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1. Introduction

Biomimetics is a relatively young multidisciplinary science being systematically and intensively devel-
oped in the last decade. The concept of implementing ideas from nature is rather old but due to the modern
technologies nowadays the material synthesis from biological structures becomes of strongly increasing
interest for advanced processing of technological devices. In contrast to engineering materials, biologi-
cal structures are often microstructural designed materials which exhibit a hierarchically built anatomy,
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developed and optimized in a long-term genetic evolution process. They possess an excellent strength at
low density, high stiffness and elasticity, and damage tolerance both on the micro and macro level.

In particular, novel microcellular ceramics with unidirectional porous structures have recently been
manufactured from natural grown plant preforms like wood (see, e.g. [9,15,18,19]). The natural wood
morphologies are characterized by an open porous system of tracheidal cells which provide the trans-
portation path for water and minerals in the living plants. The inherent cellular highly open porous
system, accessible for infiltration of various liquid or gaseous metals, is used for design of the biomor-
phic porous ceramics. The transformation of the carbonized wood into porous carbide ceramics is done
by infiltration-reaction processes with various carbide forming metals (e.g., Si, Ti).

The main scope of this paper focuses on the modelling, simulation, and shape optimization of the novel
microstructured biomorphic ceramic materials. The mechanical behavior of the final ceramic workpiece is
determined by the geometry of its microstructure which can be very precisely tuned during the processing.
Our purpose is to find the microstructural characteristics in order to achieve an optimal mechanical
performance of the final product with respect to some optimal criteria and specific applications. In
principal, the main efforts in shape optimization problems are addressed to the geometry of the structure
as a design variable which means, in particular, that the discretization model associated with the structure
has to be changed in the process of optimization. For details, we refer to [2,6,7,20] and the literature therein.

Our shape optimization problem is based on the homogenization approach for modelling of linearly
elastic microstructures with a distribution of various material phases. A simple unit microstructure is
defined and supposed to be periodically distributed through the design media. The homogenization is
possible under the assumption for separation of the microstructure scale from the macroscopic one
through an asymptotic expansion (see, e.g. [1,3,5,7,17,20]). The desired properties are specified as a set
of equality and inequality constraints. The physical quantities (displacements in terms of the elasticity
equation) serve as state variables whereas the microscopic geometric widths of layers are considered as
design parameters within the optimization procedure. In addition, the orientation of the microstructure is
important for the final macroscopic problem, i.e., the angle of cell rotation as a design parameter is also
taken into account.

In the optimization algorithm, we were typically faced with constrained nonconvex minimization
problems with both equality and inequality constraints on the state variables and design parameters.
After discretization, for example, by finite elements, we solve the discretized optimization problems by
primal–dual interior-point methods which have been recently successfully applied to nonlinear program-
ming problems (cf., e.g. [4,8,11,13,14]). In traditional design optimization strategies the optimization
process and the numerical solution of the state equation are separated. We strongly emphasize on the use
of the one-shot method (all-in-one approach) where the iterative solution of the discretized state equation
is an integral part of the optimization routine.

The remaining part of the present study is organized as follows. In Section 2, the processing scheme
of the novel biomorphic ceramics is described. The shape optimization problem is discussed in detail in
Section 3. Our purpose is to minimize the objective functional (for instance, the mean compliance) subject
to: (i) the homogenized equilibrium equation; (ii) the equality constraint on the solid material part; (iii)
the inequality constraints on the design parameters. Primal–dual Newton-type interior-point algorithm
is applied in Section 4 to solve the discretized optimization problem. The inequality constraints are
treated indirectly as equalities and nonnegative slack variables. Adaptive grid refinement on the basis of
a posteriori error estimators has been recently applied in finite element analysis in elasticity (cf., e.g.,
[10,12,17]). In the numerical experiments given in the last section, we have used an adaptivity in the
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microstructure around the domain geometric singularities and across the material interfaces due to the
strongly varying material characteristics. To find the effective (homogenized) properties of the composite
materials, we have followed the idea of Zienkiewicz–Zhu (see [22]) to compute the recovered stresses in
terms of elasticity equations.

