
                                 
                                 
                                             
                                            

Change points in predictors–predictand relationships within
the scope of statistical downscaling

Elke Hertig,* Christian Merkenschlager and Jucundus Jacobeit
Institute of Geography, University of Augsburg, Augsburg, Germany

ABSTRACT: A statistical downscaling approach allowing for change points in the relationships between atmospheric
predictors and local precipitation is introduced. Change point analysis within generalized linear models, and change points in
the predictor characteristics were used to develop a change point statistical downscaling approach. The approach is illustrated
for station-based winter precipitation in the Mediterranean area.

In this study, 94 stations were considered. The change point analysis yielded 37 stations with robust change points in the
predictors–precipitation relationships. An added value regarding statistical model performance of the change point approach
compared to the use of statistical models without change points was observed for 15 out of the 37 stations. In the projections
under enhanced greenhouse gas forcing the application of the change point approach for the 15 stations affects the downscaled
precipitation amounts, with significant differences compared to the application of downscaling models without change points
for about one third of these stations.

Under RCP4.5 and RCP8.5 scenario conditions, mainly increases of winter precipitation are projected until the end of the
21st century for parts of the western and northern Mediterranean area, whereas the north-eastern and eastern Mediterranean
areas are affected by decreases.

KEY WORDS statistical downscaling; generalized linear models; change point analysis; climate variability; climate change;
Mediterranean precipitation

                                                        

1. Introduction

Different downscaling techniques exist to obtain regional
to local climate change information from large-scale gen-
eral circulation model (GCM) output. A widely used
technique is Perfect-prog (PP) statistical downscaling, an
approach which typically makes use of observation-based
relationships of the large-scale atmospheric circulation
(predictor) and regional climate variables (predictands)
through time [for an overview of statistical downscaling
approaches, see Maraun et al. (2010)]. In the scope of
transferring these relationships to other time periods (val-
idation and future projection periods) than the one used
for model set-up (calibration period), it is assumed that
the predictor–predictand relationships remain the same
through time.

On the other hand, there is substantial evidence that
circulation–climate relationships are varying with time.
This characteristic emerges from substantial modifications
of the atmospheric circulation, which lead to significant
changes of the relationships with regional climate. The
changes of the atmospheric circulation are measurable, for
instance, as changes in the major large-scale modes of cli-
mate variability, such as the El Niño-Southern Oscillation
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(ENSO) (Diaz et al., 2001; Power and Smith, 2007) and
the North Atlantic Oscillation (NAO) (Jung et al., 2003;
Hurrell and Deser, 2010). Prominent examples of abrupt
shifts in climate are for instance the climate shift over the
tropical Pacific at the end of the 1970s associated with
the ENSO phenomenon (Miller et al., 1994; Trenberth and
Hoar, 1997) and the climate shifts over the North Pacific
area (Rodionov, 2004; Overland et al., 2008). Besides
such abrupt changes also more gradual changes have been
observed such as the pronounced positive trend of the
NAO from the 1960s to the 1990s (Hurrell and Deser,
2010). Overall, changes have been observed in the frequen-
cies and phases of atmospheric patterns, the strength and
the spatial location of the pattern-related anomaly centres,
as well as the within-pattern characteristics, such as the
thermal and thermo-dynamic properties of the patterns. A
comprehensive review of non-stationarities in climate vari-
ability of the last century is given in Hertig et al. (2015).

In the scope of future climate change due to anthro-
pogenic increases of greenhouse gas forcing, it is in
all probability that these increases change the intensity
and geographical patterns of the atmospheric circulation
influence on climate. For instance, Ullmann et al. (2013)
identified in CMIP5 (fifth Coupled Model Intercompar-
ison Project) future projections an eastward shift of the
low-pressure system in the negative phase of the NAO
and an eastward extension of the Azores High towards
the Mediterranean area for the positive phase of the NAO
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in winter (October–March). Hertig and Jacobeit (2014a)
found that the specifications of the NAO negative phase in
winter (December–February) are highly varying with time
in the analysed CMIP5 historical and scenario runs, which
is not the case in the reanalysis data. Ullmann et al. (2013)
also detected significant intra-pattern baroclinic changes
under rapid increases in the amount of atmospheric green-
house gases. All these changes modify regional Mediter-
ranean rainfall patterns (Ullmann et al., 2013; Hertig and
Jacobeit, 2014b).

In the context of PP statistical downscaling, it is
of interest if and how the observed and modelled
non-stationarities affect the relationships between the
large-scale circulation and local/regional climate in
specific downscaling set-ups. For instance, Hertig and
Jacobeit (2013) used a combined circulation-based
and generalized linear model (GLM)-based downscaling
approach to assess daily precipitation in the Mediterranean
area. They showed that observed changes in the frequency
of circulation patterns are not the cause of non-stationarity
in statistical model performance because changing fre-
quencies are accommodated by the statistical downscaling
approach. In contrast, changing positions of the centres
of action such as it has been observed for instance for the
NAO (Jung et al., 2003; Moore et al., 2013; Raible et al.,
2014) can be more challenging. The spatial changes can
significantly alter correlations to regional climate (Good-
ess and Jones, 2002; Vicente-Serrano and López-Moreno,
2008). The physical changes underlying the changed
predictor–predictand relationships due to changes in the
associated dynamical and thermo-dynamical features
form a major obstacle in the statistical modelling using
linear methods. Even a careful predictor selection might
not cope with such non-stationarities. But indeed, a
careful analysis of non-stationarities and their origin is
required (Wilby, 1998), as they could be due to either
changes in the climate system structure(s) or simply be
caused by an incomplete set of predictor variables or
inadequate calibration periods. A practicable way to allow
for non-stationarities in statistical downscaling is to adapt
the downscaling models to observed non-stationarities
and to selectively use these non-stationary models for
the projections (Hertig and Jacobeit, 2014b). Under the
assumption that during the 21st century climate will
change in the range of observed natural variability (an
assumption intrinsic to statistical downscaling and also to
GCMs due to parameterizations, Zorita and von Storch,
1999) non-stationarities in observed and future climate
are explicitly accounted for.

