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Climate change projections are subject to uncertainty arising from climate model deficiencies, unknown initial
conditions and scenario assumptions. In the IPCC reports and many other publications climate changes and
uncertainty ranges are usually displayed in terms of multi-model ensemble means and confidence intervals,
respectively. In this study, we present a more quantitative assessment and statistical testing of climate change
signals in the light of uncertainty. The approach is based on a two-way analysis of variance, referring to 24 climate
models from the CMIP3multi-model ensemble, and extents over the 21st century. Themethod also distinguishes
between different climate variables, time scales and emission scenarios and is combined with a simple bias
correction algorithm.
The Mediterranean region has been chosen as a case study because it represents an assumed hot spot of future
climate change,where temperature is projected to rise substantially and precipitationmay decrease dramatically
by the endof the 21st century. It is found that future temperature variations aremainly determinedby radiative forc-
ing, accounting for up to 60% of total variability, especially in the western Mediterranean Basin. In contrast, future
precipitation variability is almost completely attributable to model uncertainty and model internal variability,
both being important in more or less equal shares. This general finding is slightly depending on the prescribed
emission scenario and strictly sensitive to the considered time scale. In contrast to precipitation, the temperature
signal canbe enhancednoticeablywhenbias-correcting themodels' climatologyduring the20th century: the green-
house signal then accounts for up to 75% of total temperature variability in the regional mean.

                                   
         
             
                   
                   
           
     
1. Introduction

The usage of models for complex systems is inevitably tied to un-
certainties of different types and sources. Climate model projections
for climate variations in the past and future represent a paradigm of
such problems with uncertainties referring to practically all categories
like parameter uncertainty, structural uncertainty, algorithmic un-
certainty and experimental uncertainty (Palmer and Anderson, 1994;
Palmer and Williams, 2008). In state-of-the-art general circulation
models (GCMs), which provide the best tool to assess climate variability
in a three-dimensional space (Murphy et al., 2004), the spread of
projected climate changes among climate models mainly emanates
from different model-specific climate sensitivities, i.e. the response of
global mean temperature to a doubling in CO2 concentrations (Sexton
and Murphy, 2012). Recent studies have highlighted the role of feed-
backs in the determination of climate sensitivity (Roe and Baker,
2007; Andrews et al., 2012), especially in themodels' radiation schemes
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(Geoffroy et al., 2012) and, if incorporated in the model, the carbon
cycle (Friedlingstein et al., 2014). Additional sources of uncertainty in
climatemodel projections relate to the cycles andmagnitudes of natural
variability, e.g. in terms of solar and volcanic activity (Stott and
Kettleborough, 2002), to scenarios of greenhouse gas emissions
(Schenk and Lensink, 2007; Meinshausen et al., 2011), but also to inaccu-
rate climate data, which are used to calibrate the models and to develop
physical parameterizations (Hogan, 2005; Matthews et al., 2013).

As uncertainty is an intrinsic element of climate modeling, which, in
either case, does not prevent us from climatemitigation (Lewandowsky
et al., 2014), adaptation to future climate change has to be dimensioned
against the background of more or less diverging climatemodel projec-
tions (Hawkins and Sutton, 2011). Nonetheless, even if we cannot
reduce uncertainty beyond a given level, it must be quantified in an
objective, reproducible and honest way in order to specify lower and
upper limits and most probable ranges of future climate boundary con-
ditions as a benchmark for adaptation and protection (Curry, 2011).
Typically, the uncertainty of climate models is sampled by a large set
of climate model experiments with different initial conditions, different
physical parameterizations and grid resolutions, but identical changing
boundary conditions, e.g. greenhouse gas concentrations, forming a
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multi-model ensemble like in the framework of the coupled model in-
tercomparison projects in the second (Paeth et al., 2008), third (Meehl
et al., 2007; Hawkins and Sutton, 2011) and fifth generation (Taylor
et al., 2012). Climate change in the light of uncertainty is illustrated
by means of changes in the multi-model mean and corresponding
confidence intervals reflecting the spread acrossmodels. Prominent ex-
amples are given by the last IPCC reports (IPCC, 2007, 2013). Such prob-
abilistic climate change assessments have been further developed, e.g.
on the basis of Bayesian statistics (Tebaldi et al., 2005) and of models
with perturbed physics (Collins et al., 2006; Paeth, 2015), and are avail-
able for climate impact research (Lewandowsky et al., 2014).

