJF 
and JJA precipitation and temperature similar patterns are 
found: the majority of study areas show medium to high 
correlations between the weights based on different refer-
ence datasets. Overall, the metrics appear to be quite robust 
for 50-year trends and means. There is a large range of cor-
relations from 0.93 to −0.59, but in most cases rather high 

correlations occur, especially between ERA-20C and CRU. 
Most values below zero relate to the E-OBS data set. Since 
E-OBS is considered to be a best-estimate regional dataset 
this has to be interpreted as a deficiency of CRU or ERA-
20C in certain sub-regions, respectively. However, the total 
amount of negative correlation is low throughout all sea-
sons and regions. Especially for the whole Medit area we 
find almost all correlations to be positive. This is in line 
with previous results (Table 7).

5  Discussion

Six skill scores based on the same 2 × 2 contingency table 
have been analyzed in this study. They mostly agree with 
each other, except for the Chi2 approach. Here, the equal 
treatment of very high and very low coefficients leads to 
a systematically different ranking of models. Based on our 
results, the other five metrics are more or less exchange-
able. The Log Odds ratio is preferred in meteorological 
and medical science (Stephenson 2000; Thornes and Ste-
phenson 2001; Paeth et al. 2006). However, we recommend 
one of the other four, since the Log Odds ratio requires five 
values or more for each field of the 2 × 2 table (Stephenson 
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Table 7  Pearson correlation of the mean and trend pattern (1960–
2009) between different evaluation datasets for annual precipitation 
and temperature for the Mediterranean area

Datasets Precipitation Temperature

Trend Mean Trend Mean

ERA-20C/CRU 0.32 0.90 0.49 0.96
ERA-20C/E-OBS 0.24 0.82 0.29 0.91
CRU/E-OBS 0.56 0.93 0.36 0.96



2102               

   

2000; Paeth et al. 2006). Zero values might occur in small 
regions with a 100% accordance between simulation and 
evaluation data. Here, we have to manually add a small 
value (e.g. 0.1) to each field to avoid a mathematical error 
(Gart and Zweifel 1967; Pettigrew et al. 1986). No error or 
restriction is given for the other metrics. An advantage is 
that the 2 × 2 metrics are easily transferable to a wide range 
of different variables and regions. We analyzed 50-year 
trends and climatological means over several regions of dif-
ferent sizes. Another important potential of these metrics is 
that they can easily be extended to the analysis of extremes 
simply by varying the threshold value in the 2 × 2 contin-
gency table (i.e. Paeth et  al. 2006; Liu et  al. 2013). Note 
though, that Armistead (2013) criticized these categorical 
metrics for their inability to assess the separate accuracy 
rates and their sensitivity to the interdependence of differ-
ent datasets in a 2 × 2 table. Further, the inapplicability of 
many metrics to be applied on k × k (k ≥ 2) tables is pointed 
out. However, the mentioned limitations do not effect our 

approach Further, our metrics show robust results and 
appear flexible and suitable for evaluation of any kind of 
climate model.

Some systematic enhancement of model performance 
from CMIP3 to CMIP5 was found for both 50-year tem-
perature trends and means. This is in line with Wright et al. 
(2016) and Koutroulis et  al. (2016). The improvement is 
less obvious for precipitation as also reported by Li and 
Xie (2014) and Grose et al. (2014). Precipitation means are 
characterized by higher skill scores than the trend. This is 
in line with Perkins et al. (2007), pointing to high modeling 
quality for temperature over Australia but weaker results for 
precipitation for CMIP3. Also Huang et  al. (2013) found 
high uncertainty for JJA precipitation in Eastern China.

The rather low regional correlation between the rankings 
of models based on 50-year trends indicate that there is no 
model capable of performing equally well in every region. 
This is confirmed by Power et  al. (2012) and Ring et  al. 
(2016) who find rather large discrepancies between model 
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performances of different regions. However, we saw higher 
accordance for coefficients of the mean between the major 
study areas in contrast to the sub-regions. Overall, these 
results indicate a high conformity with other accepted eval-
uation metrics (e.g. Perkins et al. 2007; Huang et al. 2013).

Furthermore, the evaluation of study areas at different 
scales suggests no loss of usability. For the Medit sub-
regions, we found higher weights for temperature while the 
precipitation results remained the same compared to the 
large study areas. We consider this result to be promising 
for the applicability of the metrics at smaller scales, being 
important for aspects of climate impact research. CORDEX 
simulations were evaluated as well for the sub-regions, 
since RCMs are expected to provide an added value 
(Jacob et al. 2014). However, as mentioned before, the first 
10 years of our investigation period are not included in the 
regional simulations. Despite this limitation, the RCMs 
outperform the GCMs in terms of the climatological mean 
in most Mediterranean sub-regions (cf. Rummukainen 
2010). Yet, CORDEX shows an inferior simulation quality 
for the temperature trend compared to CMIP3 and CMIP5, 
while the precipitation trend performance is on a similar 
level as the one from global climate models.