A number of methods have been developed to detect
non-stationarities in the observational period. Common
approaches to detect non-stationarities in the relation-
ships between the large-scale circulation and regional
climate characteristics include correlation or regression
analysis over sliding intervals (e.g. Beranová and Huth,
2008; Vicente-Serrano and López-Moreno, 2008; Hertig
and Jacobeit, 2013). Change point models are applied to
detect abrupt shifts in climate time series. They are com-
monly based on the Student’s or Mann–Kendall tests (e.g.

Rodionov, 2004) or on the use of information criterions
within regression models (e.g. Beaulieu et al., 2012). For
an overview of different change point techniques for cli-
mate data, see for instance Reeves et al. (2007).

In the present contribution, we consider change points in
particular regression models known as GLMs. For an intro-
duction on the use of GLMs in the context of analysing
climate variability, see Chandler (2005). We allow for mul-
tiple changes in the model’s structure, determined by spe-
cific points in the time series, to take account of varying
relationships between the large-scale atmospheric predic-
tors and the local predictand. Furthermore, composites of
the atmospheric characteristics before and after a change
point are used within a cumulative sums approach to iden-
tify the change points in the predictor data only. Results
of both approaches are considered to define robust change
points and two different reanalysis data sets are applied
to avoid spurious change points due to inhomogeneity in
a data set. The two approaches are subsequently coupled
for the statistical downscaling assessments. The change
point statistical downscaling models are analysed regard-
ing their relevance in terms of an improvement in statis-
tical model performance. Thus, change points which can
be identified in both approaches and which impact notice-
ably on the GLM model performance are considered as
robust and relevant change points. Finally, the significance
of using change point models in the projections until the
end of the 21st century is assessed. Overall, the approach is
used with the objective to enhance statistical downscaling
model performance through the explicit consideration of
change points in the predictors–predictand relationships.

This study focuses on station-based precipitation in the
Mediterranean area as predictand. The Mediterranean area
is chosen, because it is regarded as a ‘climate change
hot-spot’ (Giorgi, 2006), being located in the transitional
zone between the mid-latitude westerlies and the subtrop-
ical high-pressure belt. Section 2 describes the data used
in this study and Section 3 presents the methodology. In
Section 4, results are presented and discussed. Conclusions
are drawn in Section 5.

2. Data

2.1. Predictand: station data in the Mediterranean area

Daily station data for the Mediterranean area have been
collected from the European Climate Assessment &
Dataset (Klein Tank et al., 2002), from the GLOWA
Jordan River Project (Global Change and the Hydro-
logical Cycle, Kunstmann et al., 2006), and from the
EMULATE project (European and North Atlantic daily
to multidecadal climate variability, Moberg et al., 2006).
Unfortunately, there are very little data available over the
southern Mediterranean area (notably Northern Africa) as
well as over the north-eastern Mediterranean area (par-
ticularly Turkey), but for the other regions an acceptable
spatial coverage has been achieved.

After testing completeness (Moberg et al., 2006) and
homogeneity (Alexandersson, 1986; Wijngaard et al.,
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2003) of the daily precipitation data, 94 stations could
be retained for subsequent analyses. For each station, we
calculated monthly precipitation sums from the daily data
for the winter months December–February. Depending
on the station, the time series start between 1950 and 1961
and end between 1990 and 2008. The mean time series
length across all stations is 53 winters. The minimum
(maximum) time series length is 40 (58) winters. This
yields sample sizes of 120–174 winter months.

Statistical downscaling models were set up for each of
the 94 stations separately, even though the use of local-
scale precipitation may fit a variable amount of noise in
the statistical models. This was done to capture local-scale
specifics of this climatologically highly heterogeneous
region. In the context of climate change impact studies,
such as small-scale hydrological modelling, information
is often required on the local scale. However, within
the interpretation of results in Section 4 the inter-station
variability arising from the local-scale models will be
taken into consideration. A description of the precipitation
characteristics in the Mediterranean area in the wet season
and in general can be found for instance in Xoplaki et al.
(2004) and Lionello et al. (2012), respectively.

2.2. Predictor data

In order to avoid potential influences from inhomo-
geneities in the reanalysis data, predictor data were
taken from two independent reanalysis data sets – NCEP
reanalysis (Kalnay et al., 1996; Kistler et al., 2001), which
uses both, surface observations as well as satellite data,
as well as ERA-20C reanalysis (Poli et al., 2013; Stickler
et al., 2014), which assimilates surface observations only,
i.e. surface pressure, atmospheric and oceanic tempera-
tures and near-surface wind. ERA-20C was selected to
include a reanalysis with no potential inhomogeneity due
to the assimilation of satellite data. A first performance
evaluation for lower to middle tropospheric pressure and
temperature shows an adequate quality for the Northern
Hemisphere extratropics (Poli et al., 2013).

We selected monthly mean geopotential heights of the
700 hPa level for the period December 1950–February
2010. The geopotential heights can be regarded as repre-
sentative predictors for the atmospheric circulation, which
show a strong and physically meaningful relationship
to Mediterranean precipitation during wintertime (Tatli
et al., 2004; Hertig and Jacobeit, 2013). We selected the
domain 20∘–70∘N, 70∘W–50∘E to represent the North
Atlantic-European-Mediterranean area, incorporating the
major large-scale modes of variability such as the NAO.
Also the more regional domain 30∘–50∘N, 10∘W–40∘E
centred over the Mediterranean area was chosen in order
to capture region-specific atmospheric conditions.

In general, the pressure-related variables are predic-
tors, which are reliably represented in GCMs on the large
scale and are strongly connected with regional climate
and climate change. But also other variables describing
the thermal and thermo-dynamic conditions of the atmo-
sphere play an important role for precipitation in the

Mediterranean area (Hertig and Jacobeit, 2008; Hertig and
Jacobeit, 2013; Hertig et al., 2014). Generally, these vari-
ables have a lower quality in the GCMs, but their patterns
of change can be very relevant in the scope of regional cli-
mate change. In addition to 700 hPa geopotential heights,
specific and relative humidity, zonal and meridional wind
components, vertical velocity and air temperature, all
from the 850 hPa level, were chosen to serve as potential
predictors for Mediterranean precipitation. The fields of
these variables were cut to the smaller domain 30∘–50∘N,
10∘W–40∘E centred over the Mediterranean area.