In this study, we present a more straightforward quantitative
measure of the evidence of climate change. The main advantage is its
comparability in a sense that it can be applied to any multi-model
ensemble, emission scenario, region or time period, its plausibility and
its normalized character. For this purpose, we differentiate the total var-
iance of a given climate variable within a multi-model ensemble setting
into four fractions: (1) the fraction arising from the common forcing,
in this case changing atmospheric greenhouse gas and aerosol con-
centrations according to specific emission scenarios, (2) the portion re-
lated to systematic differences between the climatemodels, (3) the part
coming alongwith different time structures in the response to radiative
forcing, i.e. theway how quickly changes in climate variables occur over
the 21st century in a specific climatemodel projection, and (4) the influ-
ence of unknown initial conditions. Fraction 1 is a quantitative indicator
of the climate change signal, which is more or less blurred by uncer-
tainties in the formofmodel uncertainty (fraction 2) andmodel internal
variability (fraction 4). Comparedwith the similar approach byHawkins
and Sutton (2009), we rely on an analysis of variance, which, at the
same time, allows for the quantification and the assessment of statistical
significance of the individual contributions from climate change signals
and sources of uncertainty to total variability. In addition, we differenti-
ate between time scales and include a bias-correction algorithm. Analy-
sis of variance has been successfully applied to issues of climate change
assessment by Paeth and Hense (2002) for global temperature and
precipitation based on a very small ensemble of CMIP2 simulations,
by Wang and Swail (2006) for ocean wave heights and by Paeth and
Pollinger (2010) for extratropical circulation modes.

Here, the method is exemplified by the Mediterranean region,
where observational data foreshadow a substantial change towards
higher temperatures and lower precipitation rates (IPCC, 2007, 2013;
Seager et al., 2014). Indeed, the region has been identified as a hot
spot of future climate change (Giorgi, 2006; Diffenbaugh and Giorgi,
2012), in terms of changes in mean seasonal climate features and ex-
treme events (Paeth and Hense, 2005; Paxian et al., 2015). Therefore,
we expect a relatively high evidence of climate change signals in tem-
perature and precipitation, whichmay represent a benchmark for com-
parative studies with the same method in other regions of the globe.

In the following section the considered data sets and the statistical
approach for the quantification of climate change signals from multi-
model ensembles are presented. Section 3 is dedicated to the results,
which are discussed in Section 4.

2. Data and methods

The evidence of temperature and precipitation changes in the
Mediterranean region is derived from the CMIP3multi-model ensemble
(IPCC, 2007; Meehl et al., 2007). It is composed of 24 climate models,
partly different versions of the same GCM, many of those providing
several ensemble members with varied initial conditions. We consider
the 20th-century experiments with observed greenhouse gas concen-
trations and scenario runs according to emission scenarios A1B, B1
and A2 until the end of the 21st century (Nakicenovic and Swart,
2000). The number of available runs differs among the scenarios with
A1B being best represented. CMIP3 has been subject to numerous
studies on future climate change (cf. IPCC, 2007) and constituted the
                                                                    
                                                                    
state-of-the-art GCMdata base formost climatological issues at themo-
mentwhen our study began. In themeantime, CMIP5 as the next gener-
ation of coordinated multi-model ensembles has been made available
(Taylor et al., 2012; IPCC, 2013). At the time of writing this manuscript,
only a few CMIP5 models provided several ensemble members per sce-
nario, which, however, is a basic requirement of the statistical method
used in this study (see below). Although we could not yet consider
CMIP5 in the framework of the project presented here, we see our anal-
ysis based on CMIP3 as a benchmark for further investigation of CMIP5.
This is to assess whether the evidence of climate change in CMIP5
is more or less prevailing against the background of uncertainties
comparedwith CMIP3 andwhat impact is imposed by thenewemission
scenarios (Meinshausen et al., 2011). However, note that Knutti and
Sedláček (2013) have demonstrated that CMIP5 largely confirms
CMIP3 with respect to rates of temperature change and model spread:
the projected temperature rise in the Mediterranean is around 4 °C
under comparable scenarios like A1B (IPCC, 2007) and RCP6.0 (IPCC,
2013).

