

Das Hochwasserereignis in Mitteleuropa im August 2002 aus klimatologischer Perspektive

Andreas Philipp, Jucundus Jacobeit

Angaben zur Veröffentlichung / Publication details:

Philipp, Andreas, and Jucundus Jacobeit. 2003. "Das Hochwasserereignis in Mitteleuropa im August 2002 aus klimatologischer Perspektive." *Petermanns Geographische Mitteilungen* 147 (6): 50–52.

Nutzungsbedingungen / Terms of use:

To Marine

Das Hochwasserereignis in Mitteleuropa im August 2002 aus klimatologischer Perspektive

Die extremen Überschwemmungen im Donau- und Elbegebiet, die sich innerhalb weniger Tage in der ersten Augusthälfte 2002 ereigneten, wurden durch eine Wetterentwicklung ausgelöst, die etwa schon von FLOHN (1954, S. 82ff.) als charakteristisches Element der synoptischen Klimatologie Mitteleuropas geschildert wurde. Im Folgenden sollen spezifische Ausprägungen des August-Ereignisses 2002 vorgestellt, typusbestimmende Merkmale einer derartigen Situation verdeutlicht und der Versuch einer langfristigen Einordnung der atmosphärischen Rahmenbedingungen vorgenommen werden.

Exzeptioneller Starkniederschlag

Die Meteosat-Aufnahmen (Fig. 1) geben die Situation am 11. August 2002 (12:00 Uhr) wieder. Deutlich sichtbar werden die großräumige Aufgleitbewölkung nördlich der Ostalpen sowie der starke Wasserdampftransport aus dem Mittelmeerraum

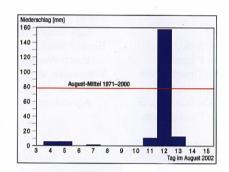
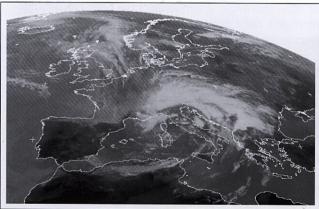


Fig. 2 Tägliche Niederschlagssummen an der Station Dresden-Klotzsche im Zeitraum vom 3. bis 15. August 2002 (Daten: Deutscher Wetterdienst)

nach Südost- und Mitteleuropa. Fielen dort an diesem Tag die größten Regenmengen noch im südlichen Teil, verlagerte sich das Starkniederschlagsgebiet zum 12. August weiter nach Osten, wo innerhalb von 24 Stunden verbreitet deutlich mehr Regen als im langzeitlichen Monatsmittel gemessen wurde. Figur 2 zeigt das Beispiel Dresden mit einem Rekord-Tagesniederschlag, der fast den höchsten Einzelmonatswert der letzten 30 Jahre (167 mm) erreichte. Laut


Deutschem Wetterdienst (www.dwd. de/de/FundE/Klima/KLIS/prod/spe zial/spezial.htm) wurde südlich von Dresden an der Station Zinnwald-Georgenfeld mit 312 mm sogar der allzeitlich höchste Tagesniederschlag ganz Deutschlands gemessen.

Zirkulationsdynamik

Diese Extremsituation stand im Zusammenhang mit einer charakteristischen zirkulationsdynamischen Entwicklung, die in Figur 3 für den Zeitraum 6. bis 13. August 2002 wiedergegeben wird.

Bereits am 6. und 7. August zieht eine Tiefdruckzelle in den nordadriatischen Raum und anschließend in Richtung Nordosten, wobei Starkniederschläge in Ostbayern und Österreich zu Überschwemmungen im Donaugebiet führen. Während des Abzugs dieses Tiefs in Schwarzmeer-Richtung beginnt seit dem 7. August ein Höhentrog ausgehend von Island zunehmend in Richtung Südosten auszugreifen, von dem zwischen 9. und 10. August ein hochwirksames Cut-Off-Low abgeschnürt wird. Dieses zieht bis 11. August in den zentral-nördlichen Mittelmeerraum, um dort große Mengen Feuchtigkeit aus den warmen Meeresoberflächen aufzunehmen und seinen bodennahen Kerndruck zu erniedrigen. Dabei wird feuchtwarme Luft an der Ostflanke des Tiefs nach Norden transportiert, die über dem südlichen Mitteleuropa auf kältere, an der Rückseite des Tiefs gegen die Alpen geführte Luft

Fig. 1 Meteosat-7-Aufnahmen vom 11. August 2002, 12:00 Uhr; links: Infrarot-Kanal, rechts: Wasserdampf-Kanal (Quelle: Dundee Satellite Receive Station)