Model data were taken from a three-member MPI-
ESM-LR ensemble (Max Planck Institute Earth System
Model running on low resolution grid). Historical, RCP4.5
scenario and RCP8.5 scenario (Van Vuuren et al., 2011)
runs performed for CMIP5 were downloaded from the
CMIP5 archive (https://pcmdi.llnl.gov/projects/cmip5/).
We used the period 1950–2005 of the historical runs and
the period 2006–2100 of the scenario runs. The horizontal
resolution of the model output data (1.875∘) was fitted to
that of the reanalysis data (NCEP reanalysis 2.5∘ × 2.5∘,
ERA-20C 2∘ × 2∘) using ordinary kriging.

3. Methodology

Predictors were processed by means of principal compo-
nent analysis (PCA, Section 3.1). Change point analysis
was done using two different approaches. One approach
is based on change point generalized linear models
(CPGLMs, Section 3.2.1.). The CPGLM approach looks
for changes in the predictors–precipitation relationships
within the regression models. The other approach com-
prises change points in cumulative sums (CPCUMSUM)
curves of composite correlations (Section 3.2.2.). The
CPCUMSUM approach is applied to independently iden-
tify the change points in the predictor data only. Both
approaches are applied using two independent reanalysis
data sets (NCEP and ERA-20C). Thus, four configurations
(two approaches multiplied by two data sets) are consulted
to find change points. Only change points, which can be
found in all four configurations, are considered as robust
(further on referred to as robust change points). Subse-
quently, the change points are tested for their relevance
within the framework of statistical downscaling using
a specific cross-validation set-up (yielding robust and
relevant change points, Section 3.3). Finally, the two
approaches are coupled for local climate change projec-
tions and the impact of the change point statistical down-
scaling approach on the projections for the 21st century
is assessed (Section 3.4). A schematic presentation of the
methodology used in this study can be found in Figure 1.

3.1. Principal component analysis of predictor fields

In the scope of studying climate variability and climate
change, large-scale climate phenomena are receiving con-
siderable attention and are increasingly well simulated by
climate models. Not surprisingly, a whole chapter of the
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Figure 1. Schematic overview of the methodology used in this study.

latest IPCC report is devoted to major climate phenom-
ena and their relevance for future regional climate change
(IPCC AR5, chapter 14, Christensen et al., 2013). There-
fore we consider the well-known large-scale modes of vari-
ability in the North Atlantic sector [i.e. NAO, East Atlantic
(EA) pattern, Eurasia-1 (EU1) pattern and Eurasia-2 (EU2)
pattern, see Barnston and Livezey (1987)] which play a
substantial role for Mediterranean precipitation in winter
(Quadrelli et al., 2001; Dünkeloh and Jacobeit, 2003; Her-
tig and Jacobeit, 2013). To obtain the large-scale modes of
variability, we applied S-mode VARIMAX-rotated PCA
(e.g. Preisendorfer, 1988; von Storch and Zwiers, 1999)
to the area-weighted 700 hPa geopotential heights fields in
the North Atlantic-European-Mediterranean domain. PCA
is based on standardized monthly anomaly fields for winter
in the period December 1950 to February 2010. Four PCs
were kept with 66.3% explained variance (EV). PCA was
also applied to the smaller Mediterranean domain in order
to reduce the regional fields to specific centres of variation.
A centre of variation depicts a region consisting of grid
boxes with high PC loadings on a particular PC and thus
having similar temporal variations represented by the PC
score. The centres of variation in the small domain are used
to describe regional atmospheric characteristics which are
not adequately resolved by the large-scale modes. For the
700 hPa geopotential heights, five PCs were kept with
96.0% EV. 850 hPa specific humidity fields were reduced

to nine PCs (85.4% EV), 850 hPa relative humidity to eight
PCs (80.9% EV), the 850 hPa zonal and meridional wind
components to five PCs each with 86.9 and 86.8% EV,
respectively. In case of the 850 hPa vertical velocity fields,
nine PCs were obtained with 73.7% EV, and for 850 hPa
air temperature, four PCs (88.9% EV) were extracted. The
determination of the number of PCs to be extracted follows
the approach of Philipp et al. (2007). It is based on the cri-
terion that each PC has to be uniquely representative for at
least one input variable.

3.2. Change point analysis

3.2.1. GLMs and CPGLMs

GLMs (e.g. Mc Cullagh and Nelder, 1989) were applied
to detect relationships of the atmospheric circulation with
local precipitation in the Mediterranean area. GLMs are a
common choice within the context of precipitation mod-
elling since precipitation is a variable, which is usually
non-normally distributed. A maximum likelihood estima-
tion is used to estimate model parameters for the expecta-
tion value E(·) for a variable Yt at any given time t:

E
(
Yt

)
= 𝜇t = g−1

(
𝜂t

)
= g−1

n∑
1

𝜒tj𝛽j (1)

here 𝜇t is the mean for the probability density function
(PDF) at time t, 𝜂t is a linear predictor (i.e. a linear combi-
nation of the explanatory variables), g is the canonical link
function, 𝜒 tj is the value of the jth covariate for observation
t, n is the total number of covariates and 𝛽 j are parameters
whose values have to be estimated from the data.

We applied GLMs based on Tweedie exponential dis-
persion models (Dunn, 2004; Hertig and Jacobeit, 2014b).
As canonical link function g the log link is used. Tweedie
GLMs allow for the simultaneous modelling of the dis-
crete (i.e. zero values, which occur in the Mediterranean
precipitation time series even on a monthly time scale) and
the continuous features of precipitation. The Tweedie fam-
ily of distributions includes Poisson-gamma distributions
and has three parameters with 𝜇 (the mean), 𝜑> 0 (the
dispersion parameter) and p (the Tweedie index parame-
ter). The variance of the distribution is var[Y]=𝜑𝜇p. The
index p specifies the particular distribution, special cases
include the normal (p= 0), Poisson (p= 1) and gamma
(p= 2) distributions. For 1< p< 2, the Tweedie family is
suitable for modelling positive continuous data with exact
zeros (Hasan and Dunn, 2011). Estimation of the index
parameter p requires sophisticated numerical techniques
and was done using a profile maximum likelihood estimate
provided in the Tweedie package in R (Dunn, 2008). The
index parameter p was estimated for each of the 94 precip-
itation time series.

