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Abstract

In order to assess long-term changes of daily circulation variability, different
classification methods are applied to a recently reconstructed Sea Level Pressure
(SLP) dataset reaching back to 1850. Both the reconstruction and the
classification is part of the ongoing EU project EMULATE (European and North
Atlantic daily to MUL-Tidecadal climATE variability) which has the final aim to
examine changes of circulation-climate-relationships with particular respect to
extreme climatic events. This study deals with classification methods suitable for
assessing long-term changes in the SLP fields. In order to account for the varying
reconstruction skill, an error weighting scheme is applied to the SLP fields before
submitting them to the classification procedure. Since statistical methods applied
to the classification results (e.g. trend analysis of pattern frequencies) may be
quite sensitive to small changes in the classification, robust results have to be
achieved. Conventional Cluster Analysis (e.g. k-means clustering) does not meet
these requirements: Depending on the dataset as well as on the number of clusters,
the resulting partition is a matter of chance, and thus no robust evidence on long-
term changes can be provided. In order to find a stable solution for this
classification problem, a clustering method based on so called simulated
annealing and multistart techniques is used. This allows for a reliable examination
of circulation changes which are shown in their relevance for temperature
variability as an example of applying results of this classification.

1. Introduction

In the context of assessments of climate change dynamics it is important to extend the study
period on climatic variability back into time as far as possible. In order to keep a minimum
level of data quality, the temporal resolution of most reconstruction approaches have been
limited to monthly or seasonal time scales. Within the EU project EMULATE (European and
North Atlantic daily to MULtidecadal climATE variability) a new dataset has been generated
by reconstructing sea level pressure (SLP) fields on a daily basis for the period 1850 to 2003.
This new dataset is expected to allow improved insights into long-term changes of high
frequency variability of the North-Atlantic — European circulation. Therefore one objective of
EMULATE is to identify leading atmospheric circulation patterns for assessing their trends
and variations in time.

A very fundamental approach in this context is to create a pressure-pattern-classification

which allows a sound analysis of the complex variability within the dataset based on well-
defined categories. This approach is similar to so called weather-type-classifications but
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differs in using only one parameter for classification (SLP) instead of attempting to represent
the weather as a whole.

The classification method applied here is a non-hierarchical Clustering technique whose
methodological aspects may affect similar classification techniques as well and therefore
might have relevance to weather-typing approaches in general.

2. Data

The gridded SLP reconstruction has been done by Ansell et al. (2005) applying the Reduced
Space Optimum Interpolation (RSOI) method (Kaplan et al. 2000) to quality checked and
homogenized historical station time series and ICOADS marine data . The product provides a
5°x5° spatial grid for the daily mean SLP from the 1% of January 1850 in the sector 70°W-
50°E/25°N-70°N. Additionally, RSOI-error estimates are provided for each grid point and
each day (for further details see Ansell et al. 2005).

Before applying the classification scheme, all SLP-fields were weighted by the square root of
the cosine of latitude to account for area differences in grid cells. Additionally the RSOI-error
estimates have been used to weight the data in order to account for the varying confidence in
the reconstructed data. The RSOI-error weight was calculated as the inverse of the mean
RSOI-error divided by the standard deviation (both in hPa) of each grid point for the whole
period 1850-2003. As an example, Figure 1 shows the error weighting field for the winter
(DJF) season. With the highest values over western and central Europe the classification
scheme is most sensitive to pressure configurations in these areas of high confidence on
reconstructed SLP.

Figure 1: Error weights for the winter season as applied to the daily pressure patterns prior
to their classification.

3. Classification by k-means cluster analysis

A conventional approach for classifying a set of objects (e.g. the daily pressure patterns of the
reconstructed dataset) is to use non-hierarchical k-means cluster analysis (CA) which tries to
find an optimal assignment of each pattern to a particular cluster by minimising the within
cluster variances. Within cluster variance can be measured by the so called Explained Cluster
Variance (ECV): ECV =1 — WSS / TSS, where WSS is the sum of squares of distances
between all objects within a cluster and the corresponding cluster centroid and TSS is the sum
of squares of distances between all objects and the total centroid of the dataset.

The process can be split up into three steps:
1. Produce a starting partition, i.e. an assignment of each object to initial clusters.
2. Tteratively rearrange objects from one cluster to another if this reassignment increases
the cluster quality (reduces within cluster variance).
3. Stop the iterations if no enhancement by reassigning objects is possible anymore. This
means that a final convergence of the optimisation process has been reached.
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Figure 2: Visualisation of optimisation processes by k-means cluster analyses (CA) showing
cluster quality as a function of progress of operation: a) several runs of conventional CA
differing just by starting partition and ordering of objects (see text); b) Simulated Annealing
CA run (the blue line indicates a conventional k-means CA run) . ECV is a measure of cluster
quality and is calculated as 1 minus the within cluster variability (sums of squares of
distances between objects and their cluster centroid) scaled by total variability (sums of
squares of distances between all objects and the overall mean).