During recent decades simulated temperature and precipitation
changes from CMIP3 are compared with NCEP (Kistler et al., 2001)
and ERA40 (Uppala and 45 co-authors, 2005) reanalyses. On the one
hand, we want to evaluate to what extent simulated and observed
trends agree across the Mediterranean basin, in the sense of model
validation and confidence into future projections. On the other hand,
we are interested in the conformity of trends among different observa-
tional data sets as a clue to experimental uncertainty (cf. Hogan, 2005;
Matthews et al., 2013). For better comparison all model and reanalysis
data sets are statistically interpolated to a regular 3° × 3× grid.

The statistical approach is based on a two-way analysis of variance
(von Storch and Zwiers, 1999). A linear model is assumed, which splits
up the total variance SSτ, indicated as sumof squares (SS), of a given var-
iable at a given location into the so-called treatment effect SSβ of chang-
ing boundary conditions (in our case radiative forcing during the 21st
century), the block effect SSα (here the systematic difference between
climate models), the unpredictable residual SSε (in our context model
internal variability as imposed by varied initial conditions), and the
interaction coefficient SSγ (arising from different time structures in the
emission scenarios). SSβ is a direct and quantitative measure of the
evidence of climate change in the given variable. SSα stands for model
uncertainty and SSε for internal variability, both in quantitative terms
as well. SSγ can virtually be neglected, since the analysis of variance
(ANOVA) is separately applied to model simulations of the same emis-
sion scenario. These four fractions of total variance can be determined
from standard statistics based on means and standard deviations, for
formulas see von Storch and Zwiers (1999); Paeth and Hense (2002)
or Wang and Swail (2006). Statistical significance of SSβ and SSα is esti-
mated on the basis of a Fisher F test (von Storch and Zwiers, 1999) at an
error level of 5%. SSε is not tested since it represents the residual, i.e. the
null hypothesis. Note that the ANOVA requires several ensemble mem-
bers per climate model and scenario, expulsing some single runs from
the CMIP3 data base.

The innovativemethodical aspect of this study consists in the combi-
nation of the standard ANOVA with an ex ante bias correction and in a
closer look at the typical time scales, where climate change signals
emerge. In contrast tomore sophisticated approaches of bias correction,
like e.g. model output statistics (Paeth, 2011), it is found that a simple
postprocessing of model data is expedient: the climatology of each
model simulation is brought to the same observed long-term mean, in
this case the 1961–1990 time average of the ERA40 reanalysis as a plau-
sible, but arbitrary choice. This type of bias correction has been com-
bined with the ANOVA in order to assess in a quantitative sense, to
what extent a simple postprocessing of model data based on available
observations may enhance future climate change signals and, thus,
provide a more confident landmark for adaptation measures. Through-
out the paper, climate change is displayed as the linear change over a
given period, i.e. the product of the univariate regression coefficient
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and the time interval. It is tested bymeans of a t-test at an error level of
5% (von Storch and Zwiers, 1999).

3. Results

3.1. Past changes

Fig. 1 depicts the changes in annual, winter (December–February)
and summer (June–August) 2-meter temperature over the 1961–2000
period as indicated by NCEP reanalyses, ERA40 reanalyses and the
CMIP3 multi-model mean. The entire Mediterranean region is consid-
ered expanding from 20 ∘W to 45 ∘E and from 26 ∘N to 45 ∘N. At first
sight, all three data sets differ noticeably: NCEP mainly exhibits a
warming pattern, but also reveals a cooling tendency in parts of north-
ern African, eastern Turkey and Southeast Europa, especially in winter.
The cooling is yet barely statistically significant. In contrast, ERA40 is
characterized by a higher and mostly significant warming rate. The
CMIP3 models indicate a weak, but spatially coherent and significant
warming pattern in all seasons. Its lower amplitude is mainly due to
the fact that it refers to the mean over many individual realizations.
There is also one feature where reanalyses and climatemodels basically
agree, that is to say the pronounced temperature rise in summer. In the
observations it partly exceeds 2 ∘C over 40 years, which is more than
twice as much as on global average since the late 19th century and
has been one reason for identifying the Mediterranean region as a hot
spot of climate change (Diffenbaugh and Giorgi, 2012). The striking dis-
crepancies between NCEP and ERA40 shed light on the problem of ex-
perimental uncertainty (cf. Hogan, 2005; Matthews et al., 2013) and
are quite alarming in a region, which, in a global context, is relatively
well represented by station observations. The differences between
reanalyses and CMIP3 can partly be explained by different cycles of de-
cadal variability in observations and uninitialized climatemodel simula-
tions, impeding the validation of simulated climate trends over short
time intervals (cf. Lu et al., 2014; Paxian et al., 2014).

