
Model-Based Testing for
Self-Organization

Mechanisms

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Benedikt Eberhardinger

an der

Corporate Design
Richtlinien

Fakultät für Angewandte Informatik

am
14. September 2018

Erstgutachter: Prof. Dr. Wolfgang Reif
Zweitgutachter: Prof. Dr. Bernhard Bauer
Drittgutachter: Prof. Dr. Franz Wotawa (Technische Universität Graz, Österreich)

Tag der mündlichen Prüfung: 3. Dezember 2018

For my beloved wife and daughter.

Acknowledgements

This thesis would not have been possible without the tremendous support from di�erent
sides. I would like to take this opportunity to thank all the people who supported me
during the time from the very beginning until the completion of this thesis.
First, I would like to express my appreciation and thanks to my advisor Professor Dr.
Wolfgang Reif who granted me his con�dence and gave me the opportunity to carry out
my research at his institute. He gave me the freedom to go into new directions but still
kept me from drifting o�. I would like to thank him for the many advises, the numerous
creative discussions that all have contributed to this thesis.
Further, I would like to thank Professor Dr. Bernhard Bauer and Professor Dr. Franz
Wotawa for declaring themself ready to comply with being my secondary and third
assessors for this thesis.
A lot of the results that formed this thesis have been a result of intense cooperation
with my great colleagues and dear friends from the Institute for Software & Systems
Engineering. I would like to thank all of them for their countless comments at our
seminars and for all the fruitful collaborations and discussions. Special thanks are
dedicated to my colleges Dr. Hella Ponsar, Dr. Axel Habermaier, André Reichstaller,
Professor Dr. Alexander Knapp, Dr. Alexander Schiendorfer, Professor Dr. Jan-Philipp
Steghöfer, Dr. Gerrit Anders, and Dr. Florian Siefert for the successful and exciting
collaboration in our joint projects. Further, I like to thank Dominik Klumpp and Gerald
Siegert for their collaboration in the context of their bachelor thesis, master thesis, and
their work as research assistants at our institute, whereby they supported my research
in many regards.
For the intensive and mindful feedback on this thesis, I gratefully thank Dr. Hella Ponsar,
Dr. Andreas Angerer, Dr. Axel Habermaier, Dr. Alexander Schiendorfer, and Professor
Dr. Alexander Knapp,. With their comments and advice, I was able to put the �nishing
touches on this thesis.
On a �nal note, I like to thank my family and friends that supported me during this
thesis and beyond. They always took o� the load from me when necessary and helped
me by believing in my success. Foremost, I like to thank my wife Clarissa who always
lend me her support, kept up my motivation, and sustained me in situations where it
was most needed. Thank you for your patience and con�dence in me. Without your
support, I would not have been able to complete this thesis.

Benedikt Eberhardinger

v

Abstract

A complex system is a system composed of many di�erent (often heterogeneous) com-
ponents that interact with each other. These complex systems become more ubiquitous,
e.g., in cloud computing, the internet of things, or industry 4.0. Self-Organization (SO)
is o�ering new �exibility that can organize this complexity: Self-Organization enables a
restructuring of a system and its components at run time in order to conform to the
system’s dynamic and ever-changing environment and to ful�ll its goals without human
intervention. The complexity of the system arises either from the lack of knowledge at
design time or the hardly predictable operational conditions of the systems at run time.
However, the newly gained �exibility through the introduction of SO comes at a price:
the design and implementation of SO mechanisms are a demanding engineering task.
Whereas there is much research in the design and implementation of SO mechanisms,
there is a lack of adequate testing techniques. This thesis narrows the gap by providing
a Model-Based Testing (MBT) approach for SO mechanisms.
Six signi�cant contributions constitute the approach: Revealing failures—the intent of
testing—demands a de�nition of the correct and the incorrect behavior of the investigated
System under Test (SuT). In general, the correct behavior of an SuT is speci�ed, and any
deviation is not intended. Judging about failures is di�cult in SO systems which might
recover from a situation where the speci�cation is only temporarily not ful�lled. This
thesis thus o�ers a new notion of failure for SO mechanisms that copes with the speci�c
behavior of SO mechanisms. Self-Organization mechanisms are highly interwoven with
the controlled system and its environment. This characteristic makes it di�cult to control
and observe the during testing. With the architectural pattern of the Corridor Enforcing
Infrastructure (CEI), this thesis o�ers a generic approach for making SO mechanisms

testable. Further, we show that a broad class of SO systems is testable within this
approach. Moreover, the concepts of the CEI allow for systematically decomposed and

assembled SO mechanisms for isolated and integrated testing.
The resulting test architecture, presented in this thesis, includes all these contributions
and o�ers a complete test sca�old. Within this sca�old, an MBT approach for SO
mechanisms is provided. This approach is suited for SO mechanisms by extending MBT

with a so-called models at run time approach that allows for closing the feedback loop

of MBT. Thus, it is possible to use the feedback of the Self-Organization Mechanism
under Test (SOuT) during execution in the test model. This knowledge is exploited
in a fault-based and a probabilistic model for test case generation. Within this model,
we can apply a suitable search-based test generation approach for e�cient testing of SO

mechanisms. Thus, we can exploit unique characteristics of SO mechanisms to speed
up failure detection by up to 500 times. Testing the functional requirements of an SO
mechanisms is the focus of this thesis. However, we are also able to show the ability of
the presented MBT approach to investigate the performance of SO mechanisms.
In order to demonstrate the capabilities of the presented approach, it is evaluated on
�ve di�erent case studies incorporating di�erent kinds of SO mechanisms that originate
from di�erent companies, institutions, and researchers.

vii

Contents

1 Overview and Motivation 1
1.1 Key Challenges in Testing Self-Organization Mechanisms 2
1.2 Model-Based Testing for Self-Organization Mechanisms 5
1.3 Main Contributions and Thesis Outline 7

2 Case Studies 11
2.1 Case Studies with Continuous Self-Organization Mechanisms 12

2.1.1 Decentralized Power Management 12
2.1.2 Self-Adaptive Apache Hadoop Manager 15

2.2 Case Studies with Discrete Self-Organization Mechanisms 17
2.2.1 Self-Organization Production Cell 17
2.2.2 Self-Organized Personalized Medicine Pill Production System . 20
2.2.3 Self-Adaptive Webservice System: ZNN.com 22

3 Speci�cation of Functional Behavior of Self-OrganizationMechanisms
and Derivation of an Automated Test Oracle 25
3.1 Related Work . 27

3.1.1 Speci�cation of Self-Organizing, Adaptive System (SOAS) . . . 27
3.1.2 Deriving Automated Test Oracles 28
3.1.3 Runtime Veri�cation . 29

3.2 The Corridor of Correct Behavior—Speci�cation of Self-Organizing Be-
havior . 30
3.2.1 The Restore Invariant Approach—Descirbing the Corridor of