The result is always an optimized partition. But the main problem of this method — at least if a
complex dataset is used as in our case — arises with the fact that there is a various number of
possible solutions, called local optima, which are more or less different and generally worse
than the so called global optimum which is the best one possible. Any dataset may be called
'complex’ in the context of classification problems if it does not show clearly separated groups
of objects inherent in the dataset .

In order to illustrate the behavior of conventional CA when applied to a complex dataset,
figure 2a exemplarily presents the optimization process of different k-means CA runs
differing just by two initial conditions:
1. The starting partition has been determined by different methods (hierarchical CA,
PCA and by random),
2. The ordering of objects (days) has been changed by random.

The latter initial condition leads to a different ordering of checks to determine whether an
object has to be moved to another cluster which in turn has a large impact on the outcome of
all subsequent checks.

In figure 2a each single optimization process can be depicted by an individual line
representing cluster quality (ECV) as a function of the progress of operation. If the method
would be stable, all these lines would end up in one single point which should be the best
solution, but conventional k-means CA is not able to realize this. Instead we can see that the
result is unpredictable and found by chance. Thus, different ordering of objects and different
starting partitions lead to different clustering results.

No method is known to determine the global optimum directly but only the brute force
method of testing all possible combinations of objects, which is impossible for large datasets.

A method explicitly designed to approximate the global optimum (regardless of the ordering
of objects or starting partitions) is the Simulated Annealing technique. This method can be
utilized for k-means CA and systematically avoids bad local optima because it allows small
steps backward (in terms of overall ECV) during the optimization process and therefore is
able to get over these pitfalls as it is indicated in figure 2b. The idea behind this approach is to
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move all objects randomly between the clusters like in a hot melt of particles and slowly
reduce the probability of objects moving into a ill-suited cluster which is simulating the
process of slow cooling. By moving all objects initially, the result should be ideal for the
whole of the objects, in contrast to any approach looking just at the momentary advantage of
each single reassignment (for details see Philipp et.al. 2006).

The computational effort of using Simulated Annealing for clustering a large dataset is
relatively high, thus the question arises whether it is worth doing so. In order to give an
answer, figure 3 shows an example of a cluster equivalently derived by conventional k-means
(figure 3 upper panel) and by simulated annealing clustering (figure 3 lower panel). The
centroid patterns in both cases show a blocking situation over the British Isles, but the
simulated annealing result provides a better defined anticyclonic pattern which seems to be
the product of a better assortment of daily patterns. Furthermore, the differences are even
more significant if we look at the time varying seasonal frequencies of this cluster (Fig. 3,
right column). Not only short-term variability, but especially the long term changes show
remarkable differences: while the simulated annealing cluster has a significantly positive
trend (Mann-Kendall-trend test at the 95% confidence level), this long-term change (also
apparent from the time series of cumulative anomalies in figure 2) is not detected by
conventional k-means CA . These differences are a direct result of the sub-optimal
classification of the latter method. As a rule of thumb, the danger of achieving non-optimal
results increases with the number of objects, with the number of clusters, and with the
complexity (no clearly defined natural clusters) of the dataset, because all these factors tend to
enlarge the number of local optima.

Figure 3: First of 11 cluster centroids and seasonal cluster frequencies derived for an
example in spring by conventional k-means cluster analysis (upper level) and by cluster
analysis using the simulated annealing technique (lower panel). The patterns (left column)
are the mean raw data from the cluster members. The time series plots (vight column) include
in gray the overall long-term means, as blue lines the linear trends, and as red lines the
cumulative anomalies of cluster frequencies.
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Figure 4: Simulated Annealing Cluster centroid patterns for clusters 1 to 9 in winter (DJF)
1850-2003. Patterns represent the average of all cluster members using non-weighted data in
order to aid the interpretation of these patterns.

The numbers of clusters chosen to represent the winter season (DJF) was 9. While all
commonly used indices for an appropriate number of clusters failed to give a reliable hint for
this dataset (propably another consequence of the complexity of the dataset), it was
determined by a PCA approach. This method tries to estimate the number of uncorrelated
patterns fitting into the dataset. The detailed description of this method is beyond the scope of
this report and will be published elsewhere.