The agreement between ERA40 and NCEP tends to be higher in
terms of precipitation changes during the late 20th century (Fig. 2): an-
nual precipitation amount decreases inmost parts of theMediterranean
domain with highest amplitudes over southern Europe and the central
basin. Drying prevails in all seasons, especially in winter where rainfall
peaks during the seasonal cycle. In contrast, some parts of northern
Africa and the eastern North Atlantic have experienced a slight and sta-
tistically insignificant increase of precipitation. The CMIP3 multi-model
ensemble mean also denotes a drying pattern, but with very low
Fig. 1. Changes in annual, winter and summer near-surface temperature over the 1961–2000 p
statistical significance at the 5% level.

                                                                    
                                                                    
amplitudes and only sporadic significance. However, this should not be
over-interpreted for the reasons mentioned above. Altogether, the data
sets draw a rather consistent picture of aridification in theMediterranean
region as reported by several other studies (e.g. IPCC, 2007, 2013; Seager
et al., 2014).

3.2. Future changes

The temperature changes over the 21st century as projected by the
CMIP3 multi-model ensemble mean are displayed in Fig. 3 for the A1B
emission scenario. Annual, winter and summer trends exhibit a similar
pattern with higher warming rates over land masses and higher mag-
nitudes in summer compared to winter. The temperature rise is every-
where statistically significant and extends from below 2 ∘C over the
North Atlantic to about 5 ∘C over southwestern and southeastern
Europe by the end of this century. Note that global-mean warming
under A1B emissions scenario amounts to 2.5 ∘C over the same period
(IPCC, 2007), highlighting the prominence of the Mediterranean region
in the global warming context. Under the assumption of B1 scenario the
Mediterranean temperature change does not exceed +3 ∘C until 2100,
while it reaches up to 6.5 ∘C under A2 (not shown). From a regional per-
spective, this reflects an enormous margin and, likewise, a strong moti-
vation for climate mitigation measures.

The drying tendency of the late 20th century appears to continue
until the year 2100 with a reduction of annual precipitation of more
than 100 mm (Fig. 4). In many subregions of the Mediterranean basin
the aridification is in the order of more than 25% of present-day precip-
itation totals. In summer the decrease is more expressed over southern
Europe, in winter over the eastern Mediterranean and the Near East
with a slight and insignificant increase along the northern borders of
the basin. Notably striking is the negative trend over the Iberian Penin-
sula. B1 emission scenario is coming along with a less pronounced re-
duction of precipitation amount, whereas the drying is much more
dramatic under A2 with values beyond −150 mm per year in most
parts of the Mediterranean region (not shown). This indicates again a
large scope of action for climate protection.

In summary, current climate models obviously tend to project a
much warmer and dryer climate evolving over the 21st century. Thus,
from a global perspective future climate change appears to be particu-
larly evident in the Mediterranean region. However, the illustrations
in Figs. 3 and 4 do not reveal anything about the uncertainty of these
projections, lurking within the CMIP3 multi-model ensemble. In the
next subsection, the future temperature and precipitation changes are
eriod from NCEP and ERA40 reanalyses and CMIP3 multi-model mean. Black dots indicate

                                                           
                    



Fig. 2. Same as Fig. 1, but for precipitation.
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quantified and evaluated in the light of model uncertainty and internal
variability.