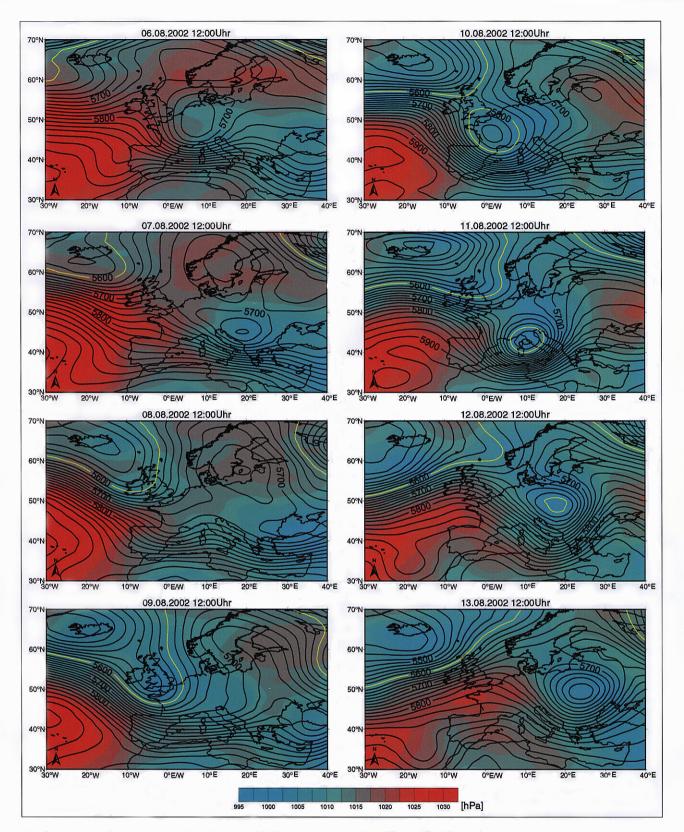


Fig. 3 Sequenz der mitteltroposphärischen und bodennahen Luftdruckverteilungen im Vorfeld des Hochwassereignisses im August 2002: Geopotentielle Höhen des 500-hPa-Niveaus (Isolinien, Intervall 20 gpm, 5600-gpm-Linie gelb hervorgehoben) und SLP (sea level pressure, Konturflächen) zwischen dem 6. und dem 13. August 2002 jeweils 12:00 Uhr (Daten: NCEP/NCAR-Reanalyse)

aufgleitet. Die daraus resultierenden großflächigen Starkniederschläge verlagern sich mit der allmählichen Wanderung des Tiefdruckgebietes in nordöstlicher Richtung bis zum 12. August in die ostdeutschen Überschwemmungsgebiete, wobei dann in der Rückseitenströmung orographische Hebungsprozesse an der Nordseite des Erzgebirges zur weiteren Niederschlagsverstärkung beitragen.

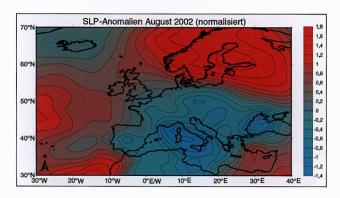


Fig. 4
Normalisierte Anomalien der monatsgemittelten SLP-(sea level pressure)
Werte für den August des Jahres 2002 in
Bezug zum Augustmittel 1948–2002
(Daten: NCEP/
NCAR-Reanalyse)

Vb-Zyklonen

Derartige Tiefdruckgebiete, wie sie in der ersten Augusthälfte des Jahres 2002 mehrfach aufgetreten sind, werden als Vb-Zyklonen bezeichnet. Der Begriff geht zurück auf eine Einteilung von Zyklonen-Zugstraßen, die van Bebber (1891) schon Ende des 19. Jh. vorgelegt hat. Seine Zugstraße V unterteilt sich in einen südöstlich gerichteten Ast nahe der Britischen Inseln bis nach Oberitalien (Va) und in einen von dort nordostwärts verlaufenden Zweig in Richtung Polen (Vb). Letzterer wurde in seiner Bedeutung für ostmitteleuropäische Starkniederschläge namengebend für derartige Entwicklungen, da er auch bei Tiefdruckgebieten auftreten kann, die sich erst durch regionale Zyklogenese im Lee der Alpen bilden ("Genua-Zyklonen"). Im August 2002 war jedoch sogar eine Variante des ersten Teils der klassischen Zugstraße V realisiert (Fig. 3). Heute orientiert man sich jedoch eher an großskaligen Zirkulationsmustern oder Großwetterlagen, wobei Vb-artige Konstellationen meist unter die zyklonalen Süd- bis Südostlagen fal-Ien (ENDLICHER 2000, S. 43f.).