2. Processing scheme by biotemplating

A particular area within the field of biomimetics is the recent production of biomorphic silicon carbide
(SiC) ceramics from natural grown materials like wood and cellulose fibres (see [15,18]). The production
process of the ceramic materials relies on the biotemplating as a novel technology in the field of biomimet-
ics which features a material synthesis from biologically grown materials into ceramic composites by fast
high-temperature processing. The preparation includes basically two processing steps. Firstly, the work-
piece of natural wood is dried and preprocessed by high-temperature pyrolysis (800–1800 ◦C) in inert
atmosphere resulting in a biological porous carbon preform (also called carbonized biotemplate). The
porosity of the carbon preform is about 20–25% higher than of the dried wood. Due to the high porosity,
the pyrolyzed template is infiltrated in the next step with liquid or gaseous silicon (Si) at 1600◦C. The
silicon reacts with the carbon to finally yield a porous SiC-ceramic material (cf. Fig. 1). The remaining
silicon in the tracheidal cells can be removed by chemical etching to increase the porosity. The total
porosity of the SiC ceramics strongly depends on the initial cellular structure. The processing scheme
is explained in Fig. 2. For details of the high-temperature material synthesis we refer, for example, to
[19].

Fig. 1. Microcellular SiC ceramic derived from pine wood, pyrolysis at 1600◦/4 h: (a) radial direction; (b) axial direction.
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Fig. 2. Processing scheme of microcellular SiC and SiSiC ceramics from wood.
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The new anisotropic biomorphic microcellular SiC ceramics cannot be considered furthermore as wood
but have a unique oriented cellular microstructure pseudomorphous to wood. In particular, during the
high-temperature processing, the microstructural properties of the bioorganic preforms retain and the
original wood structure is reproduced almost one-to-one. Moreover, strength and elastic modulus of the
pyrolyzed carbon preform and of the final SiC ceramic were derived from stress–strain measurements in
different loading directions (e.g., axial, radial, and tangential).

The composite materials described above possess excellent structural–mechanical properties and have
received in the last few years a wide range of interest in many technical applications such as heat insulation,
substrates, filter and catalyst carriers at high temperature, thermally and mechanically loaded light-weight
structures, as well as medical implant structures (e.g., porous materials for bone substitution).

3. Shape optimization by a homogenization

This section deals with the optimal performances of the composite SiC-ceramic materials taking into
account the microstructural geometric features that strongly influence the macrocharacteristics of the
final product. For structural design purposes there is a need to provide a macroscopic scale model which
contains details for the microscopic fine structure as design parameters. The optimal shape design of
microstructured materials by homogenization modelling is well established in structural mechanics (cf.,
e.g. [1–3,5,7,20]). Shape optimization can be realized under the assumption that the original topology
of the domain is fixed during the design processing but the geometry of the structure is not fixed, i.e., it
changes at each iterative step within the optimization (see [7]).

Our macroscale homogenized model is provided by the homogenization approach assuming a periodical
distribution of the microstructure with a geometrically simple infinitesimal tracheidal cell. We consider
a unit square periodicity cell Y (see Fig. 3) consisting of an outer layer of carbon, interior layer of SiC,
a very thin layer of silicon dioxide (SiO2), and a void. Experimental data show that the SiC ceramics
are not stable under oxidizing conditions and they form a SiO2 layer of thickness approximately 100 nm
whereas the maximum diameter of the tracheidal cell is in the range of 50 �m for pine up to 350 �m for
oak. The SiO2 coating on the interface between the SiC and the void can be done by posttreatment of
the ceramic material at 800–1200◦C in ambient atmosphere. This very thin microstructural layer on the
inner SiC surfaces acts as an oxidation protection layer and inhibits further oxidation.

Let Ω ⊂ R2 be a bounded domain occupied by a SiC-based composite material of periodically
distributed constituents. Suppose that the boundary ∂Ω = ΓD ∪ ΓT, ΓD ∩ ΓT = ∅,measΓD > 0.
Homogenization is possible if the macro and micro scales are well separated, i.e., we assume that the

Fig. 3. The periodicity cell Y with three constituents and a void.
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periodic cells in the macrostructure are infinitely many but infinitely small and repeated periodically
through the medium. We introduce two space variables x (macroscopic variable) and y (microscopic
variable) and denote by ε := x/y 	 1 the scale parameter (dimensionless number) which, in fact,
represents the periodicity under the assumption that ε is very small with respect to the size of Ω. The
parameter ε allows us to define macrofunctions in terms of the microstructural behavior and vice versa.
Thus, for any state function f(y) := f(x/ε), one can compute the spatial derivatives by using the following
differentiation rule

d
dx
f
(
x,
x

ε

)
= ∂f(x, y)

∂x
+ ε−1 ∂f(x, y)

∂y
.