As variables in the GLMs, we used the time series (PC
scores) of the large-scale modes of variability and the time
series of the regional centres of variation. Since our pri-
mary interest lies in the relationships of the atmospheric
circulation with local precipitation, 700 hPa geopotential
heights in the large-scale Atlantic-European domain and in
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the smaller Mediterranean domain were always included
as predictor variables in the GLMs. However, precipita-
tion is not only governed by the atmospheric circulation,
and thus further variables were considered for the mod-
elling of local precipitation variability. For each additional
variable (air temperature, relative and specific humidity, u-
and v-wind components and vertical velocity), GLMs were
derived using as predictors of the geopotential height PCs
as well as the PCs of the additional variable. Exploratory
analysis with predictor sets comprising more than two
variables showed no further improvement in model skill.
Within this approach, some collinearity between the pre-
dictor variables exist which might affect model perfor-
mance. We applied a backward selection procedure within
a cross-validation framework using 100 random samples to
decide on the variables to be included in the downscaling
models. The cross-validation involves the random selec-
tion of two third of all available observations at a station for
calibration and the remaining one third for validation. The
resulting station-specific predictor sets are subsequently
used in the CPGLMs.

GLMs with multiple discontinuous change points were
considered. Only changes in the linear parameters 𝛽 j were
used, whereas all other quantities defining a GLM are the
same for all segments. Following Zeileis et al. (2003) and
Hofrichter (2007), GLMs were constructed with d seg-
ments recursively based on minimizing the deviance in
each segment. The approach is based on the whole obser-
vational period for a station. To guarantee the estimation
of the 𝛽 j, the smallest possible size for a segment is q+ 1,
where q is the number of parameters in the model. We
set the maximum of d to five, thus analysing models with
one segment (no change point) up to five segments (four
change points). In order to reduce the computational bur-
den, a dynamic programming algorithm based on Bell-
man’s principle of optimality (Bellman and Dreyfus, 1962)
was applied. The function written in R (R Development
Core Team, 2008) used to calculate the GLMs with change
points can be found in the Supporting Information.

A GLM without a change point can be considered as
nested in a GLM with a change point. Thus, a GLM with
d − 1 discontinuous change points 𝜏 = 𝜏1,… ,𝜏d−1 can be
separated in d = d1,… ,dm autonomous GLMs written as

E
(
Yt≤𝜏1

)
= 𝜇t≤𝜏1

= g−1
(
𝜂t≤𝜏1

)
= g−1

n∑
1

𝜒t≤𝜏1j𝛽jd1

E
(
Y𝜏1<t≤𝜏2

)
= 𝜇𝜏1<t≤𝜏2

= g−1
(
𝜂𝜏1<t≤𝜏2

)

= g−1
n∑
1

𝜒𝜏1<t≤𝜏2j𝛽jd2

⋮

E
(

Y𝜏dm−1<t

)
= 𝜇𝜏dm−1<t = g−1

(
𝜂𝜏dm−1<t

)

= g−1
n∑
1

𝜒𝜏dm−1<tj𝛽jdm
(2)

As the deviance of a GLM with change points is additive,
we analysed the difference between the deviances of the

Figure 2. Schematic overview of the approach using change points in
cumulative sums curves of composite correlations. CP: change point.
The black arrows are exemplary and have to be thought for all monthly

predictor fields (grey dots). For further details, see Section 3.2.2..

GLM without a change point and the GLMs with change
points. The difference between the deviances of GLMs
with different numbers of change points does not follow
a 𝜒2-distribution (Hofrichter, 2007) and can therefore not
be used to judge the significance of the change points.
Thus, for each station, the model with the least deviance
is selected.

3.2.2. Change point cumulative sums

Beside the CPGLMs an approach based on composites and
cumulative sums was used. A schematic representation is
given in Figure 2. Composites of the observed circulation
characteristics before and after a change point are calcu-
lated. The location of the change point is taken from the
CPGLM approach. For the positive (PC scores> 0) and the
negative phases (PC scores< 0) of each predictor, compos-
ites are calculated as the mean of the PC scores-weighted
original predictor fields before and after a change point,
respectively. Thus, for each phase of a predictor (e.g. pos-
itive phase of the NAO), mean fields showing the char-
acteristics before and after a change point are derived. In
the next step, the individual monthly predictor fields are
correlated with the corresponding composites. Cumulative
sums of the difference of the correlation coefficients are
computed. Positive (negative) values reflect that predic-
tor characteristics at a specific time are better described
by the conditions before (after) the change point. Maxima/
minima in the curve progression of the cumulative sums
are used to identify the change points in the predictor time
series. For a description of the cumulative sums approach,
see Page (1955, 1957).

Only change points, which can be identified in the
CPGLMs as well as in the CPCUMSUM approach under
the use of two different reanalysis data sets (NCEP and
ERA-20C), are considered to be robust. We allowed for
some tolerance regarding the time of the change points,
since changes in the predictors (as identified with the
CPCUMSUM approach) might lead a subsequent impact
on precipitation (as captured by the CPGLMs). We decided
on a maximum difference of 3 years between the CPCUM-
SUM and the CPGLM change points. It can be noted how-
ever that setting the tolerance time to smaller values or zero
alters the results only marginally.
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3.3. Validation

A common accuracy measure for continuous
non-probabilistic forecasts is the mean squared error
(MSE, e.g. Wilks, 2006):

MSE = 1
n

n∑
k=1

(yk − ok)2 (3)

MSE is the averaged squared difference between the
model (y) and observation (o) pairs, or the reference and
observation pairs, respectively. Then, the mean squared
error skill score (MSESS) becomes:

MSESS = 1 −
MSEmodel

MSEreference
(4)

The MSESS was used to judge model performance with
the long-term climatology serving as reference. For the
presentation of the results (Figures 4 and 5), the MSESS
has been translated according to Murphy (1988) into a
measure of percentage improvement in accuracy by multi-
plying the right-hand side of Equation (4) by 100.