Correct Behavior . 30
3.2.2 Application of the Restore Invariant Approach (RIA) to Software

Testing . 31
3.3 Goal-oriented Modeling of Functional Behavior with KAOS 32

3.3.1 The KAOS Methodology . 32
3.3.2 RELAX Goals for Introducing SO as Adaptation 33

3.4 Deriving the Test Oracle from the KAOS Model 35
3.4.1 Process for Generating an Automated Test Oracle 36
3.4.2 Implementation of Transforming Requirement and Constraints

to a Monitor Model . 37
3.4.3 Implementation of the Transformation for the Monitor Model

to an Oracle . 39

4 A Testable Architecture for Implementing Self-Organization Mecha-
nisms 43
4.1 Related Work . 45
4.2 The Corridor Enforcing Infrastructure: An Architectural Pattern for

Self-Organizing, Adaptive Systems . 46

ix

4.3 Failure De�nition and Categorization of Self-Organization Mechanisms 48
4.3.1 Weaker Notion of Correctness for Self-Organization Mecha-

nisms: De�nition of Failure . 48
4.3.2 Boundaries of Self-Organization: Tolerable and Intolerable En-

vironmental Faults . 50
4.4 Prerequisites and Bene�ts for Testing Based on the Corridor Enforcing

Infrastructure . 51
4.4.1 Gain for Testing Based on the Corridor Enforcing Infrastructure 52
4.4.2 Realizations of the Concepts of the Corridor Enforcing Infras-

tructure: Application Cases . 52

5 Isolating and Integrating Self-Organization Mechanisms for Testing 55
5.1 Related Work . 57
5.2 Disassemble and Isolate Self-Organization Mechanisms 59
5.3 Reassemble Self-Organization Mechanisms 61
5.4 Test Architecture for Isolated Testing of Self-Organization Mechanisms 62

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-
Organization Mechanisms 67
6.1 Related Work . 69

6.1.1 Run Time and Design Time Approaches for Testing Adaptive
Systems . 70

6.1.2 Model-Based Testing . 71
6.1.3 Back-to-Back Testing . 73

6.2 Closing the Loop of Model-Based Testing 73
6.2.1 Feedback in Model-Based Testing 75
6.2.2 Concept of Run Time Models 77
6.2.3 Model Re�ection for Re�ecting Changes in the System under Test 78

6.3 Probabilistic Models for a Continuous Self-Organization Mechanism . . 79
6.3.1 System Model . 79
6.3.2 Environment and Test Model 81

6.4 Fault-based Testing Models for Discrete Self-Organization Mechanisms 85
6.4.1 The System Model for Discrete Self-Organization Mechanism . 86
6.4.2 The Environment and Test Model for Discrete Self-Organization

Mechanisms . 86
6.4.3 Designing Test Models with Environment Faults 88

6.5 Back-to-Back Testing of Test Model and Implementation 90
6.5.1 Using Executable Run Time Models for Back-to-Back Testing . 91
6.5.2 The Special Case of Back-to-Back Testing Self-Organization

Mechanisms . 91
6.6 Evaluation . 92

6.6.1 Production Cell—Testing an Integrated, Discrete Self-Organization
Mechanisms in a Back-to-Back Test Setting 94

6.6.2 Energy Grid—Testing a Disassembled, Continuous Self-Organization
Mechanism . 103

x

6.6.3 Load-Balancing Web-Service—Evaluating the Test Approach in
a Controlled Experiment . 117

6.6.4 Pill Production—Investigating Reusability and Generalizability
of the Test Model in Resource-Flow Systems 121

6.6.5 Apache Hadoop—Testing an Industrial Case Study in Full Inte-
gration . 123

7 Test Case Generation for Flat-Branching Test Problems 133
7.1 Related Work . 135

7.1.1 Search-Based Test Case Generation 135
7.1.2 Adaptive Test Automation . 136

7.2 Boundaries of Self-Organization Mechanisms: A Boundary-Interior Test
Case Generation Approach . 136
7.2.1 Boundary Interior Test Case Generation for SO Mechanisms via

Search-Based Testing . 138
7.2.2 Heuristic-Based Selection Strategy for Automated Online Test

Case Selection and Reduction 139
7.3 Adaptive Test Cases to Enable Reasoning During Test Execution 140

7.3.1 Annotating the Purpose a Test Case for Enabling Self-Re�ection 141
7.3.2 Outlook: Planning Optimal Rule Instantiations by Optimizing

Diversity of the Test Cases . 143
7.4 Evaluation . 144

7.4.1 Production Cell—Boundary-Interior Test Case Generation . . . 144
7.4.2 Load-Balancing Web-Service—Adaptive Test Case Execution . . 148

8 Performance Testing for Self-Organization Mechanisms 151
8.1 Related Work . 152

8.1.1 Metrics for Adaptation Mechanisms 153
8.1.2 Metrics for SO Mechanisms . 159

8.2 Requirements for Performance Metrics for SO Mechanisms 159
8.3 A Distributed Performance Metric for SO Systems 160

8.3.1 Time Performance of SO Mechanisms 160
8.3.2 Quality Performance of SO Mechanisms 161

8.4 Performance Evaluation Framework . 162
8.4.1 Generating Unbiased Evaluation Runs 163
8.4.2 Modeling the Environment for Evaluating the Performance of

SO Mechanisms . 164
8.4.3 Integrating the Evaluation Sequence Selection in the Evaluation

Framework . 165
8.5 Evaluation . 166

8.5.1 Production Cell . 166
8.5.2 Energy Grid . 170

9 Conclusion and Outlook 173
9.1 Summary of Research Contributions and Evaluation Results 173

xi

9.2 Open Research Challenges and Future Directions 176

Bibliography 179

xii

1
Overview and Motivation

For many years, nature has been a source of inspiration for the development and design
of software systems. The examples range from optimization, predictive modeling, multi-
agent systems, to self-organizing systems. The aim is to learn from biological systems
how to cope with complex situations and problems by imitating their behavior, structure,
and concepts of mechanics. For instance, it is possible to solve an optimization problem
by the concepts of genetic selection: the feasible solutions are depicted as genomes
and by recombining and evaluating generations an optimal individual is selected [82].
Another problem to be solved analogously to nature is addressed by Self-Organizing,
Adaptive System (SOAS): the complexity of managing large-scale systems is handled by
adapting the system’s parametrization or even structure with simple local rules. The
local rules are executed autonomously by the system itself to adapt to a newly arising
situation. Adaption concerns the change of the system’s parameterization whereas
Self-Organization (SO) changes the system’s structure itself. The imitated SO behavior
is observed at the folding of proteins, the �ocking behavior in birds and �sh [28], or even
in society [85]. Ashby [11] �rst discussed the application of SO concepts in software
(or more generally in a machine). An SO mechanism, in a software system, is the
inherent part of the system that enables it to induce the change of the organization
resp. structure of the entire system or parts of the system during its execution, i.e.,
at run time. Serugendo et al. [146] are di�erentiating between strong and weak SO,
where strong means the SO mechanism is not centralized and weak SO implies a
central SO mechanism. Self-Organization is designed to cope with an ever-changing
environment. The dynamic arises from the lack of knowledge or just from the hard
to predict operational situations of the system at run time. This uncertainty is often
a consequence of complex systems, i.e., a system composed of many di�erent (often
heterogeneous) components that interact with each other. These complex systems are
becoming ubiquitous, e.g., in cloud computing, the internet of things, industry 4.0, or big
data. Self-Organization strives to o�er new �exibility, that can handle the complexity,
inspired by nature.
However, this new �exibility comes at a price: the design and implementation of an SO
mechanism that is reliable1 is a demanding engineering task. The primary objective of
engineering software, according to Mills [103], is “the production of programs that meet

speci�cations”. The task can be split into two major task: (1) the systematic development
and implementation of the SO mechanisms and (2) the systematic assurance that the

