
                                 
                                 
                                              
                                                

Assessments of Mediterranean precipitation changes for the
21st century using statistical downscaling techniques

E. Hertig* and J. Jacobeit
Institute of Geography, University of Augsburg, Universitätsstr. 10, D-86135 Augsburg, Germany

ABSTRACT: Statistical downscaling techniques are used to assess Mediterranean precipitation changes for the period
1990–2100 under increased greenhouse warming conditions from climate model output of large-scale predictor changes.
Analyses are carried out on a monthly basis for the main rainy season from October to May. Results of two statistical
techniques, multiple regression analysis, and canonical correlation analysis, are compared. Furthermore, differences which
arise from the use of different combinations of the predictor variables, such as geopotential heights, humidity, and sea
surface temperatures are discussed. Predictor output from seven different AOGCM runs (two ECHAM4/OPYC3 runs, four
ECHO-G runs including a three-member ensemble, and one HadCM3 run) is used to assess Mediterranean precipitation
changes in the 21st century. Five of the AOGCM runs were forced with B2 scenario assumptions according to the special
report on emission scenarios (SRES), one with SRES-A2 scenario assumptions, and one with the former IS92a scenario.
Using 1000 hPa-/500 hPa-geopotential heights and 1000 hPa-specific humidity as large-scale predictors, a shorter but wetter
wet season is evident for the western and northern Mediterranean regions including precipitation increases in winter and
decreases in the transitional seasons for the period 2071–2100 compared to 1990–2019. The eastern and southern parts
of the Mediterranean area exhibit mainly negative precipitation changes from October to May for an increased greenhouse
gas forcing.                                         
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1. Introduction

In the context of projections of future climate change,
atmosphere-ocean general circulation models (AOGCMs)
are widely used to assess changes resulting from further
increases of atmospheric greenhouse gases. Since the
current grid size of AOGCMs ranges between 100
and 250 km (Houghton et al., 2001), regionalization
techniques are usually applied to obtain climate change
information on a regional scale. For a region like the
Mediterranean area, which is characterized by complex
topography and high rainfall variability, downscaling
of AOGCM model output is particularly important for
assessing regional climate change.

Different types of regionalization techniques have
been developed recently: (1) variable resolution AGCMs
(Déqué et al., 1998; Gibelin and Déqué, 2003); (2) high-
resolution time-slice experiments (Cubasch et al., 1996);
(3) nested regional climate models (RCMs, Räisänen
et al., 2004, for an overview of the nested modelling
technique see Giorgi and Mearns, 1999) (4) downscaling
by using synoptic analysis (Conway et al., 1996) (5)
statistical downscaling approaches (von Storch et al.,
1993; Gyalistras et al., 1994; Jacobeit, 1994a; Jacobeit,
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1994b; Goodess and Palutikof, 1998; Murphy, 2000;
Hertig, 2004). The latter are based on statistical relation-
ships linking a set of large-scale atmospheric variables
(predictors) to regional climate variables (predictands)
during an observational period. The established statis-
tical relationships have to be verified during a period
independent from the calibration period, and are subse-
quently used to predict the future response of regional
climate to climate model changes in the large-scale
variables. In this study, various statistical downscaling
techniques (multiple regression analysis and canonical
correlation analysis, see Sections 3.1 and 4.1) will be
used to assess future Mediterranean precipitation changes
under increased greenhouse warming conditions. Thus,
this paper gives emphasis to advanced statistical methods
to obtain regional information from large-scale AOGCM
output in contrast to approaches which use climate mod-
els directly to produce such fine-scale information, like
(for example) the high-resolution AGCM and RCM
climate change simulations for Europe (including the
Mediterranean area northwards of 35 °N) with a horizon-
tal grid spacing of mostly about 50 km, conducted within
the PRUDENCE project (prediction of regional scenarios
and uncertainties for defining European climate change
risks and effects).

The major shortcoming of the statistical downscaling
approach is the basic assumption that relationships found
for present climate conditions will also be valid for
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future climates under different forcings and boundary
conditions (a similar restriction may be seen for the GCM
parameterizations). However, this assumption may be
acceptable if future mean changes do not largely exceed
the present level of interannual variability. Furthermore,
statistical downscaling is a computationally inexpensive
technique, which can be adapted for a wide range of
applications.

Several statistical studies have already dealt with
anthropogenic climate change in the Mediterranean area.
For instance, von Storch et al. (1993) related Iberian
wintertime precipitation with North Atlantic sea level
pressure fields by means of canonical correlation anal-
ysis (CCA), Corte-Real et al. (1995) used a multivariate
regression approach to assess wintertime monthly pre-
cipitation at eight sites in Portugal, and Jacobeit (1994a,
1994b, 1996, 2000) linked regional precipitation in the
Mediterranean area with the large-scale atmospheric cir-
culation by multiple regression analysis. Goodess and
Palutikof (1998) assessed rainfall changes for southeast
Spain on a daily basis using a statistical weather generator
in which rainfall occurrence is conditional on particu-
lar circulation types. Palutikof et al. (2002) statistically
downscaled daily time series of temperature and rain-
fall for two Mediterranean catchments from HadCM2
model data. Within the framework of the statistical and
regional dynamical downscaling of extremes for Euro-
pean regions (STARDEX) project different statistical
downscaling methods are compared for the assessment
of extreme events for six European regions including the
Iberian Peninsula, Greece and northern Italy. A major
advantage of the present study is the derivation of partic-
ular ensembles of statistical models (for details see Sec-
tion 3.2), which allow us to consider non-stationarities
in the circulation-climate-relationships when assessing
future changes of regional climate. Furthermore, the
large-scale predictors entering the statistical ensemble
members for these assessments are taken not from only
one selected model, but from different climate models
including several numerical ensemble members with dif-
ferent initial conditions for one particular model. Finally,
different emission scenarios used for driving the GCMs
are also considered (Section 2.2).

In most studies, pressure-related predictors are used
to assess regional climate variables. However, changes
in rainfall cannot always be explained by circulation
changes alone, atmospheric temperature and humidity
may also play an important role (Wilby and Wigley,
1997; Buishand and Brandsma, 1999). Furthermore, there
might be a regional sensitivity to oceanic forcing, too
(Timbal et al., 1995).

In recent years, the number of potential predictors
could be enlarged due to the availability of reanalysis
data. These datasets include, for example, gridded val-
ues of temperature, precipitation, specific and relative
humidity as well as pressure fields at different atmo-
spheric levels, and thus, allow the incorporation of more
detailed meteorological information into statistical down-
scaling models (Hertig, 2004; Jacobeit et al., 2007). The

realism of the downscaled information thereby depends
on the choice of the predictor variables and their location
and spatial extent, as demonstrated by Wilby and Wigley
(2000) for the example of downscaled daily precipitation
at different sites in the USA from 15 different predictor
variables. An important question in this context refers
to the role of humidity predictors. The non-linear rela-
tionship between temperature and humidity could imply
that future precipitation is more influenced by chang-
ing humidity than by rising temperatures. The selection
of humidity-based predictors in statistical downscaling
equations thus includes the question of what measures
of moisture (absolute or relative), at which atmospheric
levels, should be used to get realistic downscaling results
(Sections 3.3 and 4.2). The problem of selecting appro-
priate atmospheric levels also applies for circulation vari-
ables. With respect to precipitation studies, arguments
have been proposed to characterize the atmospheric cir-
culation by using sea level pressure (SLP) instead of
geopotential heights, because a statistical model could
erroneously interpret the thermal geopotential rise due to
global warming as a dynamic signal, leading to incor-
rect estimations of precipitation changes (Zorita et al.,
2006). Therefore, a sound selection of predictor vari-
ables has to be done (Section 4.2) and an assessment
of uncertainties in downscaling results has to be per-
formed (Section 4.3) before applying appropriate models
to future rainfall assessments (Section 4.4).

2. Data

2.1. Observational data

High-resolution precipitation data, uniformly covering
the Mediterranean land areas, are provided by the Cli-
matic Research Unit (CRU) (CRU05 dataset, New et al.,
1999; New et al., 2000). The global dataset comprises
monthly values of precipitation on a 0.5° × 0.5° grid
for terrestrial areas. Recently, there are updates of this
dataset available (Oesterle et al., 2003; Mitchell et al.,
2004; Mitchell and Jones, 2005) in contrast to the starting
time of this study. A comparison between the different
versions of this dataset revealed that there are no sig-
nificant modifications for the area and time of interest
justifying the use of the original dataset in this study.
Furthermore, this is compatible with the particular objec-
tives of this study, since no trend analysis is done, but
rather an examination of precipitation variability in con-
nection with the large-scale atmospheric circulation. Pos-
sible inhomogeneities in the time series at an individual
grid box can therefore be neglected.