Change point analysis (Section 3.2) was done using
the best-performing predictor combination and from
the change point analysis robust change points were
derived (see Section 3.2.2. for the definition of robust
change points). However, the question remains whether
these change points actually impact on the statisti-
cal model performance. To answer this question, we
set up a specific cross-validation framework. For each
station, the MSESS was assessed using conventional
GLMs in a cross-validation set-up comprising 100 ran-
dom calibration/validation periods sampled from the
whole observational period. The resulting model perfor-
mance sets the reference for the change point models,
which take into account potential change points in the
predictors–predictand relationships. To assess the perfor-
mance of the change point models, we randomly selected
from the period before the change point as well as from the
period after the change point two third of the observations
for calibration (with a minimum in each period set to 30
observations in view of robust calibration models), the
remaining third of the observations for validation. GLMs
are applied in the two different calibration periods and
each model is validated with the corresponding validation
set. The described procedure is also repeated 100 times
and the mean MSESS of the two periods over the 100
samples is considered. In case a change point is located
close to the start/end of the whole time series and thus
leads to a calibration period shorter than 30 observations,
only the other, longer period is evaluated. The MSESS
of the conventional GLMs is compared to the MSESS
of the CPGLMs in order to assess whether the change
point approach yields an added value in terms of model
performance compared to the application of conventional
GLMs without change points.

3.4. Projections for the 21st century

CPGLMs can be used in the observational period
to find change points and to describe the specific

predictors–predictand relationships in the periods before
and after the change points. However, for projection
purposes, the question has to be answered which state of
the circulation prevails in the projection periods, i.e. the
question whether the circulation characteristics and the
values of the additional predictors resemble more strongly
the atmospheric conditions before or after a change point,
and thus which GLM relationship is more appropriate.
Within this context, the CPCUMSUM approach based on
composites and cumulative sums is applied.

For the projections, the GCM data of the historical and
future scenario runs were projected in each case onto the
existing PCs of the observational period to obtain new pre-
dictor time series. Within this approach, the observational
PC loadings and the standardized GCM data are used [for
a detailed description of this approach, see von Storch
and Zwiers (1999)]. The predictor PCs are the ones that
showed the best GLM performance in the cross-validation
set-up (Section 3.2.1.). Subsequently, the CPCUMSUM
approach was applied under the use of the GCM predic-
tors to assess change points in the predictor fields of the
historical and future scenario runs. The GLM relationships
associated with the specific predictor conditions in the seg-
ments before and after a change point were correspond-
ingly applied to assess the response of local precipitation
under scenario conditions.

The Mann–Whitney U test (Mann and Whitney, 1947)
with a significance level of 95% has been used to assess
the significance of the change point models in the local cli-
mate change projections. Local precipitation in the period
2070–2099 derived from the application of the change
point statistical downscaling models is compared to the
values derived from the use of conventional downscaling
models.

4. Results

4.1. Change point analysis

For each of the 94 precipitation stations in the Mediter-
ranean area, GLMs were constructed using the large-scale
modes of variability (NAO, EA, EU1 and EU2) and the
more regional 700 hPa geopotential heights centres of vari-
ation as predictors. GLMs were also derived under the
inclusion of one additional predictor variable (air tem-
perature, specific and relative humidity, u- and v-wind
components and vertical velocity, all from the 850 hPa
level). Under the use of 100 random calibration/validation
periods, the best-performing predictor combination was
assessed (Section 3.2.1.). The best-performing predictor
combination for each station can be seen by means of
the colour coding in Figure 3. In the eastern and northern
Mediterranean area, circulation-type predictors (700 hPa
geopotential heights and 850 hPa wind components) domi-
nate, whereas for the Iberian Peninsula, particularly for the
western, Atlantic oriented parts also humidity, and for the
central parts air temperature play a role.

For each of the precipitation stations, GLMs with one
(no change point) up to five (four change points) segments
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Figure 3. Best-performing predictor combination for each of the 94 precipitation stations in combination with the year of change point for the
37 stations with robust change points.

were constructed using the best-performing predictor com-
bination. However, for all precipitation stations, the least
GLM deviance was obtained when using two segments
(one change point). Thus, all subsequent results are based
on CPGLMs with one change point.

Only change point locations, which can be identified in
the CPGLMs as well as in the CPCUMSUM approach
under the use of two different reanalysis data sets, were
considered to be robust (Section 3.2). This implies that
the different climate characteristics before and after a
change point, as derived from the CPGLMs, are caused by
changes of the predictors, as evidenced in the CPCUM-
SUM approach. From the 94 stations considered in this
study, for 54 stations consistent change points could be
identified across the two reanalysis data sets using the
CPGLM approach, and for 37 stations (approximately
40% of all stations), these change points can be confirmed
with the CPCUMSUM approach (subsequently termed
robust change points). The years of the robust change
points are also indicated in Figure 3. Localizing the pre-
dictor sets and the dates of the change points reveals
regional clusters. Thus, in the eastern Mediterranean area,
change points occurred preferably with 700 hPa geopo-
tential heights, and partially under the additional inclu-
sion of 850 hPa air temperature, as predictors. The dates
of the change points are mostly located in the 1990s
and 2000s. For the majority of stations over northern
Italy and Dalmatia, change points occurred in the 1990s
using circulation-type predictors. For the Iberian Penin-
sula, robust change points can be seen mainly in the west-
ern and central parts of the region. They are predominantly
related to the predictor combination 700 hPa geopotential
heights and 850 hPa air temperature and occur preferably
in the 1950s and at the beginning of the 2000s.

Depending on the station considered, the change points
are associated with different non-stationarities in the pre-
dictor sets. As an example, Figure 4 shows for station
Gafanha, Portugal (40.62∘ N, 8.70∘ W) the loading pat-
tern of PC3, the large-scale mode resembling the EU1 (or
Scandinavia) pattern. PC3 dominates the generation of the

change point in 2001 in the corresponding CPGLM. The
southern centre of action is spatially more confined and
located directly at the target station in the period before
the change point (Figure 4(a)). In the period after the
change point, there is a larger spatial spread and substan-
tial shift of this centre of action towards the south-east
(Figure 4(b)) resulting in significant changes of its relation-
ship with precipitation at Gafanha. In a second example,
Figure 5 shows the loading pattern for station Eilon, Israel
(33.05∘ N, 35.21∘E). Changes of PC1 (which resembles
the NAO) play an important role for the change point at
1996 in the CPGLM. In the period before the change point,
the eastern Mediterranean is essentially decoupled from
the southern centre of action of NAO variability, whereas
in the later period, there is a strong negative regression
coefficient between the NAO and precipitation at Eilon. A
second predictor, which contributes to the change point, is
PC3 of 850 hPa air temperature (Figure 5(c) and (d)). In the
earlier period, there is only a small influence of this tem-
perature PC on precipitation, whereas in the period after
the change point, the negative regression relationship (pos-
itive mode of the pattern associated with below normal
precipitation, and vice versa) enhances considerably.