The unweighted probabilistic multi-model projections 
show a clear temperature increase of about 2–7 °C, depend-
ing on the scenario, for all 14 main or sub-regions with a 
rather low uncertainty. Miao et al. (2014) assessed a simi-
lar range for Northern Eurasia. The MME changes for pre-
cipitation are less coherent. Here, we found both positive 
and negative changes of precipitation amounts. Especially 
in arid regions like the Mediterranean and most of its 
sub-regions (i.e. Middle East or Spain) nearly all models 
simulate a decrease of precipitation. The opposite is true 
in the Arctic, Pacific and global mean where most simu-
lations indicate an increase of precipitation. Overall, the 
uncertainty of precipitation is much higher than the one 
of temperature. These results are in line with most studies 
published on this topic (e.g. Randall et al. 2007; Flato et al. 
2013).

The utility of the 2 × 2 metrics for improving probabil-
istic climate projections has been found to be less obvious 
in most situations (regions, seasons, scenarios). A weight-
ing approach on basis of 50-year means is inadvisable, at 
least for the large study areas. Here, simulations showed an 
equally high performance which led to equal weight, while 
for the 50-year trend we found several rather strong differ-
ences in simulation quality. However, our results indicate 
no homogeneous effect on the PDFs. Both increased and 
decreased PDF spreads become apparent. Mostly the effects 
are minor, especially when the WA1 weighting approach is 
used. For many situations simulations are either performing 
very well (temperature) or rather weak (precipitation) but 
on a similar level (see Figs. 2, 3). To intensify the weights, 

we also applied a modified metric (WA2) where all models 
with negative (i.e. phi-) coefficients had been ignored. This 
was found to be a more effective approach, since the gen-
eral tendencies of the PDFs (increase or decrease) remained 
the same, for almost all situations, while the impact on the 
change of uncertainty was enhanced. Of course, changing 
the impact of weights by selecting a sub-ensemble (here 
models with positive metric-coefficients) requires sophisti-
cated metrics of model evaluation and well-agreed stand-
ards on thresholds.

6  Conclusion

In this study, we applied a simple 2 × 2 table approach with 
six different skill scores in order to evaluate state-of-the-
art global and regional climate models. Seven regions of 
large extend and eight smaller sub-regions were tested in 
terms of 50-year trends and means of annual and seasonal 
precipitation and temperature. Overall, five of six metrics 
are quite consistent with each other. These five metrics 
are equally adequate to determine the ranking of climate 
models. Our study revealed a considerable improvement 
of model performance of CMIP5 over CMIP3 models for 
temperature for both trend and mean for the majority of 
analyzed seasons and regions. This is in line with Wright 
et al. (2016). The precipitation trend turned out to be rather 
challenging for most models of both model generations. 
However, a main reason for this may be the lack of a pro-
nounced trend of precipitation in the reference data com-
pared to the general increase of temperature (Kumar et al. 
2013). The means of both precipitation and temperature 
were matched by the majority of simulations with a slight 
improvement from CMIP3 to CMIP5. In the Mediterranean 
sub-regions, the CMIP5 was still outperformed by COR-
DEX, even though a shorter timeframe had to be analyzed.

In terms of probabilistic climate projections, we faced 
the problem that either the majority of models performed 
equally strong (especially for temperature) or weak (for 
precipitation). This led to minor effects on the shape and 
position of PDFs of climate change, when all model con-
tributed to the probabilistic predictions. Here, the Log 
Odds ratio showed a slightly stronger differentiation of 
weights in some simulations. Therefore, we applied an 
additional more stringent sub-ensemble approach. This 
led to stronger selection, while avoiding an artificial 
manipulation of the original coefficients. However, since 
temperature showed high values for most models, the 
sub-ensemble approach had less impact on temperature 
than on precipitation. Indeed, for precipitation we could 
develop a powerful weighting metric. Nevertheless, there 
is no consistent change in uncertainty over sub-ensembles 
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for both temperature and precipitation. Instead, we found 
a high dependence on the variable, region and season.

Altogether, the PDFs showed an expected increase of 
temperature of 2–7 °C range towards the end of the 21st 
century with a relatively low range of uncertainty. For 
precipitation, in most situations the range was centered 
around 0 but with a rather high range of uncertainty. 
Thus, the simulation of temperature is at a very high qual-
ity level which makes future projections trustworthy and 
the effect of different emissions scenarios more apparent. 
In terms of precipitation, only some models reproduce 
the observed characteristics, yet not systematically in all 
regions and seasons. However, sound projection of future 
climate change are required to elaborate appropriate 
adaptation strategies. For this purpose, further studies on 
weighting metrics are necessary to improve the quality of 
probabilistic climate projections. Because of their good 
transferability and obvious interpretation, the 2 × 2 table 
metrics might help as a basis for comparison with other 
metrics in this context. Another potential to be dealt with 
by further investigation pertains to the aspect of extreme 
events which can easily be tackled by varying the thresh-
olds in the 2 × 2 contingency table.
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