Grid boxes which show a characteristic Mediterranean
precipitation regime are selected from the global dataset,
resulting in 1366 grid boxes representing the Mediter-
ranean area. The grid box selection follows that of
Dünkeloh and Jacobeit (2003) in a study of Mediter-
ranean precipitation variability in connection with large-
scale circulation dynamics.
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As potential large-scale atmospheric predictors for
the downscaling models, the following variables have
been extracted from the NCEP/NCAR reanalysis project
(Kalnay et al., 1996; Kistler et al., 2001) (1) geopotential
heights of various tropospheric levels for the area
20° –70 °N and 70 °W–70 °E, as well as (2) grids of spe-
cific and relative humidity for the area 25° –65 °N and
30 °W–45 °E (horizontal resolution of 2.5° × 2.5° in each
case). The limits of these areas incorporate the major
influences on the Mediterranean area, especially the west-
erlies in the upstream area. Potentially important pressure
and moisture anomalies in the north and in the east of the
Mediterranean area (e.g. the Russian high-pressure sys-
tem) are also considered. Tests with different sizes of the
domain revealed that the denoted sizes work well in terms
of the subsequent dimensional reduction to meaningful
principal components (PCs) and the further processing
of the PCs in multiple regression analysis and CCA.
Because data for the 1000 hPa level were not available
from one of the AOGCMs (HadCM3, see Section 2.2),
mean sea level pressure (MSLP) and specific humidity at
2 m above the earth’s surface have been selected from the
reanalysis, too, replacing the 1000 hPa predictors when
calibrating downscaling models for future assessments
with large-scale HadCM3 model output.

Sea surface temperature (SST) variability of the North
Atlantic Ocean can also affect the rainfall amounts in
the adjoining Mediterranean land areas (Zorita et al.,
1992). Additionally, the Mediterranean Sea itself has
an impact on rainfall events in the Mediterranean area,
since Mediterranean cyclones are an important source for
precipitation and Mediterranean cyclogenesis is distinctly
influenced by air-sea interaction and latent heat release
(Lionello et al., 2006b). Therefore, in addition to the
atmospheric predictors, SSTs of the North Atlantic Ocean
for the region 20° –60 °N (2° × 2° resolution) from Smith
et al. (1996) and of the Mediterranean Sea (1° × 1°

resolution) from the GISST dataset (Rayner et al., 1996)
are used as potential oceanic predictors.

It should be noted that the list of predictor variables is
not exhaustive at all, other predictor variables reflecting
the wide range of atmospheric properties related to the
processes of rainfall formation might be selected. For
example, vorticity, divergence, horizontal and vertical
wind components could be included. Some of them have
already been used in earlier studies (Jacobeit, 1994a, b,
1996), but focussing on geopotential heights, humidity
measures and SSTs considers at least important parts of
the possible predictor set.

The observation-based data are used for the 1948–1998
period focussing on the main rainy season from October
to May (June and September being rainy months only
in parts of the Mediterranean area). Preliminary analyses
with monthly up to three-monthly means revealed that the
most robust results were obtained with 2-month means.
For this reason, analyses are carried out for overlap-
ping 2-month periods, i.e. October/November, Novem-
ber/December . . . until April/May.

2.2. Model data

Model output from seven different AOGCM runs has
been used for assessing Mediterranean precipitation
changes in the 21st century (Table I for an overview
of the model data employed). Two ECHAM4/OPYC3
model runs (Roeckner et al., 1996, for a description of
the atmospheric part ECHAM4 and Oberhuber, 1993, for
a characterization of the oceanic part OPYC3) are used
based on different Intergovernmental Panel on Climate
Change (IPCC) emission scenarios for the 21st century.
One run was forced according to the recent SRES B2
scenario assumptions (see below) being used for the
1990–2100 period, the other model run was based on
the earlier IS92a scenario (‘business as usual’, Houghton
et al., 1992) covering the period 1948–2099. In addi-
tion, output from three ensemble members will be used,
based on SRES B2 runs of the coupled model ECHO-
G with different initial conditions (Wagner, 2004). One
further ECHO-G run based on SRES A2 conditions is
still included allowing us to assess the range of precip-
itation changes according to different scenario assump-
tions. The climate model ECHO-G (Legutke and Voss,
1999) consists of the atmospheric model ECHAM4 and
the ocean model HOPE (Wolff et al., 1997) including
a dynamic-thermodynamic sea ice model from Hibler
(1979).

To compare downscaling results from the output of
different climate models, HadCM3 data are used in
addition to the various Hamburg model runs (Gordon
et al., 2000, for a description of the third version of the
Hadley Centre coupled model and Pope et al., 2000, for
the atmospheric part of the model). The HadCM3 model
run used in this study was also forced with SRES B2
scenario conditions.

The SRES B2 scenario (Nakicenovic and Swart, 2000)
is based on local and regional solutions to economic,
social and environmental sustainability. It describes a
world with continuously increasing global population,
intermediate levels of economic development, a relatively
diverse technological change and an orientation towards
environmental protection. It represents a medium level
of greenhouse gas emissions compared to the other
SRES scenarios. By contrast, the A2 scenario describes

Table I. Overview of the seven different AOGCM runs from
which predictor output has been used for assessing Mediter-
ranean precipitation changes in the 21st century (for details see

Section 2.2).

AOGCM Scenario Time
period

ECHAM4/OPYC3 IS92a 1948–2099
ECHAM4/OPYC3 SRES B2 1990–2100
HadCM3 SRES B2 1990–2100
ECHO-G (ECHAM4/HOPE) (run 1) SRES B2 1990–2100
ECHO-G (ECHAM4/HOPE) (run 2) SRES B2 1990–2100
ECHO-G (ECHAM4/HOPE) (run 3) SRES B2 1990–2100
ECHO-G (ECHAM4/HOPE) SRES A2 1990–2100
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a very heterogeneous world with an emphasis on self-
reliance and preservation of local identities. Economic
growth and technological change are more fragmented
and slower than in other storylines. The A2 scenario
represents a medium-high to high level of greenhouse
gas emissions.

General data preprocessing includes the fitting of the
horizontal resolution of the model output data to those
of the observed data (i.e. 2.5° × 2.5° for the atmospheric
variables, 2° × 2° for North Atlantic SSTs, and 1° × 1°

for Mediterranean SSTs, respectively).

3. Statistical downscaling

3.1. Statistical procedure

As a first step, principal component analysis (PCA, e.g.
Preisendorfer, 1988; von Storch and Zwiers, 1999) was
separately applied to Mediterranean precipitation and the
different predictor fields in order to remove linear depen-
dencies between variables, and to reduce dimensions of
the data. In the present study, S-mode (Richman, 1986),
orthogonally (Varimax) rotated PCAs were carried out for
different calibration periods (Section 3.2), yielding spa-
tial centres of variation and associated time coefficients
for each input field and each 2-month period. For pre-
cipitation, the spatial centres of variation are defined by
groups of grid boxes with PC loadings higher than 0.5
on a particular PC. This threshold was used because it
leads to non-overlapping precipitation regions covering
the Mediterranean area almost entirely (Figure 1 show-
ing the precipitation regions in January/February. (For an
illustration of precipitation regions in other months see
Hertig, 2004, p.154–157). The extraction of the PCs is
based on the correlation matrix of the input variables. For
determining the number of PCs to be extracted, the PC
loadings are standardized in two different ways (1) once
for each PC over all variables and (2) once for each vari-
able over all PCs. For the extraction of a particular PC the
two standardized loading values have to be greater than 1
for at least one input variable (Jacobeit, 1993), reflecting
both the relevance of this PC for the input variable and its
prominence in comparison to the other PCs. Depending
on the analysed months, precipitation fields are reduced

to 8–14 PCs with overall explained variances (EVs)
between 50 and 93%. Regarding geopotential height data,
the 1000 and 500 hPa levels are processed together in
one combined analysis, yielding 15–18 PCs with EVs
around 80%. PCA condenses specific humidity fields to
15–20 PCs (EVs of 71–78%), North Atlantic SSTs to
4–9 PCs (EVs of 82–95%) and Mediterranean SSTs to
2–8 PCs (EVs of 90–96%) (for detailed statistics on the
ranges of the number of PCs and EVs see Hertig, 2004,
p. 158–175).