1We follow the reliability de�nition by Naresky [112], that is speci�ed as follows: “The ability of an item

to perform a required function under stated conditions for a stated period of time.’

1

1 Overview and Motivation

developed program meets its speci�cation. Engineering SO mechanisms is challenging
by nature: A SOAS uses SO in order to handle dynamic conditions by adapting the
system’s organization at run time, allowing for handling an uncertain and ever-changing
environment. The dynamic, however, implies underspeci�cation at design time, i.e., the
system’s behavior is not fully speci�ed as not all possible situations are foreseeable at
design time. This challenges software engineering in its fundamentals. These challenges
have been identi�ed in the research community [40, 146]: di�erent communities2 have
been established that focus on investigating the development and implementation
of SO mechanisms. However, less e�ort has been put into the veri�cation task: the
assurance that the developed program meets its speci�cation. Indeed, veri�cation is
needed to engineer reliable SO mechanisms thoroughly. Thus, there is a gap between
the advancements made in the development and implementation of SO mechanisms
and the advancements made so far for the veri�cation of SO mechanisms. This thesis is
narrowing the gap by contributing to the state of the art in software engineering for SO
mechanisms with an Model-Based Testing (MBT) approach.

1.1 Key Challenges in Testing Self-Organization Mechanisms

Testing is the e�ort of executing programs with the intention of revealing failures3 [108].
For this purpose, the program is challenged by test cases, containing speci�c inputs,
execution instructions, as well as expected outputs, amongst others. Thus, it is possible to
compare the actual output with an expected output of every test case after it is executed.
Revealing a failure is achieved if both outputs di�er. In an idealistic case, all failures are
revealed—and their causing fault is removed—before releasing the software. For this
purpose, every possible test case for the SuT has to be generated (either manually or
automated) as well as executed and evaluated; this is called exhaustive testing. However,
this e�ort is infeasible for large-scale programs [121]. In order to mitigate that problem,
only a subset of all possible test cases is executed on the SuT. The subset selection
is problematic since is not always easy to determine which test cases to select. The
test cases that should be picked are the ones that are able to reveal the failures of
the SuT. However, this selection criterion is only possible to be evaluated, if the test
case has been already executed. Di�erent theories [170, 177] have investigated that
problem. Most approaches in practice accept a speci�c inaccuracy, in an optimistic
sense [121]. The inaccuracy is applied by only executing test cases that follow a certain
adequacy criterion, that might or might not cover any possible failure. Nevertheless,
if the adequacy criterion is achieved, the SuT is optimistically assumed as thoroughly

2The most important communities that share the investigations of SOAS are, according to Google Scholar
h5-index and h5-median rating, meeting at the following annual conferences with SOAS as a central
theme: the International Symposium on Software Engineering for Adaptive and Self-Managing Systems

and the IEEE International Conference on Self-Adaptive and Self-Organizing Systems together with
numerous workshops and journals, e.g., the ACM Transactions on Autonomous and Adaptive Systems.

3This thesis is following the common de�nition of error, fault, and failure, as proposed by Naik and
Tripathy [111] and the IEEE standard 610.12-1990 [77]: The situation where the speci�ed behavior is
not corresponding to the actual behavior is called a failure. This failure is caused by an error, that is a
state in the System under Test (SuT) which might lead to failure. An error is caused by a fault, e.g., a
human programming fault.

2

1.1 Key Challenges in Testing Self-Organization Mechanisms

tested. The adequacy criterion de�nes the thoroughness of the test suite, the collection
of all test cases, according to di�erent test requirements, e.g., code coverage. Thus, one
key challenge in software testing is the generation of adequate test cases for the
test suite.

Indeed, the compiled test suite needs to be executed and evaluated in order to reveal
failures. For this purpose, a test sca�old is needed. A test sca�old is the execution
environment that is composed of test driver and test stubs. A test driver enables
to provide the input, as speci�ed in the test cases, to the SuT and the test stub is
substituting the demanded components of the SuT that are not present. Designing and
implementing the test sca�old is a further key challenge in software testing.

Once a test suite has been executed, all test cases need to be evaluated, i.e., a judgement
is needed, whether a failure has occurred during or after the execution of any test case.
A test case can be evaluated right after its execution using the current state of the SuT.
Further, all test cases can be evaluated at once after the execution of the complete test
suite, based on the logs. There are di�erent ways for carrying out the evaluation, but in
all cases, a ground truth needs to be given. The ground truth provides the information
of the expected outcome of a test case. The provision of this ground truth is referred to
as a test oracle. The oracle might be provided for every test case separately, i.e., along
with the generation of the test case, an expected outcome is generated. Alternatively, an
automated oracle is provided, i.e., a program that returns an expected value for given
input, that is often referred to as a “gold standard”. The automated test oracle eases
the task of automated test case generation and increases the overall quality of the test
process, but is demanding to be supplied. An automated test oracle allows for only test
input generation, i.e., no expected output is given in a test case, since the evaluation
is carried out by the oracle. Further, an automated oracle is less prone to errors as a
manual oracle [13], thus, increases the test process quality. The provision of the test
oracle a key challenge in testing.

These three presented key challenges need to be addressed in every testing endeavor.

The properties of the SO mechanisms like inherent non-deterministic behavior, an ever-

changing environment, a high number of interacting components, and interleaving oper-

ations make it hard to achieve a systematic testing approach for SO mechanisms that is
coping with these challenges. The key to success is automation since it is rarely possible
to cope with the high number of demanded test cases (that are necessary as a result
of the vast state space) manually. However, the automation of testing SO mechanisms
is faced by the complexity of the system class requiring techniques to cope with the
following additional key challenges, speci�c for SO mechanisms:

Error Masking SO mechanisms—and in general SOAS—are designed to be robust
and �exible under ever-changing environmental conditions. As a side-e�ect of these
properties, an SO mechanism itself, other SO mechanisms, or adaptation mechanisms
might cover the tracks of possible failures that should be revealed while testing the SO
mechanisms. Thus, the incorrect behavior of one SO mechanism could be compensated
by another mechanism masking the failure.