The resulting classification for the winter (DJF) season is represented in figure 4 by the
cluster centroid patterns. While the CA itself was performed with weighted data, the centroids
are shown with original raw data for better interpretation. A wide range of pressure
configurations is obtained comprising of zonal ones (clusters 1, 2 and 5) as well as
anticyclonic and generally meridional ones. The temporal information for these patterns is
given in figure 5 in terms of the seasonal cluster frequencies (SCF): significant long-term
positive trends are indicated for the zonal flow pattern (cluster 4) and negative trends for
cluster 6 - a pressure configuration of mainly meridional air flow and high pressure influence
over Europe. The zonal cluster 1 resembles the recent positive phase of the North Atlantic
Oscillation which is outbalanced by another positive phase at the very beginning - in the
1850s and 1860s. Therefore no significant overall linear trend is indicated for this cluster.
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Figure 5. Seasonal cluster frequencies (black bars) of clusters 1 to 9 (see Fig. 4) in winter
(DJF) for the period 1851 to 2003. The gray fields indicate the overall long term means, the
blue lines the linear trends , and the red lines the cumulative anomalies of cluster frequencies.

4. Application for assessments of European winter temperatures

An example application of the SLP pattern classification is given in figure 6. The information
about mean daily temperature conditions associated with each SLP cluster can be used to set
up a simple descriptive model for assessing the seasonal mean temperatures from cluster
frequencies within each season. For this purpose NCEP/NCAR reanalysis data for the period
1948 to 2003 have been used to calculate for each cluster the average daily temperature
anomaly (relative to the monthly mean of the reference period 1961 to 1990) covering the
area 5°E to 20°E and 45°N to 55° N. This area covers most of Central Europe and implies
convenience because reconstructed and observational monthly mean temperature data exist
back to 1851 with the prominent CRUTEM?2v dataset from Jones and Moberg (2004).
Therefore this region offers the possibility to compare temperatures modeled by SCF against
'observed' data. Past monthly means of temperature were modeled just by summing up the
associated mean temperature anomalies for each cluster occurring in that month and dividing
this sum by the number of days in this month.
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Figure 6. Associated temperature anomaly fields for clusters 1 to 9 (see Fig. 4) in winter
(DJF) within the modern reanalysis period 1948 to 2003. Data represent the average
anomaly of all days within each cluster related to the monthly long-term mean of the period
1961 to 1990.

The simplicity of this model is obvious: no information about previous history (e.g.
persistence of a particular circulation pattern) was introduced into the model which would
allow for a more appropriate temperature assessment. However, the only purpose of this
simplified model is to describe the varying influence of pressure patterns onto regional
temperature. The results can be seen from Fig. 7.

Although of rather low skill, this descriptive model reveals that some parts of temperature
variability can be explained by pure SCF data. Remarkably this is also true for low- frequency
temperature variability (see the cumulative anomalies in figure 7). This is also true for the
recent warming period since about 1985 which is reproduced. However, as the most
outstanding exception we find a tendency for overestimation of the temperatures in the very
first part of the period (especially between 1852 to 1865) which means that there could have
been some other influences than seasonal SLP cluster frequencies which caused the unusual
cold conditions.

5. Discussion and Conclusions

Results presented in this report indicate that conventional cluster analysis is limited in finding
optimal and stable results for large and complex datasets. Therefore we use the simulated
annealing technique to approximate the best solution possible (the global optimum) and to
ensure a robust solution of the classification problem. As an example the results for the winter
(DJF) season 1851-2003 are presented in terms of SLP cluster centroid patterns,
seasonalcluster frequencies and additionally by the associated mean daily temperature fields
in the modern reanalysis period. A simple descriptive modelling approach of central European
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Figure 7. Comparison between Central European seasonal temperature anomalies modeled
by SCF (upper panel, for detailed explanation see text) and reconstructed from observations
(lower panel, data from Jones and Moberg 2003). The calibration period 1948 to 2003 is
boxed by the green frame. Its pearson correlation coefficient is r = 0.62, while the correlation
for the whole period is r=0.57. The red lines represent the cumulative anomalies.

temperature based exclusively on circulation cluster frequencies is presented as an example of
applying results of this SLP classification. Temperature variations can be explained by SLP
cluster frequencies in large parts for most of the period concerning the tendencies of warming
and cooling, but not concerning the absolute extend due to the simplicity of the estimation
approach. However, during the second half of the 19™ century conditions have been colder
than it would be expected from the circulation based model. Possible factors relevant for this
overestimation of temperatures in the second half of the 19 century — beside random
fluctuations - might be decreased solar activity, a weaker thermohaline ocean circulation, or a
smaller greenhouse forcing due to lower concentrations of greenhouse gases at this time
compared to the modern calibration period. In contrast the recent warming period since the
mid 1980s is reflected more or less adequatly by the model, suggesting that it is partly due to
circulation changes. This is in good accordance with the increase of the westerly pattern of
cluster 1 showing warm conditions for central Europe and the decrease of the continental high
of cluster 6 with cold conditions during this period. In order to allow more detailed
estimations of the role of circulation pattern frequencies for long-term temperature changes
the statistical modelling based on circulation classification should be enhanced in the future.
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