Subsequently, precipitation time series of the regional
centres of variation for all overlapping 2-month periods
within the October–May period 1948–1998 are linked to
the large-scale atmospheric and oceanic circulation repre-
sented by their corresponding PC time series. CCA (e.g.
Barnett and Preisendorfer, 1987) and multiple regression
analysis (e.g. Easterling, 1999; for a detailed description
of both techniques see von Storch and Zwiers, 1999) are
used to establish particular predictor–predictand relation-
ships.

For each rainfall region, a stepwise regression pro-
cedure (von Storch and Zwiers, 1999, p. 166 et seqq.)
is applied which combines forward selection with back-
ward elimination. The F -test is used for the regression
coefficients, with significance levels of 0.01–0.10 for
the intake and 0.05–0.15 for an elimination of a vari-
able from the regression equation, depending on which
values lead to the best model quality and at the same
time to the smallest number of variables possible. To
test whether the inferences are made reliably, residuals
are examined for normal distribution and for serial cor-
relation using the Durbin–Watson statistic (von Storch
and Zwiers, 1999, p. 157 et seq.). Further diagnostic
procedures are applied to ensure that the regression mod-
els are adequate (von Storch and Zwiers, 1999, p. 150
et seqq.): tests that the input variables which enter the
regression analysis are normally distributed and indepen-
dent; tests for the coefficient of multiple determination
and for the multiple correlation coefficient (F -test with
a significance level of 0.05), and tests for the partial
regression coefficients (t-test with a significance level of
0.05).

Figure 1. Precipitation regions (regions of similar precipitation variability) defined by groups of gridboxes with PC loadings higher than 0.5 on
a particular PC of the s-mode, Varimax-rotated PCA of January/February-precipitation 1948–1998. The numbers in this figure correspond to the

numbers of the precipitation regions (number of PC) in Table II.
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When using CCA as a statistical downscaling method
(von Storch and Zwiers, 1999, p. 317 et seqq.), the num-
ber of significant canonical correlation patterns is deter-
mined by Rao’s F -test (Rao, 1973) with a significance
level of 0.05 (for illustrations of the resulting canoni-
cal correlation patterns and the associated canonical time
coefficients see Hertig, 2004, p. 187–214).

The results of CCA and multiple regression analysis
are used to assess the response of Mediterranean precip-
itation to changes of the large-scale predictors. Precip-
itation changes are initially calculated for the regional
precipitation indices, represented by the S-mode PC time
coefficients. Subsequently, a spatial back-transformation
of the assessment results to the original 0.5° × 0.5° grid
is done via multiplying the index-related assessments
(time coefficients) by the original PC loadings. Thus,
results in Figures 3, 5, 6, 8–10 are shown after this back-
transformation for the fully resolved grid fields in the
Mediterranean area.

Some particular kind of cross-validation is applied in
all statistical analyses to provide more reliable means
for the assessment of future model performances. The
requirement to verify the statistical relationships and to
consider possible non-stationarities leads to a particular
ensemble approach for the statistical downscaling models
described in the following section.

3.2. Calibration and verification – an ensemble
approach

The whole study period from 1948 to 1998 is divided
into ten independent segments, each comprising of a dif-
ferent 5-year block. The remaining 46 years in each case
are used to calibrate a model, which is verified within
the corresponding five independent years. Thus, for each
2-month period and for each sub-region of the Mediter-
ranean area being analysed in particular (see below),
an ensemble of ten different models is generated. The
verification procedure applied to each ensemble mem-
ber comprises a correlation analysis of the statistically
derived precipitation data with the observation-based pre-
cipitation values from the CRU dataset. The correlation
coefficient for one particular precipitation region is the
5-year temporal mean of spatial correlation coefficients
calculated for each year of the verification period between
statistically derived and observed precipitation data for
all grid boxes belonging to that region. Thus the number
of cases entering the correlation analyses does not cor-
respond to the small number of years in the verification
periods, but to the quite larger numbers of 0.5° × 0.5°

grid boxes per region (see Table II for an example of
correlation coefficients referring to the best-performing
approach among different predictor combinations; for
correlation coefficients in all calibration and verification
periods see tables in Hertig, 2004, p. 158–173, for cor-
relation coefficients with various predictor combinations
and the two different statistical techniques see Hertig,
2004, p. 176–181). The different quality of the mod-
els in the verification periods allows us to remove the
low-skill models from future assessments and to define

model ensembles for the statistical assessment of future
precipitation.

Cross-validation procedures are often used for short
study periods (von Storch and Zwiers, 1999). Thus, Mur-
phy (2000) assesses European temperature and precipi-
tation on the basis of a study period of just less than
11 years, each case with 1 month taken out for valida-
tion. In the present study, some kind of cross-validation
is also applied because preanalyses have shown consid-
erable non-stationarities in the circulation–rainfall rela-
tionships. The partitioning of the study period into var-
ious segments (see above) allows a systematic elimina-
tion of those models, which exhibit no sufficiently sta-
ble connections between the large-scale circulation and
Mediterranean rainfall. The appropriate models remain
as ensemble members for subsequent analyses. In the
present context, a model is rejected if the correlation coef-
ficient between the statistically derived and the observed
precipitation values does not exceed the threshold of 0.3
in the verification period. Since the number of cases for
calculating the correlation coefficients corresponds to the
number of 0.5° × 0.5° grid boxes per region (ranging
between 20 and 330), coefficients greater than 0.3 are
statistically significant at least at the 10% level for every
region. Although this threshold value is quite low, it has
been fixed to remove just the totally inadequate models
and to ensure a sufficient number of ensemble members
at the same time. Furthermore, additional analyses have
shown that the models of an ensemble generally represent
similar circulation–rainfall relationships despite differing
correlation coefficients.

Beside the issue of non-stationarity in the circulation-
rainfall-relationships, another difficulty for the statistical
approach arises insofar as the physical drivers of future
climate change are not necessarily the same as the
drivers of natural interannual variations from which the
downscaling models are calibrated. In order to address
this problem a ‘perfect model’ study is performed in
which one of the general circulaton model (GCM) runs
is regarded as ‘truth’: The downscaling relationships are
not calibrated from observational values but from the
corresponding historical period 1948–1998 of the GCM
simulation. Subsequently, future values of the predictor
variables are fed in to predict future precipitation values
which are compared with the future precipitation actually
simulated by the GCM. The results of this analysis will
be discussed in Section 4.3.

3.3. Choice of predictors and statistical techniques

Different predictor sets are tested to determine the best-
performing models (i.e. the models with the highest cor-
relation coefficients between statistically estimated and
observed precipitation fields in the verification periods)
for the assessment of future Mediterranean precipitation
(see correlation coefficients for various predictor combi-
nations in Hertig, 2004, p. 176–181). Geopotential height
anomalies have to be regarded as primary factors for
the climatic variations in the Mediterranean area (von
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Table II. Correlation coefficients between statistically modelled and observation-based precipitation for each 2-month period and
each Mediterranean sub-region (precipitation region) for the best-performing approach, i.e. for CCA as statistical technique and
geopotential heights of the 1000 and 500 hPa levels and specific humidity of the 1000 hPa level as predictor variables. Values are
for that statistical ensemble member with the highest correlation coefficient between statistically modelled and observation-based

precipitation in the verification period.