3.3. Quantification of climate change signals and uncertainties

Based on the climate changes under A1B scenario as indicated by
Fig. 3, the total variance of annual-mean near-surface temperature
over the 2001–2098 period and over all ensemble runs of the CMIP3
multi-model data set is split up into the fraction related to the common
climate change signal over all simulations (β in Fig. 5), the contribu-
tion by model uncertainty (α in Fig. 5) and the component of model
internal variability (ε in Fig. 5). As the fourth fraction, that is to say
the interaction coefficient, can be neglected in our experimental set-
ting (see Section 2), these three portions sum up to nearly 100% of
total temperature variance. Interestingly, the pattern of variance ex-
plained by radiative forcing (Fig. 5, top) is inverse compared with
Fig. 3. Changes in annual, winter and summer near-surface temperature over the 2001–2098
statistical significance at the 5% level.

                                                                    
                                                                    
the pattern of future temperature changes (Fig. 3, top): the evidence
of projected warming is higher over the ocean surface, but its mag-
nitude is higher over land. The climate change signal is statistically
significant in all grid cells and accounts for up to 60% of total tem-
perature variance in the western Mediterranean region and over
the North Atlantic. In contrast, with up to 80% of total temperature
variance model uncertainty prevails over northern Africa and the
Near East and is also significant across the entire Mediterranean
basin (Fig. 5, middle). Internal variability is most pronounced in
the northern-most part of the basin and, especially, over the eastern
North Atlantic (Fig. 5, bottom) where mid-latitude cyclonic activity
during winter leads to stronger high-frequency variability (cf. Paeth
and Pollinger, 2010). With less than 20% of explained variance inter-
nal variability is relatively weak, making near-surface temperature a
robust detection variable of future climate change (cf. Paeth and
Hense, 2002).
period from CMIP3 multi-model mean under A1B emission scenario. Black dots indicate

                                                           
                    



Fig. 4. Same as Fig. 3, but for precipitation.
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In terms of future precipitation changes a completely different pic-
ture is drawn (Fig. 6): almost none of the total variance can be attribut-
ed to a common climate change signal. Instead, precipitation changes
within the CMIP3 multi-model ensemble are almost entirely governed
by the spread among different climate model projections and internal
variability at interanual to decadal time scales. Both sources of uncer-
tainty range in the same order of magnitude with model uncertainty
prevailing over the land masses, particularly over North African dry
Fig. 5.Portions of total variance of annual near-surface temperature explained by common
climate change signal (top), by model discrepancy (middle) and by model internal
variability (bottom) over the 2001–2098 period from CMIP3 multi-model ensemble
under A1B emission scenario. Black dots indicate statistical significance at the 5% level.

                                                                    
                                                                    
areas, and internal variability being more pronounced over the sea
surface.

Fig. 7 reveals that the evidence of future temperature and precipita-
tion changes is an unmistakable function of emission scenario. UnderA2
the fraction of total annual temperature variance accounted for by radi-
ative forcing reaches up to 70% and is 20–30% higher in all grid boxes
compared with B1 (left panels), A1B being just in the middle of this
range. Nonetheless, the temperature signal is significant under all emis-
sion scenarios. Concerning precipitation, there is no distinct evidence of
future climate change under B1, but some explained variance of 5–20%
Fig. 6. Same as Fig. 5, but for precipitation.

                                                           
                    



Fig. 7. Portion of total variance of annual near-surface temperature (left) and annual precipitation (right) explained by common climate change signal over the 2001–2098 period from
CMIP3 multi-model ensemble under B1 (top) and A2 (bottom) emission scenarios. Black dots indicate statistical significance at the 5% level.

6                                                      
over the southeasternMediterranean Sea under A2 (right panels). Obvi-
ously, the strength of the climate change signals is proportional to the
amount of emitted greenhouse gases.

Fig. 8 provides insight into the sensitivity of the climate change sig-
nals to the considered time scale and into their temporal structure. For
this purpose, regional-mean time series of annual temperature (left
panels) and precipitation (right panels) are built for the entire Mediter-
ranean domain and the ANOVA is applied to running 30-year (top
panels) and 60-year (bottom panels) time windows over the 1900–
2098period. 30-year intervals have been chosen because they aremain-
ly characterized by interannual and decadal variability, while 60-year
periods are more marked by long-term trends (cf. Lu et al., 2014;
Paxian et al., 2014). At both time scales, the temperature signal emerges
in the late 20th and over the entire 21st century (cf. Maraun, 2013),
but it is clearly more evident over 60-year periods, exceeding 20% of
Fig. 8. Portion of total variance of regional-mean annual near-surface temperature (left) and
model discrepancy (green lines) and by model internal variability (red lines) over sliding 30-
emission scenarios. (For interpretation of the references to color in this figure legend, the read