We assume linearly elastic constituents and consider the following elasticity equation in Y
−div σ(y) = F (y), in Y (1)

with a load vector F . Denote by σ(y) = {σij(y)}, i, j = 1, 2, the symmetric stress tensor, by u(y) =
(u1(y), u2(y))

T,u ∈ H1(Y), the corresponding displacement vector at point y of the body, and by

eij(u(y)) = 1
2

(
∂ui(y)

∂yj
+ ∂uj(y)

∂yi

)
(2)

the components of the symmetric strain tensor. The problem (1) is subject to periodic boundary conditions
on the outer part of ∂Y , Neumann boundary conditions around the hole, and continuity conditions [u] = 0
and [σ · n] = 0 on the interfaces between the layers. The symbol [ ] denotes the jump of the function
across the corresponding interface with a normal vector n (cf., e.g. [1]).

Assume that our composite microstructure is governed by the linearized Hooke’s law as the constitutive
equation which can be written in tensor notations as follows

σij(y) = Eijkl(y)ekl(u(y)). (3)

Here, the Einstein summation convention is applied. The elasticity (also called plain stress) tensor E(y) =
(Eijkl(y)), i, j, k, l = 1, 2, of order 4, characterizes the behavior of the material at point y and depends on
material constants like Young’s modulus and Poisson’s ratio. It can be chosen either for the plane stresses
or for the plane strains depending on the macroscopic structure to be designed. Note that the elasticity
tensor E(y) is zero if y is located in the hole (see Fig. 3) and coincides with the elasticity tensor of the
material (carbon, SiC, SiO2) if y is located in the corresponding layer. The elasticity tensor is symmetric
in the following sense

Eijkl = Ejikl = Eijlk = Eklij, ∀ i, j, k, l = 1, 2 (4)

and satisfies the following ellipticity conditions

Eijkl χijχkl ≥ c χ2
ij, ∀χij = χji,

for a constant c > 0 (cf., e.g. [1,3,5,7,17,20]).
Denote by uε(x) := u(x/ε) the unknown macroscopic displacement vector and consider the following

problem
−div σε(x) = f (x), inΩ, (5)

subject to a macroscopic body force f and a macroscopic surface traction q applied to the portion ΓT ⊂
∂Ω. Here, σε(x) := Eε(x)e(uε(x)) is the stress tensor and Eε(x) := E(x/ε) = E(y) is the piecewise
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constant elasticity tensor defined inY . Following [3] for the basic concepts of the homogenization method,
the unknown displacement vector is expanded asymptotically as

uε(x) = u(0)(x, y)+ εu(1)(x, y)+ · · · , y = x/ε, (6)

where u(i)(x, y), i ≥ 0, are Y periodic in y, i.e., take equal values on opposite sides of Y .
The homogenization method requires to find the functions ξkl = (ξkl

1 , ξ
kl
2 ), k, l = 1, 2, satisfying the

following problem in a weak formulation∫
Y

(
Eijpq(y)

∂ξkl
p

∂yq

)
∂φi

∂yj
dy =

∫
Y

Eijkl(y)
∂φi

∂yj
dy (7)

for an arbitraryY -periodic variational functionφ ∈ H1(Y). After computing the microscopic displacement
field ξkl from (7), we can define the homogenized (effective) coefficients by the following homogenized
formulas (we refer to [1,3,5] for details)

EHijkl =
1
|Y |

∫
Y

(
Eijkl(y)− Eijpq(y)

∂ξkl
p

∂yq

)
dy. (8)

Due to the symmetry conditions (4), the 4th order homogenized elasticity tensor EH = (EHijkl), i, j, k, l =
1, 2, can be written as a symmetric 3× 3 matrix

EH =



EH1111 EH1122 0

EH2211 EH2222 0

0 0 EH1212


 . (9)

The computation of the homogenized elasticity coefficients can be done analytically for some specific
geometries as, for instance, layered materials or checkerboard structures (cf., e.g. [1,3,5]). In case of
more complicated microstructures, the computation ofEHijkl has to be done numerically through a suitable
microscopic modelling.

To the microscopic problem (1) on the unit cell Y one can now associate a homogenized problem at
the macroscopic level as follows

−div σ(x) = f (x), inΩ, (10)

where σ(x) := EHe(u(0)(x)), x ∈ Ω, and EH stands for the homogenized elasticity tensor (9). Both
problems constitute the necessary and sufficient conditions obtained by a suitable limit process where the
scale parameter ε tends to zero.

We attempt to optimize mechanical performances of the ceramic composites in terms of an objective
functional J which can be chosen according to various merit criteria depending on the application (see,
e.g. [2] for details). For this purpose, we have to take into account the technological and problem specific
constraints on the state variables (in our case the displacements vector u = (u1, u2)

T) and the design
parameters α = (α1, α2, . . . , αm)

T (widths of the different material layers) for a number of layers
m > 0.