Precipitation
region (number of PC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

October/November
Correlation coefficient
calibration

0.759 0.625 0.620 0.648 0.669 0.709 0.603 0.629 0.674 0.676 0.641 0.783 0.669

Correlation coefficient
verification

0.786 0.589 0.683 0.740 0.763 0.693 0.687 0.637 0.782 0.656 0.686 0.581 0.488

November/December
Correlation coefficient
calibration

0.772 0.701 0.664 0.614 0.701 0.699 0.666 0.636 0.689 0.699 0.683 0.671 0.622 0.752

Correlation coefficient
verification

0.851 0.727 0.634 0.605 0.761 0.748 0.691 0.728 0.737 0.766 0.675 0.712 0.631 0.882

December/January
Correlation coefficient
calibration

0.806 0.750 0.671 0.617 0.674 0.678 0.590 0.655 0.760 0.624 – – – –

Correlation coefficient
verification

0.852 0.847 0.784 0.562 0.531 0.752 0.645 0.559 0.800 0.546 – – – –

January/February
Correlation coefficient
calibration

0.745 0.706 0.769 0.637 0.569 0.637 0.650 0.570 0.693 – – – – –

Correlation coefficient
verification

0.796 0.635 0.641 0.724 0.719 0.658 0.578 0.590 0.772 – – – – –

February/March
Correlation coefficient
calibration

0.788 0.735 0.698 0.669 0.664 0.584 0.637 0.668 – – – – – –

Correlation coefficient
verification

0.799 0.757 0.767 0.650 0.710 0.602 0.552 0.651 – – – – – –

March/April
Correlation coefficient
calibration

0.728 0.632 0.651 0.625 0.633 0.595 0.638 0.697 0.606 0.651 0.690 0.677 – –

Correlation coefficient
verification

0.723 0.709 0.655 0.639 0.766 0.711 0.630 0.636 0.550 0.608 0.742 0.610 – –

April/May
Correlation coefficient
calibration

0.659 0.706 0.558 0.591 0.614 0.612 0.589 0.602 0.603 0.650 0.582 0.691 – –

Correlation coefficient
verification

0.760 0.768 0.513 0.786 0.528 0.566 0.661 0.715 0.635 0.642 0.675 0.603 – –

Storch, 1999; Lionello et al., 2006a). Therefore, 1000
and 500 hPa geopotential heights are included as predic-
tor variables for each analysis. Further levels and other
potential predictors like humidity fields and SSTs are
included in various combinations (Section 4.2). The dif-
ferent quality of the models in the verification periods
is used to select the best-performing models. Thereby it
is revealed that the best performance is achieved with
the predictor combination 1000 hPa/500 hPa geopoten-
tial heights, and 1000 hPa specific humidity (the corre-
spondent correlation coefficients are given in Table II).
Generally, the improvement of model quality due to
the additional inclusion of specific humidity is rather
small, not exceeding a 5% increase of shared vari-
ance between statistically modelled and observed pre-
cipitation. However, as will be discussed in Section 4.2,
specific humidity can have an important impact when

assessing future precipitation under different boundary
conditions.

In contrast to that, SSTs of the North Atlantic Ocean
and the Mediterranean Sea only sporadically exhibit a
noticeable self-contained influence on Mediterranean pre-
cipitation variability. This result needs further discussion
and is also taken up in Section 4.2.

Concerning the performance of the two statistical tech-
niques used in this study (CCA and multiple regression
analysis), both of them show similar results with respect
to the calibration and verification periods. However, when
using the verified statistical relationships to assess future
precipitation from various types of predictor fields, con-
siderable differences appear between both techniques.
This will be discussed in more detail in the following
section.
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4. Results

4.1. Comparison of results from CCA and multiple
regression analysis

Differences arising from the application of different
statistical techniques are shown for future predictors
(1000 hPa/500 hPa geopotential heights and 1000 hPa
specific humidity) from the ECHAM4 run with IS92a
forcing. Figure 2(a) includes smoothed time series from
statistical model ensembles and corresponding cubic
trends of January/February precipitation for the Iberian
Peninsula, northwestern Morocco, and parts of the north-
ern Mediterranean area (this region is indicated by filling
on the inside map). The delimitation of this ‘rainfall
region’ results from including CRU05 grid boxes with
PC-loadings higher than 0.5 on that particular rainfall
PC having its centre of variation within this region.

For the regression-based technique, there is obviously
a strong dependence of the resulting precipitation time
series on the particular calibration period used. The
differences in total precipitation between various time
series amount up to 50 mm for a 2-month mean value.
Figure 2(b) with the January/February time series for the
region around Tunisia and Sicily (defined by another rain-
fall PC) even indicates that the use of multiple regression
analysis may lead to diverse amplitude characteristics and
a different temporal evolution of the statistical ensemble
members. In contrast to that, the members of the sta-
tistical ensembles resulting from CCA models show a
good agreement amongst each other. Furthermore, the
total range of variation and the trend progression are
far more moderate when using CCA instead of multiple
regression analysis.

Figure 2. Smoothed time series (Gaussian low-pass filter period 11 years) and cubic trends of ten-member statistical downscaling ensembles
of January/February precipitation 1948-2099 for two techniques (left side: CCA, right side: Multiple Regression Analysis) and two regions
(a and b) shown by filled-out areas of the inside maps. Predictor values (1000 hPa-/500 hPa-geopotential heights and 1000hPa-specific
humidity) are from the ECHAM4/OPYC3 model run under IS92a scenario assumptions. The cubic trend is derived from that statistical model
with the highest correlation between statistically modelled and observation- based precipitation. This figure is available in colour online at

www.interscience.wiley.com/ijoc
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In the case of downscaling with multi-type predictors
(e.g. geopotential heights, specific humidity and SSTs),
CCA models show more consistency within the statistical
ensembles, because relationships of regional precipita-
tion with large-scale variables are established over the
whole study areas implying some kind of ‘signal smooth-
ing’. CCA takes into account the spatial correlations of
the original variables, whereas in the case of multiple
regression analysis each PC is considered independently
from the others. Unlike CCA, multiple regression anal-
ysis systematically selects those individual signals cor-
relating best with precipitation in the calibration period.
Different types of predictor variables, however, may have
similar variations within this period. For instance, a cer-
tain circulation pattern implies a characteristic humidity
distribution. Which one of the corresponding and syn-
chronically varying centres of variation will finally be
included in the regression model cannot be determined
unambiguously by the variable selection procedure within
the regression analysis, with different decisions in dif-
ferent calibration periods. However, under future climate
conditions the synchronity of different predictor variables
may not be preserved, leading to different assessment
results depending on the particular predictor variables
being included into a particular regression model. One
way to solve this problem of multi-collinearity is a com-
bined PCA of all predictor fields, such as done for exam-
ple in a study by Xoplaki et al. (2003) for summer air
temperatures in Greece. In this case, the selected empir-
ical orthogonal functions (EOFs) reflect the combined
variation of all predictors. On the other hand, perform-
ing PCA separately for each predictor type as in the
present study gives instructive insights into the particular
predictor–predictand relationships. This approach, how-
ever, gives more consistent results if followed by a CCA
instead of a multiple regression analysis as demonstrated
in this section (Figure 2).

4.2. The influence of different predictor combinations

First, we address the question of how many levels
should be included for atmospheric predictors. In addition
to the geopotential heights of the 1000 and 500 hPa
levels representing the lower and the upper tropospheric
circulation, further atmospheric levels would also be
conceivable for downscaling assessments. Exploratory
analyses were conducted using also SLP and geopotential
heights of the 200 hPa level as large-scale circulation
predictors. The highest correlation coefficients between
statistically modelled and observation-based precipitation
in the calibration and verification periods resulted mostly
for predictors at the 1000 and 500 hPa levels, hence the
selection of geopotential height anomalies will be limited
to these particular levels.

Concerning humidity, not only near-surface fields
might be included, since humidity indicators of the higher
troposphere might also be important predictors in the
context of future climate change (Houghton et al., 2001).
However, PCA of specific humidity fields at the 850 and

500 hPa levels reveal a very high spatial variability of
these fields. Subtropical and extra-tropical tropospheric
moisture is directly affected by evaporation and brought
to the free atmosphere by a variety of mixing and
transport processes which are governed by the complex
interaction of radiation input, water and air temperatures
at the surface, relative humidity, wind velocity, and the
vertical temperature and water vapour pressure gradients
of the extra-tropical waves (Weischet, 2002). This results
in the observed small-scale structure of water vapour
in the atmosphere and is also responsible for the large
number of regional humidity predictors that have to be
incorporated into statistical downscaling models.

An exploratory analysis with upper humidity variables
as additional predictors in the statistical models did not
show any improvement of model quality. Furthermore,
the complex structure of tropospheric moisture distribu-
tion is not well represented in a GCM simulation with the
vertical resolution currently used for climate projections.
For example, Tompkins and Emanuel (2000) showed that
a vertical resolution for pressure better than 25 hPa is
required. On account of this and in order to keep the
number of model predictors in a reasonable range, only
specific humidity at the 1000 hPa level is used in this
study.