3

1 Overview and Motivation

For instance, assume an erroneous SO mechanism that returns wrong or inappropriate
system structures as a result to the controlled components. This fault then could be
masked by an adaptation mechanism of the components that compensates the wrong
system structure by a high and costly amount of adaptation. The SO mechanism would
encompass a fault, but no failure is visible at �rst glance since the adaptation mechanism
masks it by keeping the system alive.

Isolate SO mechanisms are based on interaction with the system’s components. In
the majority of cases, several di�erent SO mechanisms are incorporated; their overlap
of interaction with the components leads to so-called interleaved feedback loops [159].
These are challenging in testing because it is hard to get dedicated results for a single
SO mechanism. In order to address this challenge, there is a need for isolated testing of
single SO mechanisms.
As an example of this challenge, assume an SO mechanism that forms organizational
structures, e.g., by partitioning the system’s components. A further mechanism, however,
performs its calculations for parametrization of the components based on this structure,
e.g., for forming an evenly distributed share of workload for each partition. These two
mechanisms are interleaved, and a dedicated test result for the mechanism performing
its calculation on the structure is only possible if they are isolated, since the results
depend on the results of the �rst and vice versa. However, this isolation is hard to
achieve due to the high dependencies between the two mechanisms.

Test Oracle The oracle problem is a well-known challenge for all testing endeavors [17,
121]. However, the properties of SO mechanisms increase this problem: For classical
testing, the conditions of execution for the SuT, as well as the particular requirements, are
known. Let us call these facts the “known-knowns”.4 For Self-Organization Mechanism
under Test (SOuT) we know that there are unknown conditions of execution where we
can hardly decide a priori, i.e., at design time, whether which transition from one state
to another is correct or not; we call these conditions the “known-unknowns”. Moreover,
for the SOuT there might even be situations we are not aware of at all, which we call
the “unknown-unknowns”. An oracle that is capable of evaluating the test results of an
SO mechanism at least has to be able to handle the “known-unknowns”.
For an instance of “known-unknowns” consider a smart energy grid setting where
di�erent power plants are self-organized in di�erent so-called autonomous virtual
power plants. If weather-dependent power plants are included, the SO will depend on
the weather conditions. We know that there are di�erent conditions like sunny, rainy,
windy, etc., but we also know that we do not know all di�erent possible combinations
with the correct organizational structures at design time of the test (or at least we cannot
compute all). However, an oracle has to cope with that and has to decide whether a
result is accepted as correct or rejected as incorrect.

Branching State Space A vast state space is a common challenge for software test-
ing [17], but, as for the oracle problem, SO mechanisms add a further dimension. Most

4The classi�cation of known-knowns, known-unknowns, and unknown-unknowns is borrowed from
United States Secretary of Defense Donald Rumsfeld’s response given to a question at a U.S. Department
of Defense news brie�ng on February 12, 2002.

4

1.2 Model-Based Testing for Self-Organization Mechanisms

of the approaches in software testing that are coping with a huge state space make use
of the structure of the state space in order to reduce the number of test cases needed
to be executed. For instance, an in�nite loop in a code fragment means an in�nite
state space, but its rami�cation degree is rather small. A mechanism applied here is
boundary-interior-testing [121] that cuts deep branches at speci�c lengths. SO mech-
anisms, however, are mostly based on heuristics for coping with the ever-changing
environment, making the result non-deterministic; this leads to a wide and a rather
�at-branching structure of the state space, making the most of the classical techniques
hardly applicable.

1.2 Model-Based Testing for Self-Organization Mechanisms

Addressing the challenges for testing SO mechanisms starts with a new notion of a
failure. This new notion is needed due to the underspeci�cation of SO mechanisms.
Self-Organization mechanisms’ behavior is not entirely speci�ed in order to allow for
adaptation and SO at run time. Nevertheless, for testing we at least need to distinguish
a situation as correct and not correct; this is possible due to the Corridor of Correct
Behavior (CCB) approach [70]. The CCB is constraining the state space of the system
that is under the control of the SO mechanism; it de�nes correct states and incorrect
states. A SOAS is allowed to be in an incorrect state, but the SO mechanism has to
identify this situation and recon�gure the system (if possible) so that a correct state
is reached. For instance, a task allocation to robots is correct if all robots are capable
of executing their assigned task and it is incorrect if a necessary tool is broken. The
CCB does not specify the correct transitions between the states, but only describes the
acceptable states in the form of a corridor. In this thesis, the CCB is used for supplying
a notion of failure for SO mechanisms as well as making SO mechanisms testable.
Testability is a property that is due to an architecture of a system. Most of the engineered
SO mechanisms are equipped with an architecture that is built upon feedback loops [22].
The Corridor Enforcing Infrastructure (CEI) is a pattern for SO mechanisms that is
explicitly describing this architecture and provides testability. We will further show that
an implicit CEI, i.e., a feedback-loop-oriented SO mechanism, is also testable on that basis
if the test engineer can identify the detection, computation, and distribution component
of an SO mechanism. As discussed by Brun et al. [22], this feedback-loop-oriented
design of SO mechanisms is a wide-spread realization of SO.
The phases of SO in the CEI are detection, computation, and distribution. Based on
these phases, it is possible to disassemble and isolate the SO mechanism. Isolation is
not only a matter of handling the test problem by the divide-and-conquer principle, it
also addresses the fact, which the full integration masks errors in the integrated SO
mechanism. The CEI pattern is here again the foundation for isolation and also for
integration of the SO mechanism. However, the fact that the CEI does not need to be
explicitly implemented by the SO mechanism, as long as the SO mechanism is based on
a feedback-loop-like design.
The MBT concept–which is a well-established approach for testing complex system [17,
21, 68, 126, 162]—is central for the presented approach for testing SO mechanisms.