                                                                    
                                                                    
explained variance. This happens at the expense of lower model uncer-
tainty, whereas internal variability is equally pronounced over 30-year
and 60-year time intervals. Thus, the model spread within CMIP3 is
larger at the interannual to decadal rather than at the multi-decadal
time scale because the latter is more affected by the radiative forcing,
which is common to all model projections. With regard to annual pre-
cipitation, the forcing component occurs in none of the considered
time periods. Total variability is rather arising from systematic model
differences and internal noise. The considered time scales hardly affect
the relative contributions to total precipitation variance, but the time
series are smoother for 60-year periods because the time windows
overlap more extensively. In general, model uncertainty is the most
dominant factor accounting for almost two third of total variance.

In Section 2, fraction αwas defined as an indicator of systematic dif-
ferences between the various climate models in the CMIP3 data base. It
annual precipitation (right) explained by common climate change signal (blue lines), by
year (top) and 60-year (bottom) periods from CMIP3 multi-model ensemble under A1B
er is referred to the web version of this article.)
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partly reflects different model climatologies during the 20th century,
which more or less deviate from given observations. Thus, one option
to reduce the model spread of future climate projections may consist
in a correction of model biases over past time periods, for which obser-
vational data for calibration are available. Here, temperature and precip-
itation means over the 1961–1990 reference period from all considered
model experiments are adapted to the corresponding ERA40 climatolo-
gy. In contrast to more sophisticatedmodel output statistics (e.g. Paeth,
2011), this simple bias correction allows for retaining the interannual to
centennial variability of each individual model run. This is crucial in
order to avoid that model internal noise is partly suppressed after bias
correction. Fig. 9 illustrates that bias correction has a remarkable effect
on the evidence of future temperature changes over 60-year sliding
time windows in the Mediterranean region (left panel): the portion of
temperature variance explained by the common radiative forcing in-
creases from less than 25% in the original CMIP3multi-model ensemble
to more than 70% after calibration. Nonetheless, internal variability ac-
counts for a slightly larger portion of total variance and model uncer-
tainty still increases towards the end of the 21st century. In contrast,
the bias correction barely affects the precipitation signal. It now be-
comes apparent, but does not exceed 10% of total variance. Instead,
model differences as one source of uncertainty are replaced by internal
variability as another source of uncertainty. Like for temperature the
model spread slightly increases over the 21st century. Consequently,
the effectiveness of bias correction in the assessment of future climate
change signals depends on the considered climate variable.
4. Summary and conclusions

This study was dedicated to a quantitative assessment of climate
change signals and uncertainties in future projections of near-surface
temperature and precipitation in the Mediterranean region. The aim
was to provide comprehensible and comparative measures of forcing
effects, model uncertainty and model internal variability, which can be
applied to arbitrary climate variables, regions, time slices, scenarios
and multi-model ensembles. The Mediterranean basin has been chosen
as a test case because previous studies have identified this region to be a
hot spot of climate change (Giorgi, 2006;Diffenbaugh andGiorgi, 2012).
Climate models and various reanalyses indicate a warming and drying
tendency over recent decades, although all data sets differ noticeably
at the seasonal and sub-regional scale. This suggests some important
experimental uncertainty in the observational data, even in a region,
where data coverage is relatively high. In the CMIP3 multi-model en-
semble mean a substantial warming and drying is projected over the
21st century. The temperature rise under a given emission scenario is
far beyond the global-mean warming rate and precipitation decrease
is among the most pronounced around the globe (cf. IPCC, 2007, 2013;
Fig. 9. Same as Fig. 8, but for sliding 60-year periods only and for bia

                                                                    
                                                                    
Seager et al., 2014). This is basically supportive of the idea of a climate
change hot spot.