We consider as well the angle of cell rotation as an additional design parameter in the shape optimization
problem. Note that in this case there are explicit formulas for the computation of the rotated homogenized
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elasticity coefficients given by

ERijkl(α, θ) =
2∑

m,n,p,q=1

EHmnpq(α) Rim(θ) Rjn(θ) Rkp(θ) Rlq(θ), (11)

where Rjn(θ), 1 ≤ j, n ≤ 2, are the components of the rotation matrix and θ is the angle of cell rotation
with respect to a fixed reference frame (for instance, the coordinate system) (see also [20]).

Our optimization problem has the form
J(u,α, θ) = inf

v,β,γ
J(v,β, γ), (12)

subject to the following equality and inequality constraints on the state variables and the design parameters:
2∑

i,j,k,l=1

∫
Ω

ERijkl(α, θ)
∂uk

∂xl

∂φi

∂xj
dx =

∫
Ω

f · φ dx+
∫
ΓT

q · φ ds, ∀φ ∈ V0 (13)

g(α) :=
m∑
i=1

αi = C; αmin ≤ αi ≤ αmax, 1 ≤ i ≤ m, (14)

where (in case of unit cell with a square hole located at the center) αmin = 0, αmax = 0.5, and C, 0 ≤
C ≤ 0.5, is a given constant. Note that αi = 0, 1 ≤ i ≤ m, corresponds to a complete void, C = 0.5 to a
complete solid material, and the case 0 < αi, C < 0.5 corresponds to a microstructural porous composite
with a void. Eq. (13) refers to the homogenized equilibrium equation given in a weak formulation for
the space V0 := {v ∈ H1(Ω)|v = 0 onΓD}. Note that the latter is solved at each step within the design
optimization procedure, so that one needs a reliable and efficient solver for this equation.

As an objective function in the numerical experiments given in Section 5, we consider the mean
compliance of the structure defined as the work done by the loads, namely

J(u,α, θ) :=
∫
Ω

f · u dx+
∫
ΓT

q · u ds. (15)

In engineering problems, the compliance is often used as a measure of the stiffness of the system: minimum
compliance corresponds to maximum global stiffness and rigidity with respect to the external loads.

4. The optimization procedure

Primal–dual interior-point methods are attractive solvers for optimization problems of type (12)–(14).
They are based on iterative procedures which at each iterate generate approximations to solutions that
are strictly feasible with respect to the bound constraints. For recent applications of these methods to
nonlinear programming we refer the reader, for instance, to [4,8,11,13,14].

We deal with the inequality constraints by introducing nonnegative slack variables s, t ∈ Rm. This
variant of the primal–dual approach is associated with a small amount of additional work and storage,
since the slacks do not enter the objective function and are constrained by simple bounds (cf., e.g. [8,11]).
The discretized nonlinear constrained minimization problem has the form

J(u,α, θ) = inf
v,β,γ

J(v,β, γ), (16)



264                                                                           

subject to
A(α, θ)u− b = 0,
g(α)− C = 0,

αmine− α+ s = 0,
α− αmaxe+ t = 0,

s ≥ 0;
t ≥ 0; (17)

where e ∈ Rm, e = (e1, . . . , em)
T, ei = 1, 1 ≤ i ≤ m, A(α, θ) is the stiffness matrix corresponding to

(13), and b is the discrete load vector. The inequalities in (17) are treated componentwise.
The Lagrangian function associated with problem (16)–(17) is
L(u,α, θ,λ, η, z,w, s, t, k,p) := J(u,α, θ)

+λT(A(α, θ)u− b)+ η (g(α)− C)
+zT(αmine− α+ s)+ wT(α− αmaxe+ t)

(18)

−kTs− pTt. (19)

Here, λ, η, z,w, and k,p ∈ Rm, k ≥ 0,p ≥ 0, are the Lagrange multipliers for the equality and
inequality constraints in (17), respectively. Our purpose is to find an isolated (locally unique) local
minimum of (16)–(17) under the assumption that at least one such point exists. We suppose that the
standard conditions for the application of Newton’s method, see, e.g. [4], are satisfied.

Denote by Φ := (u,α, θ,λ, η, z,w, s, t, k,p) the vector of unknown variables. The interior-point
method is characterized by substituting the complementarity conditions Ks = 0 and P t = 0 by the
perturbed complementarity conditionsKs = ρe andPt = ρe for a suitably chosen perturbation parameter
ρ, 0 ≤ ρ ≤ 1, and diagonal matrices K = diag(ki) and P = diag(pi).