Nach FLOHN (1954, S. 84) liegen die Auftrittsmaxima von Vb-Lagen

in den Übergangsjahreszeiten, im Sommer stellen sie eine seltene Anomalie dar. Gleichwohl gibt Malberg (1997, S. 177f.) ein weiteres Beispiel aus dem August 1983, und auch das schwere Oderhochwasser im Juli 1997 entstand im Gefolge einer Vb-artigen Zirkulationsdynamik. Dies lenkt den Blick vom Einzelfall auf längerfristige Gegebenheiten.

Langfristige Einordnung

Die mit dem Hochwasserereignis assoziierten Luftdruckanomalien schlagen sich auch im Monatsmittel des SLP- (sea level pressure) Feldes nieder und ermöglichen damit eine langfristige Einordnung dieser Anomalie auf monatlicher Zeitskala. So sind in Figur 4 deutlich die Tiefdruckanomalien im zentral-nördlichen Mittelmeerraum sowie in abgeschwächter Form die negativen Abweichungen entlang der Vb-Zyklonenzugbahn zu erkennen. Zusammen mit der Hochdruckanomalie über dem nördlichen Europa entspricht diese Luftdruckverteilung annähernd dem positiven Modus eines grundlegenden Zirkulationsmusters, das in maximaler kanonischer Korrelation mit dem wichtigsten sommerlichen Niederschlagsverteilungsmuster im Mittelmeerraum verbunden ist (DÜNKELOH & JACOBEIT 2003). Gibt es also langfristig einen Zusammenhang zwischen anomaler sommerlicher Tiefdrucktätigkeit im nördlichen Mittelmeerraum und Hochwasserereignissen im östlichen Mitteleuropa?

Anhand objektiv rekonstruierter SLP-Felder, die in monatlicher Auflösung bis in das Jahr 1659 zurückreichen (LUTERBACHER et al. 2002), lässt sich feststellen, dass die Luftdruckanomalie im nördlichen Mittelmeerraum im August 2002 zwar ein bemerkenswertes, jedoch durchaus kein außergewöhnliches Phänomen darstellt und sich eindeutig im Rahmen der natürlichen Variabilität bewegt. Ausschlaggebend für die Hochwasserentwicklung im August 2002 waren zusätzlich der umfangreiche Feuchtigkeitstransport aus dem nördlichen Mittelmeerraum sowie die relativ langsame Verlagerungsgeschwindigkeit der Vb-Zyklonen. Derartige Vorgänge lassen sich im Detail jedoch erst bei einer höheren zeitlichen Auflösung (mindestens tägliche Zeitskala wie in Fig. 3) nachvollziehen. Dabei kommt der objektiven Rekonstruktion täglicher Bodenluftdruckfelder große Bedeutung zu, wie sie im Rahmen des EU-Projekts EMULATE (European and North Atlantic daily to multidecadal climate variability; www.cru.uea.ac. uk/cru/projects/emulate) zurück bis zum Jahr 1850 verfolgt wird. Auf der Basis langfristig abgesicherter, täglich aufgelöster Zirkulationsmuster-Sequenzen eröffnen sich unter Hinzuziehung von Klimamodellsimulationen dann auch Abschätzungsmöglichkeiten der künftigen Entwicklung zirkulationsdynamisch ausgelöster Hochwasserereignisse.

Literatur

Bebber, W. J. van (1891): Die Zugstraßen der barometrischen Minima. Meteor. Z., **8**: 361–366.

DÜNKELOH, A., & J. JACOBEIT (2003): Circulation Dynamics of Mediterranean Precipitation Variability 1948–1998. Int. J. Climatol. [im Druck].

ENDLICHER, W. (2000): Europa. In: Weischer, W., & W. ENDLICHER [Hrsg.]: Re-

gionale Klimatologie. Teil 2. Stuttgart/Leipzig: 23-152.

FLOHN, H. (1954): Witterung und Klima in Mitteleuropa. Forsch. Dt. Landeskunde, 78.

LUTERBACHER, J., et al. (2002): Reconstruction of Sea Level Pressure fields over the Eastern North Atlantic and Europe back to 1500. Climate Dynamics, **18**: 545-561.

MALBERG, H. (1997): Meteorologie und Klimatologie. Berlin/Heidelberg/New York.

Andreas Philipp & Jucundus Jacobeit (Würzburg)