5

1 Overview and Motivation

Model-Based Testing is based on the idea of making the implicit knowledge of the test
engineer(s) (concerning the SuT and its intended behavior) explicit [17, 108]. Thus, MBT
is structuring a test approach and its activities, which is allowing for automation of
testing activities. These activities encompass, in this thesis, test case generation, test
cases execution, and test case evaluation. Indeed, this is a complex task resulting from
the complex SuT, as described in the challenges above. The MBT approach allows for
abstraction, enabling to handle this complexity. We will demonstrate how abstraction
allows for describing the SOAS, its environment, the SO mechanism as well as all
interdependencies between them. The model is used as a source of information provided
by the test engineer that is used, amongst other things, for test automation. However,
for SO mechanisms, not all information can be provided at design time. This lack
of information is mainly due to the complexity of the system and its environment,
that is handled by abstraction. However, also due to the inherent non-determinism of
the SO mechanism itself. The information by the test engineer at design time needs
consequently be completed by information from the run time of the test to allow for
testing SO mechanisms. However, nowadays MBT are directed one-way: from the
requirements to the completed test project. This approach is insu�cient for testing SO
mechanisms. In this thesis, MBT is extended by introducing feedback for establishing
closed-loop MBT. This is enabled by the concept of executable run time models. These
models are capable of changing their information content, i.e., their structure and their
instances, by re�ecting changes of the subject that is described in the model. By bringing
this capability into MBT, it is possible to handle the run time behavior of SO mechanisms.
A further aspect that is exploited is the ability to execute the models, that are used
for generating test inputs by simply executing every part of the model that is used as
a stub and bringing the data to the driver. Thus, it is possible to use all information
of the model and generate test cases. Decisive for the quality of the testing process
is the quality of the test model. This di�cult engineering task is supported by the
Back-to-Back (BtB) testing approach that is developed in this thesis. Here, a test and a
development engineer are developing the test model as well as the implementation of
the SO mechanism back-to-back and use both for testing. This process is carried out in
an early development stage to assure a correct interpretation of the requirements.

We will use �ve di�erent case studies to evaluate the concepts and methods. The
evaluation contains systems with an implicit as well as an explicit CEI. We will show
that in both cases, testing is enabled by the CEI’s concepts. The abilities of the MBT
approach of revealing failures, real ones as well as injected ones, are demonstrated in
these di�erent case studies. Further, the test case generation concepts are extended by a
search-bases approach. The approach can handle the �at-branching test problem of SO
mechanism. Flat-branching is a result of the multiple di�erent possible states that are
available for a SOAS as well as the multiple decisions options of the SO, making the state
space �at-branching instead of deep-branching. This di�erent state space made the new
test case generation concepts in this thesis necessary. The evaluation will show that a
speed-up of revealing failures compared to random testing up to facto 500 is possible to
achieve.

6

1.3 Main Contributions and Thesis Outline

Besides testing functional requirements, the MBT approach presented in this thesis
allows further for testing non-functional aspects as well. We will discuss the performance
of the SO mechanism and will show how it is possible to do this in an MBT fashion.

1.3 Main Contributions and Thesis Outline

Testing SO mechanisms is challenging due to error masking, isolation, and integration
of highly interwoven mechanics, the unde�ned notion of a failure, and the branching
state space. Indeed, testing also demands for adequate test suite generation methods,
and suitable test sca�old, and the provision of a test oracle for the speci�c test problem.
The contribution of this thesis is addressing all these challenges for SO mechanisms
within nine chapters. Figure 1.1 shows the structure of the presentation of the thesis.
The contributions, as well as the structure of this thesis, are outlined in order to guide
through this thesis. The thesis covers �ve di�erent case studies, that are introduced
in Chapter 2. The case studies are used throughout the thesis for exemplifying the
presented approaches. Further, each case study is implemented and available for testing.
In the evaluation, these implementations are used to demonstrate the capabilities of
the made approaches. Each case study uses di�erent SO mechanisms that have been
proposed by di�erent authors and institutions resp. industries. The contributions made
throughout this thesis are clustered into following six parts, which show the key �ndings
made, which have already been published in 28 peer-reviewed scienti�c publications
that have been co-authored by the author of this thesis.

Establishing a Notion of Failure for Self-Organization Mechanisms

Self-Organization mechanisms can restore the SOAS from a situation where it is no
longer able to ful�ll its duties by recon�guring and adapting the structure of the system.
Judging a failure is di�cult if the system might be able to recover from a situation where
temporarily the speci�cation is not ful�lled (what quali�es as a failure from the known
notion [108]). This thesis o�ers a new notion of failure for SO mechanisms, that is
coping with the speci�c behavior of SO mechanisms. This contribution is described in
Chapter 3 and is used for the next chapters as an input.

Establishing Testability for Self-Organization Mechanisms

Self-Organization mechanisms are highly interwoven with the controlled system and its
environment. This characteristic makes it di�cult to control and observe the behavior
of SO mechanisms, what is known as testability. With the architectural pattern of the
CEI, this thesis o�ers a generic approach for making SO mechanisms testable. The
SO mechanisms are controllable by having de�ned phases of SO (in a feedback-loop-
oriented process) and de�ned interfaces. These are also allowing for observability.
Chapter 5 is presenting a testable architecture for SO mechanisms, the CEI. Further, it is
shown which system class of SO mechanisms can be tested on that basis. We, therefore,
distinguish whether the CEI is implemented explicitly or implicitly. Both can bene�t
from the approach. The implicit implementation is wide-spread in the design of SO
mechanisms.

7

1 Overview and Motivation

Chapter 2: Case Studies

Chapter 6: Closed-Loop Model-Based
Testing for SO Mechanisms

Chapter 4: A Testable
Architecture for SO

Mechanisms: The CEI

Chapter 5: Isolation and
Integration of SO

Mechanisms for Testing

Chapter 3: Specification of
SO Mechanisms and Deriving
an Automated Test Oracle

Chapter 7: Test Case
Generation for Flat-

Branching Test Problems

Chapter 8: Performance
Testing for SO Mechanisms

Chapter 1: Introduction

Chapter 9: Conclusion & Outlook

Figure 1.1. This thesis is structured in the shown nine chapters. At the beginning the topic is
motivated and introduced. Afterwards, �ve di�erent case studies are explained that are used
throughout the thesis for exemplifying the presented approaches and their evaluation. The
foundation for testing is the speci�cation, presented in Chapter 3. The content is delivering
input for the following chapters (Chapters 4 to 6). The main contribution is enabling MBT,
described in Chapter 6. As conceptual input, Chapters 4 and 5 are delivering the foundation for
testability, isolation, and integration of SO mechanisms. In Chapters 7 and 8, the MBT approach
is completed by search-based test case generation concepts and a performance testing approach.

8

1.3 Main Contributions and Thesis Outline

Enabling to Isolate and Integrate Self-Organization Mechanisms for Systematic Testing

The CEI also enables to isolate and integrate SO mechanisms. This thesis shows how SO
mechanisms are systematically decomposed and assembled for isolated and integrated
testing. The contribution is set into a test architecture in Chapter 5, o�ering a complete
test sca�old for SO mechanisms.

Establishing a Closed-Loop Model-Based Testing Approach Suited for Testing
Self-Organization Mechanisms

The realization of the test architecture is done within Chapter 6 in an MBT approach,
that is designed and suited for SO mechanisms. The characteristics of SO mechanisms
make it necessary to cope with the adaptive behavior at run time. For this purpose,
this thesis o�ers an extension of the known MBT approach by implementing feedback
loop and using so-called run time models to re�ect the SuT and its environment and
enabling to incorporate the current state of the SuT into the test model. Within the
MBT approach, two di�erent kinds of SO mechanisms, namely, continuous and discrete
ones, are addressed with a suitable modeling approach. The contribution includes a
probabilistic and a fault-based test model. The evolution showed the capabilities of the
modeling approach for revealing failures.