The Karush–Kuhn–Tucker (KKT) first-order necessary conditions for optimality result in the following
nonlinear equation for the unknown variables:

F (ρ)(Φ) :=




∇uL

∇αL

∇θL
∇λL

∇ηL
∇zL

∇wL

∇sL

∇tL

∇kL

∇pL




=




∇uJ + A(α, θ)Tλ

∂α(λ
TA(α, θ)u)+ η∇g(α)− z+ w

∂θ(λ
TA(α, θ)u)

A(α, θ)u− b

g(α)− C
αmine− α+ s

α− αmaxe+ t

z− k

w− p

Ks− ρe
Pt − ρe




= 0, (20)

where ∇kL := Ks− ρe and ∇pL := Pt − ρe. The search direction is denoted by

0Φ := (0u,0α,0θ,0λ,0η,0z,0w,0s,0t,0k,0p)

and the update Φ← Φ+0Φ is determined by the increment0Φ computed by using the Newton method
for the following ρ-dependent system of equations:
∇F (ρ)(Φ)0Φ = −F (ρ)(Φ), (21)
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where (21) is often referred to as the primal–dual system and solved at each iteration with a decreasing
parameter ρ. More precisely, (21) is equivalent to



0 Luα Luθ Luλ 0 0 0 0 0 0 0
Lαu Lαα Lαθ Lαλ Lαη −I I 0 0 0 0
Lθu Lθα Lθθ Lθλ 0 0 0 0 0 0 0
Lλu Lλα Lλθ 0 0 0 0 0 0 0 0

0 Lηα 0 0 0 0 0 0 0 0 0
0 −I 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 I 0 0
0 0 0 0 0 I 0 0 0 −I 0
0 0 0 0 0 0 I 0 0 0 −I
0 0 0 0 0 0 0 K 0 S 0
0 0 0 0 0 0 0 0 P 0 T







0u

0α

0θ

0λ

0η

0z

0w

0s

0t

0k

0p




= −




∇uL

∇αL

∇θL
∇λL

∇ηL
∇zL

∇wL

∇sL

∇tL

∇kL

∇pL




, (22)

where I stands for the identity matrix, S = diag(si) and T = diag(ti) are diagonal matrices.
The primal–dual matrix ∇F (ρ)(Φ) in (21) is sparse, nonsymmetric, indefinite, and usually well-condi-

tioned, i.e., it has a bounded condition number as ρ→ 0. We transform ∇F (ρ)(Φ) to a smaller (so called
condensed) symmetric matrix by eliminating the increments for s and t from the 6th and 7th rows of (22).
We obtain 0s = 0α− ∇zL,0t = −0α− ∇wL and involve them in the last two rows of (22) to get

0k = S−1(−∇kL−K (0α− ∇zL)), 0p = T−1(−∇pL+ P (0α+ ∇wL)). (23)

The substitution (23) in0z = 0k−∇sL,0t = 0p−∇tL and further in the second row of (22) results
in the following linear system



0 Luα Luθ Luλ 0
Lαu L̃αα Lαθ Lαλ Lαη

Lθu Lθα Lθθ Lθλ 0
Lλu Lλα Lλθ 0 0

0 Lηα 0 0 0







0u

0α

0θ

0λ

0η



= −




∇uL

∇̃αL

∇θL
∇λL

∇ηL



, (24)

where L̃αα = Lαα + S−1K + T−1 P and the modified entry for the right-hand side is

∇̃αL = ∇αL+ S−1(∇kL−K∇zL)+ ∇sL− T−1(∇pL− P ∇wL)− ∇tL.

Transforming iterations, proposed in [21], are applied to compute the search direction. We consider a
null space decomposition of the condensed primal–dual matrix by interchanging the second and fourth
rows and columns and partition the resulting matrix into 2 × 2-block structure. Details for the solution
procedure can be found in [16].

We use the line-search version of the Newton method. At the kth iteration, once the solution 0Φ(k) of
(21) has been determined, we find a steplength ζ(k)> 0 such that the next iterate Φ(k+1) := Φ(k)+ζ(k)0Φ(k)
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has a progress in minimization. In all Newton-type methods, ζ(k) = 1 is almost always the “ideal” value.
The method for choosing ζ(k) at each iteration becomes more complex, as it is well known that for general
nonlinear problems with a poor initial estimate, Newton’s method may diverge.