Overall, the occurrence of the change points in the
various Mediterranean regions can be related to sub-
stantial circulation changes. The changes refer to mod-
ifications of the intensity, spatial position and spatial
extent of the centres of action, as shown in the earlier
examples. Non-stationarities are evident in all large-scale
patterns considered in this study [NAO, EA, EU1 and
EU2; for a detailed discussion see Hertig et al. (2015)].
Changes of the pattern-specific characteristics alter the
predictors–precipitation relationships and are expressed
as change points in the statistical transfer functions. In
addition, changes in the thermal and thermo-dynamic char-
acteristics of the atmosphere–climate relationships con-
tribute to the generation of change points.

The predictor sets were obtained using the whole
time period available for a station in a cross-validation
framework based on 100 random samples. The CPGLM
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Figure 4. Loading pattern for PC3 of monthly 700 hPa geopotential heights December–February in the periods 1950–2001 (a) and 2002–2008 (b).
Diamond symbol: location of station Gafanha, Portugal (40.62∘ N, 8.70∘ W).
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Figure 5. Loading pattern for PC1 of 700 hPa geopotential heights ((a) and (b)) and PC3 of 850 hPa air temperature ((c) and (d)) December–February
in the periods 1958–1996 ((a) and (c)) and 1997–2003 ((b) and (d)). Diamond symbol: location of station Eilon, Israel (33.05∘ N, 35.21∘ E).

approach revealed that, even though the predictors are
significant for the whole time period under consideration,
there can be substantial temporal variations in the impor-
tance of a specific predictor. Thus, a specific predictor may
not be very relevant in one period, but can gain high signif-
icance in another time slice, which leads to multiple GLMs
to adequately capture the varying predictors–predictand
relationships. The question whether the CPGLM and
CPCUMSUM approach is more appropriate in a down-
scaling context compared to the use of conventional GLMs
is pursued further in the following section.

4.2. Validation

The results of cross-validation using conventional GLMs
can be seen in Figure 6. The MSESS ranges between 19

and 77% in calibration (Figure 6(a)) and between 10 and
66% in validation (Figure 6(b)). This indicates in general a
good skill of the downscaling models under stationary con-
ditions. Regionally the highest values of the MSESS can
be observed over the western parts of the Iberian Penin-
sula, whereas the eastern parts of Spain and some stations
over southern France and Greece show the lowest skill.

From the change point analysis robust change points
were derived for 37 stations. However, within the frame-
work of statistical downscaling, it is important to anal-
yse whether these change points actually impact on the
statistical model performance, and thus whether these
change points are not only robust, but also relevant. Hence,
we tested whether the use of the CPGLMs is generally
justified, i.e. whether the different predictors–predictand

                                                                



                                        1627

45

40

35

30

–10 0 10 20 30 40

(a)

45

40

35

30

–10 0 10 20 30 40

(b)

>80 to 100

>60 to ≤80

>20 to ≤40

>40 to ≤60

>0 to ≤20

≤0

MSESS

Figure 6. MSESS in calibration (a) and validation (b) using 100 random samples and the best-performing predictor combination for each station.

relationships can be described more accurately with the aid
of CPGLMs compared to the use of conventional GLMs
without change points. The difference of the mean MSESS
from the CPGLMs and the MSESS of the GLMs without
change points is shown in Figure 7. Note that for the sake
of a complete picture we show the results for all 94 sta-
tions, the results for the 37 stations with robust change
points are marked by the diamond symbol in Figure 7.
Indicated by the green colours in Figure 7, model per-
formance of the CPGLMs is higher in calibration for all
stations, an expectable result arising from the better adap-
tion of the CPGLMs in calibration. In validation, it can be
seen that for 30 stations (thereof 22 with robust change
points) the application of conventional GLMs yields bet-
ter results (orange and red colours in Figure 7). For
these stations, the predictors–predictand relationships are
described better by a single GLM equation. Variations in
the predictors–predictand relationships as identified for
many of these stations do not substantially affect down-
scaling model performance in terms of the MSESS and
thus the use of one model describing the relationships as
a whole is more suitable. It should be noted that a dif-
ferent validation measure can alter this result. However,
in this study, we are interested in the mean model perfor-
mance, and validation of other aspects is not considered
here. The GLM change point approach yields an added
value regarding mean model performance in validation
for 64 stations, thereof 15 stations with robust change
points (Figure 7). The close-by location of stations with

different behaviour regarding stationarity/non-stationarity
reflects the choice of local-scale models with site-specific
predictor–predictand relationships. In order to insure both,
the physical robustness and the statistical relevance, in the
downscaling projections CPGLMs were considered only
for the 15 stations featuring robust and relevant change
points. For the remaining 79 stations, conventional GLMs
were used in the downscaling assessments.

Overall, 37 (about 40%) of all stations show robust
change points. Thus, change points in the predictors–
precipitation relationships induced by changes of the
characteristics of the atmospheric patterns and/or of the
thermo-dynamic properties of specific patterns can be seen
in many cases. Within the scope of statistical downscaling
of future climate change, cross-validation is an important
part. For 15 (approx. 16%) of all stations, the CPGLMs
pass the specific cross-validation set-up yielding robust
and relevant change points. It points to the necessity to
allow for change points for the local precipitation projec-
tions at these stations.

4.3. Change points in model predictors

Within the change point statistical downscaling approach,
the large-scale atmospheric state in the model data had
also to be determined in order to decide whether the
observational GLM relationships of the period before or
the period after a change point are more appropriate to
downscale local climate in the model periods. In princi-
ple, it is possible that there exist multiple change points
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Figure 7. Difference in MSESS between CPGLM approach and GLM approach without considering change points in calibration (a) and validation
(b). Stations with robust change point are shown as diamonds and those with no robust change points as dots.

in the model periods, with before change point predic-
tor conditions alternating with after change point predictor
conditions. Thus, not only maxima in the cumulative sum
curves are relevant for the definition of change points, but
also minima. The analysis was done for the station-specific
predictor sets, i.e. the best-performing predictor combina-
tions in the validation set-up.