Establishing a Search-Based Test Case Generation Approach for Efficient Testing of
Self-Organization Mechanisms

A search-based test case generation approach is presented in Chapter 7 to complement
the MBT approach by an e�cient way of generating test cases. The contribution enabled
to reveal the same kind of failures up to 500 times faster than in a random testing
approach.

Extending the Model-Based Testing approach for testing the performance of
Self-Organization mechanisms

The MBT approach for testing is able to cope with functional tests, but also o�ers the
ability to test non-functional aspects. In Chapter 8 an approach for measuring and
testing the performance of SO mechanisms is presented. This contribution includes
a de�nition of performance for SO mechanisms as well as a complete approach for
automated testing of this performance indicators.

9

Summary. Five SOASs from a range of application domains are introduced in
this chapter. They serve as case studies for the remainder of this thesis and are
used for the evaluation of the approaches proposed in this thesis. The presented
SOASs are categorized by the form of SO that is performed in the system. We use
the environment of the SO mechanism for that categorization. Either continuous
environmental properties or discrete ones are determining the environment of an
SO mechanism; that leads to different requirements for SO mechanisms. Thus, we
differentiate between continuous and discrete SO mechanisms. Each case study is
an implemented system ranging from research prototypes to a large open source
system widely used in industry. We discuss for every case study the application
case of SO, the challenges for testing, and the implementation details. The case
studies have been described, modeled and tested in [51–54, 57], amongst others.

2
Case Studies

2.1 Case Studies with Continuous Self-Organization Mechanisms 12
2.1.1 Decentralized Power Management 12
2.1.2 Self-Adaptive Apache Hadoop Manager 15

2.2 Case Studies with Discrete Self-Organization Mechanisms 17
2.2.1 Self-Organization Production Cell 17
2.2.2 Self-Organized Personalized Medicine Pill Production System 20
2.2.3 Self-Adaptive Webservice System: ZNN.com 22

We introduce and discuss a set of di�erent case studies throughout this chapter. The
case studies are used as running examples as well as for a thorough evaluation of the
presented concepts. The presented case studies that we use for testing are systems that
are already implemented. The systems range from multi-agent-based implementations
to service-oriented ones and the Self-Organization (SO) paradigms implemented are
centralized (weak SO, according to Serugendo et al. [146]), decentralized (strong SO,
according to Serugendo et al. [146]), or regio-centralized SO [6] . Thus, the generality
of the approach for testing SO mechanisms can be demonstrated.

Self-Organization—A Definition The term SO is not always de�ned in a uni�ed way.
Self-Organization, as we consider it, follows the de�nition by Serugendo et al. [146]:
The recon�guration of a system, or a subsystem, with the intention to restore, or even
increase, the productivity, in sense of ful�lling the functional obligations, at run time
under ever-changing environmental conditions without explicit external control. All
case studies introduced in this chapter are using this form of SO, but the mechanisms
are named by the authors and developers as self-adaptive or adaptive systems. We will
stick to the original labeling by the authors and developers.

Classification of Self-Organization In general, all investigated SO mechanisms are highly
dependent on the environment of their controlled system. The environment is ev-
erything, which is either directly or indirectly in�uenced by or in�uencing the Self-
Organizing, Adaptive System (SOAS). It determines the need for SO, the way of SO, as

11

2 Case Studies

well as the capabilities of the SO mechanism. In general, the domain, as well as the
solution space of the SO mechanism, is formed by the properties of the environment.
Continuous or discrete properties constitute this space. We use this as a characteristic
of the SO mechanism to be investigated. The case studies presented in this chapter are
divided into these two categories.

We introduce a decentralized power management system, that is forming a continuous
input and output space. This system incorporates the SO mechanism to organize and
recon�gure the structure of the system, that is organized into small units working
together. The second system of the class of continuous SO mechanisms is embedded
into Apache Hadoop, a system implementing the MapReduce paradigm. Within the
system, the SO handles the job allocation by adapting the system to volatile tasks. For
the class of discrete SO mechanisms, we introduce two case studies that are resource �ow
systems. The resource �ow is �rst established in a production environment, producing
small and fast-changing batch sizes. Second, the resource �ow is formed by a pill
and medicine arrangement system, producing individualized medicine. Both share an
underlying meta-model for resource-�ow oriented SOAS. Similar SO mechanisms can
be used in both applications. Finally, the third system with discrete SO mechanisms is a
system for resource balancing in a cloud-like environment. The resource balancing is
achieved via SO of the servers in the system.

2.1 Case Studies with Continuous Self-Organization Mechanisms

Continuous SO mechanisms are characterized by their domain and solution space, that
is described by properties that are continuously changing their value (this is similar to
the mathematical continuous-state de�nition, cf. Cassandras and Lafortune [29]). The
SO is thus triggered by thresholds, not by discrete events. The SOAS is, in contrast to a
discrete SO mechanism, never stopped for the recon�guration by the SO mechanism;
the system continues to evolve. Thus, it is still able to ful�ll its duties to some extent
in the moment of a threshold violation. However, the SOAS is not able to achieve its
intended level of quality in this situation. The threshold violation might even lead to a
critical situation for the SOAS. During the recon�guration by the SO mechanism, the
system continues to evolve while a new con�guration is computed and distributed.

We introduce a case study of that class: a decentralized power management system. The
SO in that system controls the structure of the system which is formed by decentralized
units. In this section, the system, in general, is introduced as well as the SO that is
needed. The concrete implementation of di�erent SO mechanisms is described in the
evaluation section where these particular SO mechanisms are evaluated. We will further
summarize the multi-agent system based implementation setting of the SOAS here.

2.1.1 Decentralized Power Management

The widespread installation of weather-dependent power plants as well as the advent
of new consumer types like electric vehicles put much strain on power grids. Addi-
tionally, small dispatchable power plants, e.g., biogas plants, owned by individuals or

12

2.1 Case Studies with Continuous Self-Organization Mechanisms

Top-Level
AVPP

Figure 2.1. Hierarchical system structure of a future autonomous and decentralized power
management system, taken from [52]: Power plants are structured into systems of systems
represented by Autonomous Virtual Power Plants (AVPPs) that act as intermediaries to decrease
the complexity of control and scheduling. AVPPs can be part of other AVPPs. The left child
of the top-level AVPP, for instance, controls a solar power plant, a storage battery, and two
subordinate AVPPs.

cooperatives1 feed in power without external control. Current plans are therefore to
scale the controllable output further by installing additional �exible dispatchable power
plants and to drive the expansion of the power grid forward. To save expenses, gain
more �exibility, and deal with uncertainties, future autonomous power management
systems have to take advantage of the full potential of dispatchable prosumers2 by
incorporating them into the scheduling scheme. Further, aleatoric uncertainties have to
be anticipated when creating schedules and compensated for locally to prevent their
propagation through the system.