Furthermore, relative humidity may be considered in
addition to specific humidity. This has been done, for
example, with respect to the probability of rainfall occur-
rence in Australia by Charles et al. (1999) who recom-
mend the usage of relative moisture content (reflecting
how close the atmosphere is to saturation with moisture)
rather than absolute values (reflecting the total water con-
tent) to take into account the increased moisture holding
capacity of the atmosphere under increased temperature
conditions. Good results are obtained by Beckmann and
Buishand (2002) for European stations and by Hewit-
son and Crane (2006) for South Africa with respect to
relative humidity at the 700 hPa level being significant
for rainfall occurrence, but, on the other hand, also with
respect to specific humidity of the 700 hPa level being
significant for rainfall amounts. In contrast to the results
of Beckmann and Buishand (2002), specific and relative
humidity was rarely selected in a study by Murphy (2000)
who fitted linear regression equations to monthly rainfall
amounts in Europe. In the present study, tests with mod-
els including relative humidity of the 1000 hPa level as
additional predictor did not show any enhancement of
model quality either. Therefore, only specific humidity
is used as moisture-predictor to assess changes of total
precipitation amounts.

For further comparisons of different predictor com-
binations, large-scale variables were taken from the
ECHAM4/OPYC3 run with SRES B2 scenario conditions
for the period 1990–2100. Downscaling results for dif-
ferent predictor combinations are presented in Figure 3
comparing statistically modelled January/February pre-
cipitation for the two 30-year periods 2071–2100 and
1990–2019 (as differences in absolute amounts as well
as in terms of changing percentages for the fully
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Figure 3. Change of the mean January/February- precipitation between the periods 2071–2100 and 1990–2019: differences in mm (left side) and
percentages in relation to the 1990–2019 mean (right side). Climate model: ECHAM4/OPYC3, scenario: SRESB2, statistical downscaling
technique: CCA. Figure 3(a): Predictors: 1000 hPa-/500 hPa-geopotential heights. Figure 3(b): Predictors: 1000 hPa-/500 hPa-geopotential
heights and 1000 hPa-specific humidity. Figure 3(c): Predictors: 1000 hPa-/500 hPa-geopotential heights and SSTs of the North Atlantic,
Figure 3(d): Predictors: 1000 hPa-/500 hPa-geopotential heights and Mediterranean SSTs. This figure is available in colour online at

www.interscience.wiley.com/ijoc

resolved 0.5° × 0.5° grid fields). Figure 3(a) is based on
1000 hPa/500 hPa geopotential heights as the only pre-
dictors, Figure 3(b) includes, additionally, the 1000 hPa
specific humidity fields. Figure 3(c) combines the geopo-
tential heights with North Atlantic SSTs, and Figure 3(d)
with Mediterranean SSTs.

For the eastern and southern Mediterranean regions,
almost no distinctions appear, all predictor combina-
tions lead to reduced rainfall amounts at the end of
the 21st century. In contrast to that, no consistent pre-
cipitation changes can be seen for the Iberian Penin-
sula and areas around the Aegean Sea. The prominent
differences occurring for the Iberian Peninsula are sin-
gled out for further discussions with respect to Figure 4
showing the time series ensembles of January/February

precipitation resulting from different predictor combi-
nations. The location of the Iberian Peninsula on the
southern side of the extra-tropical westerlies implies that
geopotential heights and specific humidity anomalies as
well as North Atlantic SSTs should be decisive pre-
dictors in the upstream area of the reference region.
Thus, results are shown for 1000 hPa/500 hPa geopo-
tential heights as the only large-scale predictors, and
for further combinations with either 1000 hPa specific
humidity fields or North Atlantic SSTs. The additional
inclusion of specific humidity into the predictor fields
alters the precipitation time series ensemble in such a
way that there is a stronger upward trend in precipitation
during the 21st century (Figure 4(b)) compared to the
assessment using only geopotential heights as large-scale
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Figure 4. Smoothed time series (Gaussian low-pass filter period 11 years) and cubic trends of ten-member statistical downscaling
ensembles of January/February precipitation 1990–2100 for three different predictor combinations ((a): 1000 hPa-/500 hPa-geopotential heights,
(b): 1000 hPa-/500 hPa-geopotential heights and 1000 hPa-specific humidity, (c): 1000 hPa-/500 hPa-geopotential heights and SSTs of the
North Atlantic) for a region shown by filled-out area of the inside maps. Predictor values are from the ECHAM4/OPYC3 model run
under SRESB2 scenario assumptions. The statistical downscaling technique is CCA. The cubic trend is derived from that statistical model
with the highest correlation between statistically modelled and observation-based precipitation. This figure is available in colour online at

www.interscience.wiley.com/ijoc

predictors (Figure 4(a)). This is consistent with the fact
that increasing temperatures due to enhanced greenhouse
gas forcing tend to increase the evaporation term of the
surface energy budget, owing to the increase in water
vapour capacity of the boundary layer. Since moisture
convergence is likely to be proportionally enhanced as
the moisture content increases, it should lead to similarly
enhanced precipitation rates (Houghton et al., 2001).

Furthermore, it is worth mentioning that the inclusion
of specific humidity within the predictor fields causes
only small changes in model quality during the obser-
vation periods, but can gain particular importance in
describing future climate change. Taking as an exam-
ple the spatial structures and the mean change of specific

humidity of January/February, between the beginning and
the end of the scenario period, the whole Mediterranean
area is affected by moisture increases in the range of
1–1.5 g/kg (for trends in the other months and in the
other predictor fields see Hertig, 2004, p. 217–220). In
the current climate period, the lowest values of Jan-
uary/February specific humidity within the study domain
occur over the Alps and the central mountains of Spain,
whereas at the end of the scenario period the minimum
is located over the east of the Baltic Sea. In contrast
to that, there is neither an improvement in statistical
model quality for the calibration and verification periods
nor a notable modification of future precipitation when
North Atlantic SSTs are included as additional predictors
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(Figure 4(c)). There are different possible reasons for this
lack in additional predictive skill of SSTs for Mediter-
ranean precipitation: for example, the influence of SSTs
on Mediterranean precipitation may operate on different

time scales (e.g. on an interdecadal time scale, Bigg et al.,
2003), or the relationships are generally of a non-linear
nature (Palmer, 1999). It is also possible that the rel-
evant ocean variability is already included within the

Figure 5. Differences of the mean 2-month precipitation between the periods 2071–2100 and 1990–2019 in mm. Left side: statistical downscaling
results based on CCA and using ECHO-G (1) predictors (1000 hPa-/500 hPa-geopotential heights and 1000 hPa-specific humidity). Note that
values are available only for the terrestrial areas. Right side: Precipitation differences calculated from the direct precipitation output of the

ECHO-G (1) run. Scenario: SRES B2. This figure is available in colour online at www.interscience.wiley.com/ijoc
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atmospheric variables, such as the strong relationship
of the North Atlantic Oscillation (NAO) with underly-
ing SSTs (Wanner et al., 1997). Thus, the inclusion of
SST predictors into the statistical models would not pro-
vide a new source of information, it would only mean
a pointless increase in the number of selected predictors.
Since an SST-precipitation-coupling cannot be isolated in
statistical terms – being also evident from low correlation
coefficients in the verification periods, when using SSTs
as the only predictor – even the substantially increased
SSTs under increased greenhouse warming conditions
will not be able to impact on the evolution of Mediter-
ranean precipitation in the 21st century (Figure 4).

Summing up the results of this section, the best perfor-
mance of statistical downscaling models is achieved with
the predictor combination 1000 hPa/500 hPa geopoten-
tial heights and 1000 hPa specific humidity which will
be used further for uncertainty studies (Section 4.3) and
for future rainfall assessments (Section 4.4).

4.3. Uncertainty of the downscaling results

In order to assess whether the downscaling relationships
capture the response to greenhouse gas forcing correctly,
a ‘perfect model’ study is performed. One of the GCM
runs is regarded as ‘truth’, in this case the ECHO-G
ensemble member 1. The downscaling relationships are
calibrated from the historical values (years 1948–1998)
of the GCM predictors 1000 hPa-/500 hPa-geopotential
heights and 1000 hPa-specific humidity using CCA as
the statistical technique. Subsequently, the future val-
ues of these model predictors are used for a statis-
tical assessment of Mediterranean precipitation in the
21st century. The left side of Figure 5 shows the
results for each 2-month analysis in terms of two-
monthly mean differences between the 30-year peri-
ods 2071–2100 and 1990–2019. Additionally, the right
side of Figure 5 shows the corresponding precipitation
differences for the same 30-year periods as actually
simulated by the large-scale ECHO-G model (ensemble
member 1).