However, the experiment using the three runs of
MPI-ESM-LR with different initial conditions revealed
no multiple change points in the cumulative sum plots of
the historical runs in the period 1950–2005 and of the
scenario runs in the period 2006–2100. For the 15 sta-
tions, which have robust and relevant change points in the
observational period, the model predictors showed no or
only one change point. The predictor combinations com-
prise circulation predictors for four stations, circulation
and additionally air temperature for another four stations,
circulation plus wind components for five stations and
circulation plus specific humidity/relative vorticity at one
station each. In the cases of no change point in the model
data, the model predictor characteristics resembled more
closely the observational atmospheric conditions after the
change points. Thus, for the projection only the GLM of
the segment after the change point is used. For the other
cases, the cumulative sum curves showed one maximum.
In the projections, the maximum was always located
within the first 30 years (before 2035) of the scenario peri-
ods. The predictor characteristics in the projection period

before/after the maximum of the cumulative sum curve
are closer related to the conditions before/after the change
point and thus the GLM of the segment before/after
the change point is used, respectively. Note that for the
remaining 79 stations with no robust and relevant change
points, the projections in the following Section 4.4 are
based on conventional statistical downscaling models.

4.4. Local precipitation projections for the 21st century

Within the present change point statistical downscaling
approach, it is of interest how the change point mod-
els impact on the projection results. Figure 8 shows for
the 15 stations having robust and relevant change points
the comparison of the downscaling results without con-
sidering change points (Figure 8(a)–(c)) and under con-
sideration of change points (Figure 8(d)–(f)). Shown is
the winter (December–February) precipitation mean for
the period 2070–2099 under RCP8.5 scenario conditions
for each of the three MPI-ESM-LR runs. Comparing
the results reveals that the spatial precipitation pattern
over the Mediterranean area is preserved. This is due to
the fact that both approaches use the same predictor set
and similar general relationships between predictors and
precipitation. However, there are also some significant
differences according to the U test (95% significance
level), visualized by the square symbols in Figure 8. For
the MPI-ESM-LR run 1, five stations show significant dif-
ferences of the downscaling results between the model
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Figure 8. Precipitation mean in winter (December–February) of the period 2070–2099 for the 15 stations with robust and relevant change points.
Shown are the results for each of the three MPI-ESM runs under RCP8.5 scenario. (a)–(c): no change point models, (d)–(f): change point models.
Square denotes significant difference (U test, 95% significance level) of the winter precipitation mean between the change point model and the no

change point model.

considering change points and the model without change
points, four stations in case of run 2 and seven stations for
run 3. In these cases, the projected 30-year winter precip-
itation mean differs significantly between the two down-
scaling approaches with maximum values of the difference
of 250 mm.

The underlying reasons for these differences lie in the
use of different GLM relationships of the large-scale and
regional-scale circulation with local precipitation. Taking
as an example station Palermo, Italy, there are significantly
higher mean precipitation amounts assessed under the use
of the change point model. The station’s precipitation is
connected mainly with the EA pattern as well as with two
centres of variation over the Mediterranean area. Whereas
the EA pattern contributes only little to the difference,
the regression coefficients of the two regional centres of
variation are significantly higher in the CPGLM compared
to the conventional GLM, resulting in a greater impact on
precipitation. Aside from circulation-related differences,
for about half of the stations with significant differences
temperature or vertical wind components play a role as
well. For instance, station Beer Sheva, Israel, is connected
to several circulation predictors (and in particular to the
EU2 pattern and the regional centre of variation located
directly over the station), but as well with temperature
across the north-central and north-eastern Mediterranean

area. All predictors show somewhat higher absolute values
of the regression coefficients in the CPGLM compared
to the conventional GLM, jointly contributing to higher
precipitation amounts in the CPGLM assessments.

Figure 9 shows the results of the precipitation downscal-
ing in the winter season under RCP4.5 (Figure 9(a)) and
RCP8.5 (Figure 9(b)) scenario assumptions. The ensem-
ble mean changes from the three MPI-ESM-LR runs for
the scenario period 2070–2099 minus the historical model
period 1970–1999 are reproduced. The ensemble mean
change is calculated from the differences between sce-
nario period means and historical period means, averaged
over the three runs. It should be noted that just one model
from the CMIP5 database was selected to test the down-
scaling approach under consideration of change points in
the predictor–predictand relationships. We do not con-
sider variability arising from the use of different GCMs.
The assessments were done using conventional statistical
downscaling for 79 stations and the change point statistical
downscaling approach for the 15 stations, which showed
robust and relevant change points. Under the RCP4.5 sce-
nario precipitation increases in winter up to about 80 mm
are projected for the western and northern parts of the
Mediterranean area, whereas the north-eastern and eastern
Mediterranean regions are affected by precipitation reduc-
tions up to −40 mm. This spatial picture of precipitation
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1970–1999. Shown are the ensemble mean changes of the three MPI-ESM-LR runs for the RCP4.5 scenario (a) and for the RCP8.5 scenario (b).

change is partly consistent under the RCP8.5 scenario,
however with more widespread reductions. Most notice-
ably, the eastern parts of Spain, southern France and north-
ern Italy are affected by precipitation decreases. In addi-
tion, the magnitude of change is partly larger in the RCP8.5
scenario case. The strongest decreases occur over parts of
the eastern Mediterranean area with values up to about
−110 mm (−23%, station Kfar Sava, Israel). Strongest
increases can be found for some stations over the western
Iberian Peninsula with values up to 205 mm (27%, station
Extremo, Portugal) and over the Dalmatian coast.

5. Discussion and conclusions

A multitude of methods has been developed to deal
with change points in climate data depending on the
application (e.g. data homogenization of a single time
series up to the detection of structural change points
in complex circulation–climate relationships), the vari-
able of interest (e.g. temperature, precipitation and
wind) and specific requirements (e.g. ability to detect
single or multiple change points, parametric vs non-
parametric approaches). In this work, change points in
the relationships of large-scale atmospheric predictor
variables and local climate conditions were taken into
account through the application of CPGLMs. In combina-
tion with a change point method based on CPCUMSUM,
a statistical downscaling approach considering change
points was developed. This was done with the objective

to advance statistical downscaling approaches and to
improve reliability of projections of regional/local cli-
mate change. In the present contribution, we focused on
station-based mean precipitation. However, in the scope
of future climate change, other aspects like changes in
extreme precipitation are of particular importance as
well. In order to specifically assess non-stationarities
in extremes, a different approach should be chosen, for
instance based on quantile regression or extreme value
distributions like the generalized Pareto distribution.