Indeed, the ANOVA approach has revealed that the future tempera-
ture increase clearly stands out from model uncertainty and internal
variability, while the latter is a less important source of uncertainty.
The pattern of variance assigned to the common radiative forcing is in-
verse to the pattern of the magnitude of future temperature changes.
This implies that ocean surfaces are characterized by a smaller temper-
ature increase than landmasses, but its evidence from the CMIP3multi-
model ensemble is higher. Over the land masses, this relationship is
inverse. Paeth and Hense (2002) have also concluded that tropical and
subtropical oceans exhibit a weak, but particularly robust climate
change signal. However, in contrast to temperature precipitation
change is almost entirely blurred by model spread and internal noise,
leaving no room for a robust interpretation of projected future trends.
Thus, previous works can be confirmed, stating that temperature is a
much better detection variable of climate change than precipitation
(e.g. Paeth and Hense, 2002). This must be taken into account when de-
fining hot spot regions of climate change.Model uncertainty is generally
higher over landmasses, especially in dry regions, than over the oceans,
where internal variability tends to be more pronounced.

Our study has also demonstrated that the strength of climate change
signals is a function of the emission scenario, pleading for timely climate
mitigation measures, and of the considered time scale: 30-year time in-
tervals are too short to identify climate changes against the background
of high-frequency components of climate variability (cf. Hawkins and
Sutton, 2011; Lu et al., 2014). Indeed, climate models strictly diverge
at interannual to decadal time scales, which are mainly affected by the
choice of initial conditions (Paxian et al., 2014). This is particularly evi-
dent for precipitation, where internal variability over 30 years is almost
as high as model uncertainty. Over 60-year periods, the temperature
signal clearly emerges from the 1980s onward, whereas precipitation
variability in the CMIP3 data base must still be assigned entirely to
model discrepancies and internal noise.

Finally, a simple algorithmof bias correction during the 20th century
has an appreciable impact on the temperature signal: the portion of
variance arising from the radiative forcing increases from below 30%
to above 70%, although the model spread becomes more and more
apparent over the second half of the 21st century. No such positive
effect can be obtained for precipitation: a reduced contribution by
model uncertainty is replaced by an enhanced influence of internal var-
iability. This has also been suggested byHawkins and Sutton (2011) and
Rowell (2012).

Compared to other regions of the globe, it is likely that the climate
change signal of temperature in the Mediterranean basin is quite dis-
tinct. Based on a large number of ensemble members from the same
climate model Deser et al. (2012) have highlighted that uncertainty
arising from internal variability may substantially blur the greenhouse
s-corrected model climatologies during the 1961–1990 period.
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gas induced warming signal across North America, even at the scale of
larger regional means. Extratropical regions may be more concerned
by this signal deterioration than tropical and subtropical areas, as also
reported by Paeth and Hense (2002).

Based on these findings, the next steps are quite obvious: for com-
parison the ANOVA approach should be applied to other regions and,
in particular, to the CMIP5 data base. CMIP5 represents the latest ver-
sion of multi-model ensembles, providing an even larger number of
future climate projections (Taylor et al., 2012; IPCC, 2013) under a
new set of emission scenarios (Meinshausen et al., 2011). Nevertheless,
it is not necessarily expectable that climate change signals in CMIP5 and
CMIP3 basically differ from each other, since Knutti and Sedláček (2013)
pointed out that both data sets are quite similar in terms of future
warming rates and model spread. However, their projections, being
composed of climate change signals and internal variations, may still
be very different, given their specific cycles of internal variability –
especially for precipitation.

A constraint of our approach is given by the fact that climate change
signals may be exaggerated and sources of uncertainty underestimated
when the underlying multi-model ensemble does not reflect a realistic
range of possible future pathways of climate. In fact, some authors
argue that climate models in the CMIP framework are not independent
of each other and, hence, model spread is systematically underestimated
(Curry, 2011; Hawkins and Sutton, 2009, 2011; Sanderson and Knutti,
2012). It has also been suggested that model ensembles with perturbed
physics (Collins et al., 2006) or even stochastic climate models (Palmer
and Williams, 2008) may give a more appropriate insight into real
model uncertainty. While this is essential ongoing research, Collins et al.
(2011) have shown that the model spread from CMIP3 is comparable
with the spread from an ensemble with perturbed physics using the
HadCM3 climatemodel. Thus, CMIP3 appears to be appropriate for quan-
tifying climate change signals against the background of uncertainties.
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