To meet the challenges of future power management systems, Steghöfer et al. presented
the concept of AVPPs in [152] (similar visions of virtual power plants are discussed
in [129]). AVPPs represent SO groups of two or more power plants of various types
(cf. Figure 2.1). The organizational structure represents a partitioning, i.e., every power
plant is a member of exactly one AVPP, which is established and maintained by a
(partitioning-based) SO algorithm, the part of the SO mechanism responsible for com-
puting new con�gurations for the system under control. Constraints that specify valid
partitionings, e.g., a maximum number of power plants that may belong to one AVPP or
that every power plant has to belong to exactly one AVPP, among others, induce the
requirements for the SO mechanisms over the space of all partitionings. In this setting,
each AVPP has to satisfy a fraction of the overall demand. To accomplish this task,
each AVPP autonomously and periodically calculates schedules for directly subordinate
dispatchable power plants. Further, each AVPP’s dispatchable power plants have to
reactively compensate for deviations resulting from the local output or load �uctuations,
i.e., uncertainties, to avoid a�ecting other parts of the system.

AVPPs autonomously adapt their structure, i.e., are self-organized, to changing internal
or environmental conditions. They can live up to the responsibility of maintaining an
organizational structure enabling the system to hold the balance between energy supply

1A cooperative is a jointly owned power plant engaging in the production of energy, operated by its
members for their mutual bene�t, typically organized by farmers.

2We use the term “prosumer” to refer to producers as well as consumers.

13

2 Case Studies

and demand. In particular, if an AVPP repeatedly cannot satisfy its assigned fraction
of the overall demand or compensate for its local uncertainties, i.e., output or load
�uctuations locally, it triggers a reorganization of the partitioning. The goal is to form
homogeneous partitionings in the sense of a structure of similar AVPPs that are likely
to feature a heterogeneous composition: On the one hand, by distributing unreliable
power plants among AVPPs, the chance of �uctuations is reduced, and the system’s
robustness increases. On the other hand, by balancing the AVPPs’ degrees of freedom,
e.g., by mixing di�erent generator types, their ability to deal with uncertainties, i.e.,
�uctuations, locally is promoted. To cope with the vast number of dispatchable power
plants, the concept of AVPPs proposes a scalable, hierarchical structure in which AVPPs
act as intermediaries. This system decomposition reduces the number of dispatchable
power plants (including directly subordinate AVPPs) each AVPP controls resulting in
shorter scheduling times for each AVPP and the overall system. Thus, the implemented
SO can be classi�ed as strong SO. The environmental aspects described are forming the
typical environment of continuous SO mechanisms.

Challenges for Testing

In the smart-grid application, we have to cope with successfully isolating the SO mech-
anisms for testing them in the loop. Further, we need to reduce error-masking, i.e.,
the self-healing aspects of the AVPP structure are likely to mask an error in some
components by merely compensating it, since the partitioning algorithm and the mech-
anism that balances supply and demand in each AVPP in�uence each other signi�cantly.
Error masking can also occur in the partitioning algorithms if, e.g., the result of the
SO algorithm is faulty, but the system state after the reorganization process is valid.
The problem of state space explosion has to be tackled in this case study due to the
stochastic nature of the partitioning algorithms to deal with the large search spaces
and the stochastic environment, e.g., weather conditions, market prices. Finally, the
testing oracle problem occurs in this context since it is hardly decidable at design-time
which partitioning for which power plants is correct as this depends on the unknown
environmental setting of the controlled power plants as well as on the unknown states
of the autonomous power plants themselves.

Implementation Details

As we focus on the self-organized creation of partitionings for the evaluation of the
approaches presented throughout this thesis, without loss of generality, we only regard
a “�at” structure of AVPPs in the following. In this structure, power plants self-organize
into a single layer of AVPPs that resides directly below the root, i.e., the top-level AVPP.
In Chapter 6, we present the algorithms called SPADA and PSOPP, for the self-organized
creation of partitionings. We use a Java implementation of the energy grid management
system that is based on a multi-agent system called TEMAS [9]. The TEMAS is based on
a stepwise execution model out of the box, which allows monitoring consistent states
of the system at speci�c points in time.

14

2.1 Case Studies with Continuous Self-Organization Mechanisms

The implementation has been carried out in the DFG Research Group OC-Trust and
published in [9, 152] and supplied by the authors for testing.

2.1.2 Self-Adaptive Apache Hadoop Manager

Hadoop is one of the most popular and wide-used software platforms for big data
processing applying the MapReduce paradigm to a large number of di�erent applications
and workloads. MapReduce is a programming paradigm for processing and generating
huge data sets [41]. Dean and Ghemawat [41] developed it as a uni�ed way to process
large amounts of raw data, e.g., crawled documents or logs, to compute di�erent kinds of
derived information from the raw data. Dean and Ghemawat [41] designed MapReduce
as a new abstraction allowing to express rather simple computations that are performed
on the raw data, while the complexity and details of parallelization, fault-tolerance,
distribution, and load-balancing are hidden. The abstractions used by MapReduce have
been inspired by the map and reduce primitives in functional programming languages
like Lisp. Using MapReduce requires to de�ne a map operation for each logical record in
the input data set to compute a set of intermediate key/value pairs. Afterward, a reduce
operation for processing the raw data is applied to all values with the same key, which is
resulting in the derived data. Using the MapReduce approach, it is possible to utilize the
resources of large distributed systems and consequently to power up data processing,
even if the programmer is not experienced with parallel and distributed systems [41].
However, the actual gain of the application for e�ectively distributing MapReduce
jobs within a cluster depends on the con�guration of a bunch of complex parameters
which need to be tuned for a speci�c task or workload. The YARN (Yet Another Resource
Negotiator) resource manager is the component of Hadoop which is responsible for
scheduling and controlling the workload within the cluster. The parameterization of the
YARN controller is decisive for the job’s performance. The best practice for setting the
parameter is a best-e�ort con�guration that is based on experience or static pro�ling,
relying on apriori knowledge about the job (cf. [31, 75, 80]). Zhang et al. [178] developed
a self-adaptive component on top of the YARN resource manager. It is a centralized
implementation of the MAPE architecture (cf. [87]), i.e., a control loop that measures,
analyzes, plans, and executes the adaptation of the parameter setting of YARN. Zhang
et al. [178] showed that they can speed up the Hadoop instance up to 40% in a volatile
environment compared to the best e�ort solution.
Figure 2.2 shows the high-level architecture of Hadoop used for the case study. The
whole system is deployed in docker-swarm3, used for installing the Hadoop cluster
in a virtual environment, where di�erent hadoop-compute nodes and a hadoop-controller
are installed. The hadoop-compute nodes and the hadoop-controller are connected within
the docker-swarm to form a cluster. The hadoop-compute nodes are representing the
working nodes of Hadoop, running in a single container with an own NodeManager and
DataNode. The NodeManager is responsible for managing the local resources and gathering
information by monitoring the memory and CPU usage of the node and logging this
information. This information is shared with the ResourceManager. The information of