Change points in the predictors–precipitation relation-
ships for 94 stations in the Mediterranean area were
assessed with the CPGLMs, and the CPCUMSUM method
was used to independently find these change points in the
predictor data. Two different reanalysis data sets were used
in order to avoid artificial change point detections due to
data inhomogeneity. Only change points, which could be
found in all four configurations, were subsequently treated
as reliable and were termed robust change points. About
40% (37 out of 94) of the analysed precipitation stations
showed robust change points.

The change points in the predictors–precipitation rela-
tionships can be seen in the context of non-stationarities of
the patterns of atmospheric variability and consequently in
the regional climate affected by these patterns. Changes in
the overall importance of a predictor, changes of the mean
predictor state and/or intensity changes and spatial shifts of
specific centres of variation have to be taken into account.
Further in-depth analysis of causes and mechanisms
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generating non-stationarities in recent climate variability
can be found in Hertig et al. (2015). In general, any
observed non-stationarity is related to multiple processes,
which contribute in differing amounts. The decision on
whether or not to include non-stationary relationships
into the downscaling approach depends on its statistical
evidence and its impact on the downscaling results.

Thus, subsequent to the change point analysis, the
approach was tested with respect to whether the consid-
eration of change points is of relevance within a statistical
downscaling framework. The model performance in terms
of the MSESS of the change point statistical downscal-
ing approach was assessed in a cross-validation framework
and compared to the model performance using conven-
tional statistical downscaling models without allowing for
change points. For 15 out of the 37 stations showing robust
change points, the statistical model performance yielded
an added value, i.e. model performance in validation was
enhanced in the change point statistical downscaling mod-
els. It should be noted that also for other stations with
no robust change points, the model performance could
be enhanced by the change point statistical downscaling
approach. Vice versa for some stations with robust change
points, the consideration of change point models did not
result in an enhanced MSESS. Therefore, the results from
cross-validation were judged in combination with the out-
come from the change point analysis. This resulted in the
15 stations, which featured robust and relevant change
points in the predictors–precipitation relationships. Con-
sequently, only for these stations, the change point statisti-
cal downscaling models were applied for the local climate
change projections, whereas precipitation for the remain-
ing 79 stations was downscaled using conventional GLMs
without considering change points.

With regard to the GCM data, we found that the predic-
tor characteristics of the model were more closely related
to the observational predictor state of the periods after
the change points. Several reasons could be responsible
for this: (1) the GCM does not correctly reproduce the
observed atmospheric variability. This is supported by the
finding that this feature even emerged in the historical
runs of the GCM; (2) changes of the atmospheric con-
ditions driven by anthropogenic greenhouse gas forcing
already occurred in the observational period and were
mostly effective after the change points. Thus, in the GCM
scenario runs, the circulation characteristics can be seen
as a continuation of the conditions after the change points;
(3) we have not sampled enough natural climate variabil-
ity in our about 60 years long observation period. Thus,
an extension of the analysis to longer historical periods
may provide further insight into natural climate variability.
Under the assumption the variations in an altered climate
are roughly contained in the variability of the present cli-
mate it may give the possibility of further improvements of
this statistical downscaling approach. Besides, it should be
noted that in the scope of future climate change, it is pos-
sible that new atmospheric patterns may evolve. However,
within the present approach, no entirely new predictor pat-
terns are taken into account. The statistical downscaling

approach can only accommodate to modifications of exist-
ing patterns.

For the 15 stations with robust and relevant change
points, the significance of the change point models in
the local climate change projections was assessed. Local
precipitation in the period 2070–2099 derived from the
application of the change point statistical downscaling
models was compared to the values derived from the
use of conventional downscaling models. The spatial
precipitation pattern across the stations obtained from
the change point approach conforms to the one resulting
from the application of GLMs without change points
due to common signals of the large-scale predictors on
precipitation. However, the application of the change
point approach affects the downscaled future precipitation
amounts. Significant differences to the models without
change points were found for about one third of the 15
stations. With respect to all 94 stations, the change point
statistical downscaling approach resulted in significantly
different local climate change projection results for about
6% of the stations. A very strict detection and selection
procedure of the CPGLMs was used to qualify them as
downscaling models. Thus, the final number of stations
with robust, relevant and significant change points can
be seen as a lower boundary. For these stations, future
precipitation change depends critically on the specifics
of the large-scale circulation changes. Since different
GLMs were selected according to the prevailing predictor
characteristics, the change point statistical downscal-
ing approach allows for a flexible adaption of future
precipitation change to these predictor changes.

Different approaches have been developed to consider
non-stationarities in connection with statistical downscal-
ing. Hertig and Jacobeit (2013) assessed non-stationarities
based on sliding calibration periods. A direct comparison
of the results obtained with the two different approaches
is not possible due to differences in the predictors and
differences in the GLM set-up. However, the projected
changes for the RCP4.5 scenario case presented in Figure 7
resemble in large part the downscaling results from Her-
tig and Jacobeit (2013). This gives improved confidence in
the robustness of these easy to apply and computationally
inexpensive non-stationary approaches to downscaling.
A further approach in the scope of statistical down-
scaling considering non-stationarities could be adopted
from Zeileis et al. (2008). They developed a model-based
recursive partitioning algorithm for parameter estima-
tion and partitioning. Thus, different statistical models,
defined by the combination of breakpoints and strati-
fied predictor–predictand equations, can be used in a
downscaling context. Furthermore, other statistical down-
scaling approaches like synoptic downscaling can be
consulted. In this context, changes in the occurrence fre-
quencies of circulation types could be used for partition-
ing. Subsequently, the specific dynamical (e.g. vorticity
and intensity) and climatological (temperature and precipi-
tation) characteristics of the circulation classes can be anal-
ysed in the corresponding sub-periods and subsequently
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be used for the development of a non-stationary synoptic
downscaling model.

Finally, with the present approach under RCP4.5 and
RCP8.5 scenario conditions mainly increases of winter
precipitation were assessed for parts of the western and
northern Mediterranean area, whereas decreases dominate
in the north-eastern and eastern Mediterranean area. How-
ever, only three runs of one GCM were considered in this
study. Thus, it remains to analyse the relevance of the
change point statistical downscaling approach under con-
sideration of several different GCMs.
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