A standard approach for choosing the steplength ζ(k) is to define a suitable merit function, that measures
the progress towards the solution. We consider the l2 norm of the residual as a merit function

M(Φ(k)) = ‖F (ρ)(Φ(k))‖2 (25)

and try at each iteration k to reduce it in a senseM(Φ(k+1)) < M(Φ(k)).
For simplicity, we denote the unknown variables by

x = (u,α, θ), y = (λ, η), h = (z,w), r = (s, t), d = (k,p)
and the corresponding increments by

0x= (0u,0α, 0θ), 0y= (0λ,0η), 0h= (0z,0w), 0r= (0s,0t), 0d= (0k,0p).

Instead of one parameter ζ(k) we allow us various steplengths for each unknown and define a diagonal
matrix Λ(k) as follows:

Λ(k) = diag (ζ(k)x , . . . , ζ
(k)
x , ζ

(k)
y , . . . , ζ

(k)
y , ζ

(k)

h , . . . , ζ
(k)

h , ζ
(k)
r , . . . , ζ

(k)
r , ζ

(k)

d , . . . , ζ
(k)

d ).

To find the update solution Φ(k+1) := Φ(k) +Λ(k)0Φ(k) we apply the interior-point algorithm proposed
in [11] which is briefly sketched for clearance purposes.

4.1. Primal–dual Newton interior-point algorithm

S0. Choose Φ(0) = (x(0), y(0),h(0), r(0), d(0)) such that (h(0), r(0), d(0)) > 0. For k = 0, 1, 2, . . . , do
the following steps:

S1. Test for convergence: ifM(Φ(k)) ≤ εexit, stop.
S2. Choose ρ(k) ∈ (0, 1).
S3. Find the perturbed Newton search direction 0Φ(k) from (21).
S4. Compute the parameters

ζ̂
(k)

h =
−1

min((H (k))−10h(k),−1)
,

ζ̂(k)r =
−1

min((R(k))−10r(k),−1)
,

ζ̂
(k)

d =
−1

min((D(k))−10d(k),−1)
,

(26)

where H (k) = diag(h(k)i ), R(k) = diag(r(k)i ), and D(k) = diag(d(k)i ).
S5. For a fixed β ∈ (0, 1), choose τ(k) ∈ (0, 1) and ζ ∈ (0, 1] satisfying the decrease

M(Φ(k) +Λ(k)0Φ(k)) ≤ M(Φ(k))+ βζ∇M(Φ(k))T0Φ(k),
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where the steplengths in Λ(k) are selected as follows:

ζ(k)x = ζ, ζ(k)y = ζ,

ζ
(k)

h = min
(

1, τ(k)ζ̂(k)h

)
,

ζ(k)r = min
(
1, τ(k)ζ̂(k)r

)
,

ζ
(k)

d = min
(

1, τ(k)ζ̂(k)d

)
.

S6. Set Φ(k+1) := Φ(k) +Λ(k)0Φ(k) and k := k + 1. Go to S1.

It was shown in [11] that for equal steplengths of h and d the iterate Φ(k) generated by the interior-point
algorithm above, gives a descent for the merit function, i.e., ∇M(Φ(k))T0Φ(k) < 0.

5. Computational results

In this section, we comment on some computational results concerning the microscopic problem to find
the homogenized elasticity coefficients and the macroscopic shape optimization problem. The elasticity
Eq. (7) is solved numerically using a conforming finite element discretization of the periodicity cell Y
by linear basis functions. Due to the equal solutions ξ12 = ξ21, one has to solve three problems in the
period Y to find ξ11 (Problem 1), ξ22 (Problem 2), and ξ12 (Problem 3). The preconditioned conjugate
gradient (PCG) method with an incomplete Cholesky factorization as a preconditioner and an appropriate
stopping criterion is applied to solve the discretized problem.