According to Figure 5 the patterns of climate change
simulated in the ECHO-G run are largely preserved dur-
ing the statistical downscaling procedure for the autumn
and spring months. But during the winter months some
differences appear, for example, the statistically down-
scaled precipitation decreases in some southern parts of
the Mediterranean area during December/January, and
the stronger increases over a wide area of the east-
ern Mediterranean in January/February which cannot be
found in the direct GCM output. To enable a quantita-
tive comparison between the two results, the ECHO-G
precipitation is rescaled by an ordinary kriging routine to
the same spatial resolution as for the downscaled precipi-
tation. Afterwards, confidence intervals are calculated for
the ECHO-G rainfall (for details of their calculation see
at the end of this section) to see whether the downscaling
results fall within the range of model variability. For the
autumn and spring months, downscaling results lie within

the 99% confidence intervals of the model precipitation.
For the winter months, differences between downscaling
results and the direct ECHO-G output appear for some
regions of northern Africa, the Levant, and the southern
parts of Greece, hence areas which exhibit a large natural
interannual variability (not shown).

This leads to the conclusion that not all physical drivers
of future climate change might be properly captured in the
downscaling equations. Reasons for that are associated
(1) with the 50-year training period which is too short
to capture all interannual variations particularly over
north Africa (2) with the predictors–rainfall relationships
from this training period which might be somewhat
modified under enhanced greenhouse warming conditions
(Sections 4.1 and 4.2) and (3) with the non-incorporation
of other important predictor types into the statistical
downscaling equations.

Yet the statistically downscaled precipitation bears
a substantial resemblance to the direct precipitation
output, implying that the relationships between the large-
scale predictors and Mediterranean rainfall are properly
established in the calibration period and that these
relationships generally hold under increased greenhouse
gas forcing. Considering that the GCM geopotential
height values have a higher reliability than the GCM
precipitation values (e.g. Covey et al., 2000; Min et al.,
2005), the skill of the statistical downscaling becomes
obvious. The robust and comprehensible results obtained
from the statistical downscaling of precipitation from
geopotential heights data stand as a very important
source of information next to the rather uncertain GCM
precipitation output.

Beyond those uncertainties that are related to the statis-
tical approach, further uncertainties arise from the future
emission scenarios and from the particular GCM response
to a given forcing scenario. The latter is mainly consid-
ered by ensemble approaches. A comparison of direct
precipitation output from the three ECHO-G ensemble
members used in this study shows some differences in the
autumn and winter months (for example in the ECHO-G
run 2 there are precipitation increases for the northwest-
ern Mediterranean area in January/February which are not
reproduced in the other ECHO-G runs), whereas all GCM
runs yield rainfall decreases for the whole Mediterranean
area in spring (not shown). Another source of uncertainty
inherent to the GCMs is related to missing or misrepre-
sented physical processes (being reduced by continual
model improvements).

Some sources of uncertainty are also taken into account
by the present downscaling approach considering pre-
dictor output from different GCMs and from different
ensemble member runs (Section 4.4). Of course, this
sample of different GCM runs is still too small to cap-
ture the entire uncertainty arising from variations in GCM
physics or initial conditions, but it illustrates to some
degree these substantial uncertainties.

Finally, the downscaling assessments, as described in
the next section, include the calculation of confidence
intervals for the rainfall differences between the 30-year
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Figure 6. Difference of the mean January/February- precipitation between the periods 2071–2100 and 1990–2019 and corresponding lower and
upper limits of the 95% confidence interval. Assessment based on ECHAM4/OPYC3- model predictor values of 1000 hPa-/500 hPa-geopotential
heights and 1000 hPa-specific humidity. Scenario: SRESB2. Downscaling technique: CCA. This figure is available in colour online at

www.interscience.wiley.com/ijoc

periods 2071–2100 and 1990–2019. The standard devi-
ations required for the calculation of these intervals are
derived – separately for each 2-month period and each
sub-region – from the sample of the individual rainfall
differences between 2071 and 1990, 2072 and 1991, . . .,
2100 and 2019. Within these 95% confidence intervals,
both increases and decreases of rainfall may occur for
almost every region and every 2-month period consid-
ered. The only exceptions are rainfall increases at the
east coast of Spain in October/November, in the western
Mediterranean area and northern Italy from December to
February, and in parts of the Atlas Mountains in Febru-
ary/March. Only in these cases is the sign of the estimated
rainfall increase maintained throughout the whole confi-
dence interval. As an example, Figure 6 shows the esti-
mated January/February rainfall changes (derived from
predictor values of the ECHAM4 scenario B2 run) and
the corresponding lower and upper limits of the 95%
confidence intervals. The western Mediterranean rainfall
increases are preserved within this given range, whereas
stronger decreases and even slight increases are possible
for the other Mediterranean regions. Again, the assess-
ments of future rainfall changes are restricted by a high
degree of uncertainty, a common problem of such kinds
of scenarios as already pointed out above and e.g. by
Palutikof and Wigley (1996).

4.4. Mediterranean precipitation in the 21st century
under increased greenhouse warming conditions

Results in this section are mainly based on assessments
of Mediterranean precipitation changes under SRES B2
scenario assumptions, using CCA as the statistical down-
scaling technique and the best-performing predictor-
combination (1000 hPa/500 hPa geopotential heights and
1000 hPa specific humidity) from an ensemble of vari-
ous ECHAM4 model runs. Output from another model

(HadCM3) was also used, in this case with MSLP,
500 hPa geopotential heights and 2 m specific humid-
ity as large-scale predictors. Downscaling results using
an ECHAM4 model run with SRES A2 forcing are out-
lined as well. For each 2-month analysis the differences
of statistically modelled mean precipitation amounts for
the 30-year periods 2071–2100 and 1990–2019 as well
as the corresponding percentage changes are shown in
Figure 8, based on data from the statistical model with
the highest correlation between statistically modelled and
observed precipitation. For ranges between the statistical
downscaling results arising from the use of predictor out-
put of different GCM ensemble members and of predictor
output from a different climate model see Figures 9 and
10 (for an example of direct GCM precipitation output,
go back to the right side of Figure 5). Results are pre-
sented with the full spatial resolution of the 0.5° × 0.5°

grid after back-transformation from the regional rainfall
indices (already described in Section 3.1).

In addition, significance of the statistically downscaled
changes in Mediterranean precipitation is evaluated in
terms of the ‘signal-to-noise-ratio’ (S/N) (see for example
Rapp and Schönwiese, 1995). The estimated precipitation
time series meet the requirement of normal distribution
according to the Kolmogorov–Smirnov goodness-of-fit
test (95% level of significance). The S/N is obtained
by setting the rainfall difference of the two 30-year
periods in relation to natural variability, represented by
the standard deviation of interannual variations within
the earlier period. As a result, regions with S/N >1
(transverse hatching in Figure 8(b)) depict areas with
signals greater than the mean recent natural variability,
those with S/N >1.96 (cross hatching in Figure 8(b))
areas with changes being significant at the 95% level.

Summarizing the various downscaling results we may
conclude that all different assessments show similar
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Figure 7. Smoothed time series (Gaussian low-pass filter period 11 years) and cubic trends of ten-member statistical downscaling ensembles of
January/February precipitation 1990–2100 for five different model runs ((a): ECHAM4/OPYC3 run, (b)–(d): ECHO-G runs, (e): HadCM3 run)
under SRESB2 scenario assumptions for a region shown by filled-out area of the bottom right map. The downscaling technique is CCA. The
cubic trend is derived from that statistical model with the highest correlation between statistically modelled and observation-based precipitation.