The example problems under consideration treat plane stress linear elasticity. The Young modulus E
(in GPa) and the Poisson ratio ν of our three materials are, respectively, E = 10, ν = 0.22 for carbon,
E = 410, ν = 0.14 for SiC, andE = 70, ν = 0.17 for SiO2. Note that in the case of a square hole located
at the center of the microcell, the homogenized coefficient EH2222 = EH1111 whereas for a rectangular hole
both coefficients differ.
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Fig. 4. Homogenized coefficient EH1212: (a) w.r.t. the widths of carbon and SiC layers (square hole); (b) w.r.t. the sizes 1− a and
1− b of the rectangular hole (pure SiC ceramic).
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We assume that the material layers in the periodicity cell shown in Fig. 3 have equal widths from all
sides of the cell. Denote by αi, i = 1–3, the widths of the carbon, SiC, and SiO2 layers, respectively.
Fig. 4(a) illustrates the behavior of the homogenized coefficientEH1212 in case of square hole versus α1 and
α2 which vary between 0 and 0.5. In this example, we do not suppose an additional oxidation as a result of
a high-temperature posttreatment of the ceramic material, i.e., we ignore the additional thin layer of SiO2
and set α3 = 0. Usually, in practice, the hole is located inside the microstructure but we find interesting
to demonstrate the behavior, for instance, of EH1212 depending on a rectangular hole [1 − a] × [1 − b],
see Fig. 4(b). Note that a = b = 0 represents a complete void, a = b = 1 realizes a complete solid
material, and 0 < a < 1, 0 < b < 1 characterize a general porous material. We consider in this example
the case when the carbon has completely reacted with the SiC which strongly concerns the so-called
pure biomorphic SiC ceramics. Very recently, the chemical experiments have shown that the carbon
phase limits the mechanical properties of the composite materials and restricts their high-temperature
applications. The final transformation of the original carbonized template to pure ceramic composite
requires to offer enough silicon during the infiltration process and to wait an appropriate time until the
carbon is completely consumed by the silicon resulting in a SiC phase.

For equal widths of layers from all sides of the cell (see Fig. 3), the void area is computed as

Svoid =
(

1− 2
m∑
i=1

αi

)2

(27)

and the total material density is denoted by

µ(α) = 1− Svoid = 4
m∑
i=1

αi

(
1−

m∑
i=1

αi

)
. (28)

Fig. 5 displays the dependence of the homogenized elasticity coefficients on the density of the cell. In
particular, we show this behavior versus the width of the SiC layer in case of pure SiC ceramics. Note
that the density of the tracheidal cells essentially depends on the growth of the tree. In early wood regions
(spring, summer) the porosity of the cells is large whereas for late wood regions (autumn, winter) the
holes are smaller and the cell walls are thicker. Fig. 5(a) shows the behavior of the effective coefficients
for early wood (0 ≤ α2 ≤ 0.15, density 51%) and Fig. 5(b) demonstrates the coefficients for late wood
(0 ≤ α2 ≤ 0.3, density 84%). One can easily observe from both pictures on this figure a highly nonlinear
behavior of the homogenized coefficients.

Furthermore, we briefly focus on the necessity of using adaptive mesh refinement around the singu-
larities in the periodic microstructure. Early results of using mesh adaptivity for shape optimization of

Fig. 5. Homogenized coefficients w.r.t. the width α2 of SiC layer for pure SiC ceramic: (a) early wood, density 51% and (b) late
wood, density 84%.
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(b)(a)

Fig. 6. Problem 1, density = 0.8775; 10 adaptive refinement levels: α3 = 0.025; (a) α1 = 0.15, α2 = 0.15, 5086 triangles, 2562
nodes; (b) α1 = 0.075, α2 = 0.3, 4620 triangles, 2332 nodes.

linearly elastic structures can be found, for example, in [7,17]. In our numerical experiments, we use the
Zienkiewicz–Zhu (ZZ) a posteriori error estimator, proposed in [22], which has been recently successfully
applied to many finite element simulations and widely used in many industrial codes. The main idea of
the method consists in computing a more accurate stress tensor by a post-processing and take the differ-
ence between this so-called recovered continuous stress and the discrete finite element solution stress as
an error estimator. In case of linear finite elements, the nodal averaging procedure or the L2-projection
technique is applied to compute the recovered stresses. Averaging techniques in adaptive finite element
methods for linear elasticity problems providing reliable and efficient a posteriori error estimators by a
simple post-processing are theoretically and numerically discussed, for example, in [10]. For details of
performing practical adaptive mesh-refinement procedures we refer to [12].

The adaptive mesh-refinement process concerning our numerical tests is visualized in Figs. 6 and 7. In
Fig. 6 we show the adaptive refined grid varying the widths of the material layers. An additional mesh
adaptivity is observed across the material interfaces in the microstructure due to the strongly varying
material properties (Young’s modulus and Poisson’s ratio). From Fig. 7(a), one can see that in the case
of one material (for example, SiC) an appropriate refinement is done around the corners where the hole
with a complete void is located. Table 1 contains the values of the computed average coefficient EH1111
and the number of triangles and nodes for a fixed number of adaptive levels. In Table 2, the values of
the homogenized elasticity coefficients on various adaptive refinement levels are presented in the case of
early wood (values of the density µ = 19 and 36%).

(b)(a)

Fig. 7. Problem 1, density = 0.8775; 10 adaptive refinement levels: (a) α2 = 0.325, 846 triangles, 482 nodes; (b) α2 = 0.3,
α3 = 0.025, 4177 triangles, 2137 nodes.
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Table 1
Homogenized coefficient EH1111 w.r.t. adaptive refinement level, Problem 1, µ = 75%

Level # Triangles # Nodes EH1111

1 72 48 43.243
2 96 60 42.685
3 204 114 41.301
4 284 156 39.899
5 532 284 39.090
6 776 406 38.602
7 1284 666 38.095
8 1956 1006 37.785
9 2796 1430 37.615

10 3626 1848 37.427
11 5046 2563 37.245

Table 2
Homogenized coefficients for early wood: density µ = 19% (α1 = α2 = 0.025) and µ = 36% (α1 = α2 = 0.05)

Level EH1111 EH1122 EH1212 EH1111 EH1122 EH1212

1 105.650 6.489 16.547 85.898 7.856 14.567
2 105.020 6.420 16.493 83.717 7.045 14.370
3 97.249 6.027 13.667 79.060 6.294 12.460
4 95.613 4.834 9.152 73.639 6.058 8.850
5 92.979 3.707 7.186 70.947 5.827 7.078
6 91.636 3.793 5.605 69.022 5.445 6.444
7 89.531 3.134 4.880 66.842 4.625 5.635
8 89.032 2.872 4.228 65.357 4.206 4.826
9 88.116 3.120 3.606 64.350 3.774 4.637

10 85.305 2.539 3.263 63.631 3.396 4.187
11 84.825 2.475 3.181 63.192 3.149 4.116

Table 3
Convergence results for biomorphic microcellular SiC ceramics, θ(0) = 0

α
(0)
1 α

(0)
2 C iter α1 α2 θ ρ ‖F (ρ)‖2

0.05 0.05 0.3 12 1.24E−14 0.3 0.651 9.25E−23 3.24E−7
0.05 0.25 0.05 12 2.65E−16 0.05 0.587 5.15E−24 4.44E−8
0.1 0.05 0.4 12 4.70E−15 0.4 0.124 1.04E−23 1.73E−7
0.1 0.35 0.05 25 2.91E−15 0.05 0.587 6.22E−22 2.34E−7
0.1 0.2 0.01 12 4.54E−17 0.01 0.563 3.51E−23 1.16E−7
0.1 0.2 0.4 11 2.24E−14 0.4 0.657 1.81E−22 4.50E−7
0.2 0.2 0.05 11 1.91E−14 0.05 2.158 2.70E−20 6.87E−7
0.25 0.05 0.1 16 5.79E−16 0.1 0.611 3.38E−24 6.88E−8
0.3 0.05 0.1 16 1.17E−14 0.1 2.181 1.41E−21 5.55E−7
0.3 0.1 0.03 13 6.00E−18 0.03 9.001 1.27E−26 9.38E−10
0.3 0.1 0.25 11 2.68E−14 0.25 7.740 1.43E−21 8.26E−7
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Some computational results on the convergence history of the primal–dual Newton interior-point
method applied to our optimization problem are presented in Table 3. We vary the initial widths of
layers and the constant C with respect to (14). We report the optimal values of the design parameters, the
number of iterations iter, the last value of the perturbation parameter ρ and the final value of the merit
function M. In order to provide a sufficiently smooth dependence needed whitin the optimization, the
homogenized elasticity coefficients EHijkl(α) are computed for sampling values of α varying on a uniform
grid and determined as the multivariate cubic spline interpolant with respect to the appropriately chosen
partition. This approach allows us to compute the first and second derivatives of the Lagrangian function
needed at each iterate of the optimization loop.

6. Concluding remarks

Summarizing, we have considered the problem of finding the optimal distribution in space of a com-
posite biomorphic ceramic material that is constructed by periodically distributed constituents in an
infinitesimal tracheidal microstructure. The macroscopic homogenized model is obtained by the homog-
enization approach assuming an asymptotic expansion of the solution of the nonhomogenized elasticity
equation with a scale parameter close to zero. The design objective is to determine the microstructural
geometric features in order to get an optimal performance of the material. The cost functional is subject
to a set of equality and inequality constraints on the state variables (displacements with regard to the
elasticity equation) and the design parameters (widths of the layers in the microcell). The computation
of the homogenized elasticity coefficients plays a key role in our shape optimization problem since the
homogenized equilibrium equation is considered as an equality constraint within the optimization pro-
cedure. Our adaptive mesh-refinement strategy is based on the Zienkiewicz–Zhu error estimator and
yields satisfactory results as the numerical experiments show. We notice that our mathematical work and
computational examples are supported by experimental investigations that provide both realistic model
parameters as well as data for model validation.
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