This figure is available in colour online at www.interscience.wiley.com/ijoc

tendencies of future precipitation changes in the Mediter-
ranean area. While the general development is in agree-
ment, individual monthly precipitation values, short-
and medium-term variations, and the particular trend

characteristics differ from one assessment to the other.
This may be seen from Figure 7 showing the smoothed
time series and cubic trends of December/January pre-
cipitation for the region around the Iberian Pensinsula
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Figure 8. (a): Changes of Mediterranean Precipitation according to statistical downscaling assessments using ECHAM4/OPYC3 predictors
(1000 hPa-/500 hPa-geopotential heights and 1000 hPa-specific humidity). Differences of the mean 2-month precipitation between the periods
2071–2100 and 1990–2019 in mm (left side) and percentages in relation to the mean of the period 1990–2019 (right side). Statistical
downscaling technique: CCA. Scenario: SRESB2. (b): Signal/noise ratio of the differences. Transverse hatching: signal/noise ratio greater 1
(confidence level = 68.3%); Cross hatching: signal/noise ratio > 1.960 (confidence level = 95%). This figure is available in colour online at

www.interscience.wiley.com/ijoc
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Figure 8. (Continued).

including northwestern Morocco and the Ligurian coast
for all assessments based on SRES B2 assumptions.

The focus, however, is on the long-term varia-
tions and changes, and these are mainly quite similar
between different assessments. Thus, only one exam-
ple is presented in detail: Figure 8 shows the assess-
ment results for all 2-month periods from October to
May derived from the ECHAM4 scenario B2 run. The
figure includes the 2-month mean rainfall differences
between the 30-year periods 2071–2100 and 1990–2019
as well as the corresponding percentage changes. Addi-
tionally, maps of precipitation changes for Novem-
ber/December–February/March resulting from downscal-
ing the output from three ECHO-G ensemble mem-
bers are shown in Figure 9. The varying initial condi-
tions of these ensemble members (Wagner, 2004) do
not imply substantial differences in the future rainfall
assessments. There are only some small distinctions, like
the more pronounced increases of November/December
precipitation in the central-northern Mediterranean area
based on ECHO-G(1) predictors compared to pre-
dictors from the other ECHO-G ensemble members.
Thus, the general rainfall changes summarized below
do not result from the predictor output of a particu-
lar model run, but are reproduced as well with out-
put from different ensemble members. The same is
true for using predictor output from a different climate

model: Figure 10 shows the precipitation changes for
November/December–February/March downscaled from
the output of the HadCM3 run. Predictors from this SRES
B2 model run lead to similar results in the statistical
downscaling models as for predictors from the corre-
sponding ECHAM4 run (Figure 8).

The main results may be summarized as follows: At the
beginning of the rainy season in October/November, most
of the Mediterranean area is characterized by precipita-
tion decreases. The generally drier conditions agree with
similar changes obtained by Palutikof et al. (1994, 2002)
for some Mediterranean areas in the autumn season.
Results from the STARDEX project indicate decreases in
mean rainfall and most indices of extremes for autumn
in western Iberia and Greece. A remarkable exception
is the east coast of Spain exhibiting October/November
increases in all the different assessment versions consid-
ered in this section. Note that Gao et al. (2006) report
positive precipitation changes in autumn south of the
Alps, east of the Pyrenees and Jura Mountains, and over
the eastern Hellenic Peninsula due to a more pronounced
easterly and southeasterly circulation.

In November/December precipitation increases are
shifted to the central-northern parts of the Mediter-
ranean area. Next, in December/January, substantial
increases are estimated for the whole western Mediter-
ranean region, extending further east to most of Italy,
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Figure 9. Changes of Mediterranean Precipitation according to statistical downscaling assessments using predictors (1000 hPa-/500 hPa-
geopotential heights and 1000 hPa-specific humidity) from three ECHO-G ensemble members. Differences of the mean 2-month precipitation
between the periods 2071–2100 and 1990–2019 in mm. Statistical downscaling technique: CCA. Scenario: SRESB2. This figure is available in

colour online at www.interscience.wiley.com/ijoc

Dalmatia and up to the Aegean region. The changing
pattern which arises from the use of predictors from the
ECHO-G A2 scenario run, shows pronounced increases
in the above-mentioned regions by November/December,

continuing, with varying spatial extent, until February/
March (not shown). Increasing wintertime precipitation
for the Iberian Peninsula and parts of Italy under
increased greenhouse warming conditions is reported in
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Figure 10. Changes of Mediterranean Precipitation according to statistical downscaling assessments using HadCM3 predictors (Mean Sea Level
Pressure, geopotential heights of the 500 hPa-level and specific humidity in 2 m height). Differences of the mean 2-month precipitation between
the periods 2071–2100 and 1990–2019 in mm. Statistical downscaling technique: CCA. Scenario: SRESB2. This figure is available in colour

online at www.interscience.wiley.com/ijoc

other modelling studies as well, for instance by Gibelin
and Déqué (2003), Trigo and Palutikof (2001), Murphy
(2000) and Palutikof and Wigley (1996). A pattern with
rainfall increase in the northern and western parts and
decrease in the southern and eastern parts during winter
is also obtained from time-slice experiments by Cubasch
et al. (1996). According to Figures 8–10 the eastern and
southern Mediterranean areas are mainly characterized by
rather weak decreases in rainfall, while only in Tunisia
and Sicily do distinctly stronger decreases occur.

In January/February, all assessments point to substan-
tial precipitation decreases in the eastern Mediterranean
area. Such decreases are often estimated for this region,
see for example Gibelin and Déqué (2003), Murphy
(2000), Palutikof et al. (1994), and Jacobeit (1994a).
A reduction is also found again in the southern and
central parts of the Mediterranean area, particularly in
Tunisia and Sicily. Precipitation decreases in winter for
the Maghreb, strongest in the Moroccan region, are mod-
elled by Räisänen et al. (2004). Gibelin and Déqué (2003)
obtain similar results for the coastal areas of Tunisia
and Algeria. In contrast to that, rainfall increases con-
tinue to appear in the western and northern Mediter-
ranean regions during January/February (Figures 8–10).
This is in general accordance to simulation results by
Giorgi et al. (2004) showing rainfall increases for the DJF
season approximately north of 42° latitude. Gao et al.
(2006) also assess DJF precipitation increases for most of
France, the Alpine region and southeastern Europe due
to increased Atlantic storm activity. Regarding precip-
itation extremes, a general tendency towards decreases
is assessed by Frei et al. (2006) for the Mediterranean
region in winter.

For the following months, the synopsis of the different
model results indicates a less uniform pattern for the
western and northern regions, with minor decreases in

most cases. Only in April/May do all assessments show a
consistent decline of precipitation amounts for the Iberian
Peninsula. Fewer rain days during spring for southeast
Spain are also indicated in the assessment by Goodess and
Palutikof (1998). Along with the continuously negative
changes in the other parts, the whole Mediterranean
area is generally affected by drier conditions in spring.
In contrast to that, results from regression analysis by
Palutikof and Wigley (1996) indicate increased rainfall to
the north of the Mediterranean Sea and decreased rainfall
to the south during spring. Around this drier region,
the northwestern parts of northern Africa stand out as a
region of the most pronounced decreases in precipitation
(see Figure 8, also reported by Jacobeit, 1994b).

5. Conclusions

The IPCC third assessment report (Houghton et al., 2001)
has recommended further statistical downscaling studies
with careful attention to the choice of predictors (p. 622)
and an application of different techniques to a range
of AOGCM simulations (p. 586). Both have been per-
formed in the present study, and another step forward
may be seen in the extended consideration of uncer-
tainties including non-stationarities of the downscaling
relationships and their degree of capturing the response
to greenhouse gas forcing. In particular, Mediterranean
precipitation changes for the 21st century were assessed
by means of statistical downscaling techniques using the
simulated model output of several large-scale predictor
fields (geopotential heights of various tropospheric lev-
els, specific and relative humidity, and SSTs of the North
Atlantic Ocean and the Mediterranean Sea). CCA as
well as multiple regression analyses were used to estab-
lish predictor-predictand-relationships in ten different
calibration periods each leaving out a different 5-year
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period from the whole study period 1948–1998. These
remaining periods were used to verify the performance
of the statistical models, respectively. This procedure led
to ensembles of statistical models for the assessment of
future Mediterranean precipitation changes. An advan-
tage of this ensemble method is that non-stationarities
in the circulation–rainfall relationships are particularly
taken into account, but this is restricted by the fact that the
50-year training dataset is not long enough to sample all
independent episodes of low-frequency variability. But
in conjunction with the performance of a ‘perfect model’
study and through the use of large-scale predictor output
from different AOGCM runs including several numeri-
cal ensemble members with different initial conditions,
a number of important uncertainties in future predictions
could be addressed without claiming to have captured
them all. In any case, these are only one part within
the overall cascade of uncertainty in climate prediction
extending from future emissions to a changed forcing, to
particular GCM responses, and to the transference down
to regional scales. Just the latter has been focussed on in
this paper.

Given the wide range of statistical downscaling models
actually derived, their different quality within the verifi-
cation periods was used to select the best predictor com-
bination and the more suitable statistical technique for
the assessment of Mediterranean precipitation changes.
The best performance was achieved with the predictor
combination 1000 hPa/500 hPa geopotential heights and
specific humidity. Even though the additional inclusion
of specific humidity results only in a small improvement
of model quality compared to models using geopoten-
tial heights alone, it may result in substantially mod-
ified changes of future precipitation amounts. In con-
trast to that, SSTs only sporadically exhibit a noticeable
self-contained influence on Mediterranean precipitation
variability. Altogether, it is evident that circulation-type
predictors are of primary importance, but there is still a
need to explore further the suitability of other large-scale
predictors within the framework of statistical downscal-
ing studies. When using different types of predictors
(e.g. circulation and climate-related), CCA seems to be
an appropriate technique, particularly since it provides
a consistent whole-area analysis without varying sub-
regional effects.

Using 1000 hPa/500 hPa geopotential heights and spe-
cific humidity as predictors and assuming SRES B2
scenario conditions, a shortening and at the same time
an increase in rainfall amount of the wet season arises
for the western and northern Mediterranean regions:
the statistical downscaling models predict precipitation
increases in winter for the period 2071–2100 compared
to 1990–2019, whereas precipitation decreases dominate
in autumn and spring. The eastern and southern parts of
the Mediterranean area, on the other hand, exhibit mainly
negative precipitation changes throughout the period from
October to May, under enhanced greenhouse warming
conditions.

Circulation dynamics point to enhanced anti-cyclonic
conditions over the study area as a reason for precipitation
decreases in the transitional seasons. In contrast to that,
cyclonic conditions in the western and northern parts of
the Mediterranean area show an increased dominance
in winter, particularly in December and January. This
could be an effect of stronger cyclonic activity in the
western Mediterranean area, especially around the Gulf
of Genova, associated with a more southerly path of
storm tracks linked with a pressure rise centred over
central Europe in these months as simulated by some
AOGCMs (see Hertig, 2004). In this context, enhanced
atmospheric humidity can be regarded as an additional
factor for higher rainfall amounts.

Otherwise, broad precipitation decreases result for
many parts of the Mediterranean area. These reductions
could have serious impacts on water supply, exacerbated
by the anticipated temperature rise and its associated
evaporation enhancement (Palutikof et al., 1994). But
also the possible intensification and shortening of the
Mediterranean rainy season in the western and northern
parts would form a major challenge in the context of
water management for agriculture, tourism and landscape
ecology.
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terniederschlags im Mittelmeerraum bei anthropogen verstärktem
Treibhauseffekt. PIK-Reports 1: 117–121.

Jacobeit J. 1994b. Empirical estimations of Mediterranean rainfall
changes in the transitional seasons due to enhanced greenhouse
warming. In Contemporary Climatology, Brazdil R, Kolnar M (eds).
Commission on Climatology of the IGU: Brno; 266–271.

Jacobeit J. 1996. Atmospheric circulation changes due to increased
greenhouse warming and its impact on seasonal rainfall in the
Mediterranean area. In Proceedings of the Regional Workshop an
Climate Variability and Climate Change Vulnerability and Adaption ,
Praha, 71–80.

Jacobeit J. 2000. Rezente Klimaentwicklung im Mittelmeerraum.
Petermanns Geographische Mitteilungen 144: 26–37.

Jacobeit J, Dünkeloh A, Hertig E. 2007. Mediterranean rainfall
changes and their causes. In Global Change: Enough Water for
All? Lozan JL, Graßl H, Hupfer P, Menzel L, Schönwiese CD (eds).
Wissenschaftliche Auswertungen: Hamburg; 195–199.

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L,
Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M,
Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C,

Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D. 1996. The
NCEP/NCAR 40-Year reanalysis project. Bulletin of the American
Meteorological Society 77: 437–471.

Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J,
Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den
Dool H, Jenne R, Fiorino M. 2001. The NCEP/NCAR 50-Year
Reanalysis: Monthly means CD-ROM and documentation. Bulletin
of the American Meteorological Society 82: 247–268.

Legutke S, Voss R. 1999. The Hamburg atmosphere-ocean coupled
model ECHO-G. Technical Report 18, German Climate Computer
Center (DKRZ).

Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L,
Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E.
2006a. The Mediterranean climate: An overview of the Main
Characteristics and Issues. In Mediterranean Climate Variability,
Lionello P, Malanotte-Rizzoli P, Boscolo R (eds). Elsevier:
Amsterdam; 1–18.

Lionello P, Bhend J, Buzzi A, Della-Marta PM, Krichak SO, Jansa A,
Maheras P, Sanna A, Trigo IF, Trigo R. 2006b. Cyclones in the
Mediterranean region: Climatology and effects on the environment.
In Mediterranean Climate Variability, Lionello P, Malanotte-
Rizzoli P, Boscolo R (eds). Elsevier: Amsterdam; 325–365.

Min S-K, Legutke S, Hense A, Kwon WT. 2005. Internal variability
in a 1000-year control simulation with the coupled climate model
ECHO-G–I. Near-surface temperature, precipitation and mean sea
level pressure. Tellus 57A: 605–621.

Mitchell TD, Jones PD. 2005. An improved method of constructing
a database of monthly climate observations and associated
high-resolution grids. International Journal of Climatology 25:
693–712.

Mitchell TD, Carter TR, Jones PD, Hulme M, New M. 2004. A
comprehensive set of high-resolution grids of monthly climate
for Europe and the globe: the observed record (1901–2000) and
16 scenarios (2001–2100). Tyndall Centre for Climate Change
Research. Working Paper 55, 30.

Murphy J. 2000. Predictions of climate change over Europe using
statistical and dynamical downscaling techniques. International
Journal of Climatology 20: 489–501.

Nakicenovic N, Swart R (eds). 2000. Emissions Scenarios 2000.
Special Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press: Cambridge; 570.

New M, Hulme M, Jones P. 1999. Representing twentieth century
space-time climate variability. I: Development of a 1961–1990 mean
monthly terrestrial climatology. Journal of Climate 12: 829–856.

New M, Hulme M, Jones P. 2000. Representing twentieth century
space-time climate variability. II: Development of 1901–1996
monthly grids of terrestrial surface climate. Journal of Climate 13:
2217–2238.

Oberhuber JM. 1993. The OPYC Ocean General Circulation Model.
Deutsches Klimarechenzentrum: Hamburg; 130, DKRZ Report No.
7.

Oesterle H, Gerstengarbe FW, Werner PC. 2003. Homogenisierung
und Aktualisierung des Klimadatensatzes der Climate Research Unit
der Universitaet of East Anglia, Norwich. Terra Nostra 2003/6.
Alfred- Wegener- Stiftung: Berlin; 326–329.

Palmer TN. 1999. A nonlinear dynamical perspective on climate
prediction. Journal of Climate 12: 575–592.

Palutikof JP, Wigley TML. 1996. Developing climate change scenarios
for the Mediterranean region. In Climatic Change and the
Mediterranean, Vol. 2, Jeftic L, Keckes S, Pernetta JC (eds).
Arnold: London; 27–56.

Palutikof JP, Goodess CM, Guo X. 1994. Climate change, potential
evapotranspiration and moisture availability in the Mediterranean
Basin. International Journal of Climatology 14: 853–869.

Palutikof JP, Goodess CM, Watkins SJ, Holt T. 2002. Generating
rainfall and temperature scenarios at multiple sites: Examples from
the Mediterranean. Journal of Climate 15: 3529–3548.

Pope VD, Gallani ML, Rowntree PR, Stratton RA. 2000. The impact
of new physical parametrizations in the Hadley centre climate model:
HadAM3. Climate Dynamics 16: 123–146.

Preisendorfer RW. 1988. Principal Component Analysis in Meteorology
and Oceanography. Developments in Atmospheric Science 17 ,
Elsevier: Amsterdam.
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