3https://docs.docker.com/engine/swarm/

15

https://docs.docker.com/engine/swarm/

2 Case Studies

Figure 2.2. Docker-swarm based deployment architecture of a Hadoop instance with the
adaptive extension by Zhang et al. [178], supplied by [179].

the node is stored in the DataNode which is part of the functional �lesystem. For this
purpose, the local DataNode is connected with the NameNode of the hadoop-controller. The
SO mechanism is responsible for adapting the con�guration of the ResourceManager
within the hadoop-controller. The hadoop-controller is also equipped with the NameNode
that host the keys with the MapReduce approach, i.e., the �le-system index and the
number of DataNodes. Besides the controller the hadoop-controller also hosts a graphite
container. The graphite node is providing a service for collecting data and information
from the Hadoop system, that is used by the SO mechanism. The information is used by
the SO mechanism to provide the following three properties at run time [178]:

1. Enhancing the jobs parallelism by adapting the maximum-am-resource-percentage
(MARP)4 value according to the current jobs.

2. Increasing the job throughput by continuously adapting the limiting parameter
of the ResourceManager.

3. Preventing large drops of memory utilization caused by the completion of MapRe-
duce tasks by smoothing the input continuously to stabilize the value.

By these responsibilities, that SO mechanism is classi�ed as a continuous SO mechanism.

Challenges for Testing

For testing the self-organizing, resp. self-adaptive, Resource Manager of Hadoop we
have to cope with the complexity of the distributed system environment which is the
foundation of Hadoop. The isolation of this mechanism is one challenge to overcome to
reduce error-masking. Next, test sca�olding and test inputs need to provide complex

4The maximum percent of resources in the cluster which is used to control the number of concurrent
active applications [61].

16

2.2 Case Studies with Discrete Self-Organization Mechanisms

data, that is a result of the MapReduce processing paradigm, thus isolating or testing
means also to provide complex input values for valuable testing. This also leads to a vast
state space since the di�erent possible data inputs to Hadoop and con�gurations that
are the test inputs for the SO mechanism are numerous. The di�erent interdependencies
between inputs and con�gurations are hard to predict for the setting of a volatile envi-
ronment, making systematic testing challenging. Further, as it is not possible to select
the correct con�guration for the Resource Manager, in the sense of the functionality of
the SO mechanism, we are faced with the oracle problem here.

Implementation Details

Zhang et al. [179] provide their implementation of the SO mechanism integrated in the
Hadoop environment via docker5 images at GitHub6. The SO mechanism within the
docker image is, as Hadoop, written in Java. The authors permitted us access to the
source code for our testing purpose. The docker system is an open source project by the
Apache Foundation7, thus, the source code is also available. The virtual environment
of docker enables to set up the Hadoop cluster virtually distributed as well as actually
distributed.

2.2 Case Studies with Discrete Self-Organization Mechanisms

Discrete SO mechanisms are controlling a system with a domain and solution space
that is formed by discrete properties. Thus, a change of a property might lead to a direct
demand of the SO mechanism to reorganize the system. The SOAS might be even halted
for that recon�guration. We investigate two groups of discrete systems with discrete SO
mechanisms: self-organizing resource-�ow systems and self-organizing load-balancing
systems. The resource-�ow systems are based on a common meta-model and theory for
implementing SO in this system class. The load-balancing system for a cloud application
is the third system of the discrete characteristics. Self-Organization is here responsible
for organizing the resources and their task allocation at run time.

2.2.1 Self-Organization Production Cell

Future production scenarios demand much more �exibility than today’s shop �oor
design to cope with the trend towards small series production, individualized products
and the reuse of production stations for di�erent tasks [104]. This �exibility becomes
possible due to the increased automation and data exchange in manufacturing tech-
nologies. These future cyber-physical systems will integrate SO mechanisms to resolve
the tasks of decentralized decision making, to optimize the structure of the system,
and to autonomously react to component failures at run time increasing the system’s
robustness. The self-organizing production cell is the implementation of that vision,
where the production stations are modern robots equipped with toolboxes and the
ability to change their tools whenever necessary. Figure 2.3 shows an illustration of

5https://docs.docker.com/
6https://github.com/Spirals-Team/hadoop-benchmark
7http://www.apache.org

17

https://docs.docker.com/
https://github.com/Spirals-Team/hadoop-benchmark
http://www.apache.org

2 Case Studies

R2

R1 R3

DT

IT

DIT

C2
C1

(a) The resource �ow starts to the left where R1 drills
a hole into incoming workpieces. Workpieces are
successively transported by C1 and C2 to R2 and R3,
applying their insert and tighten tools, respectively.
Once R3 is done, the workpieces leave the system.

R2

R1 R3

DT

T

DIT

C2

C1

¬insert

(b) After R2 lose its insert tool, the resource
�ow is recon�gured: R2 and R3 switch roles,
each taking over the previous role of the other.
The carts transport the workpieces to R3 before
R2 to guarantee the correct processing order.

R1 R3

DT DIT

C1

R2
C2

¬insert,
¬tighten

(c) After a failure of R2’s tighten tool, R2 and C2 are
no longer used at all, as R2 has no more working
tools available. Instead, R3 uses two of its tools on
the workpieces successively: Insert, then tighten.

R1

DT

R2
C2

R3

DT

C1

¬insert,
¬tighten

¬insert

(d) After R3’s insert tool is lost too, the robot
cell can no longer be recon�gured such that
the task can be completed: There is no robot
with an insert tool that can follow R1’s drilling.

Figure 2.3. A schematic overview, taken from [54], of the self-organizing production cell case
study with three robots R1, R2, and R3 as well as two carts C1 and C2 establishing the resource
�ow between them. The task is to apply the drill, insert, and tighten capabilities to all incoming
workpieces. Each robot’s available tools are shown to its right, with D, I, and T denoting the drill,
insert, and tighten tools, respectively; the currently allocated ones are underlined. Figure 2.3a
shows an exemplary con�guration of the robot cell. As depicted in Figures 2.3b to 2.3d, faults
result in tool losses that self-organization can cope with by recon�guring the resource �ow;
eventually, however, no further recon�guration is possible as the system runs out of redundancy.

the production cell and its concepts. The robots are connected via mobile platforms,
called carts, that can transport workpieces and to reach robots in any order. Thus, the
production cell can ful�ll any task which corresponds to tools (capabilities) available in
the cell. This is possible due to the SO mechanisms that reorganize the carts and robots
in a way that the tools are applied to the workpieces in the correct order. Any violation
of the calculated con�guration at run time triggers the SO algorithm calculating and
distributing a new system con�guration, as shown in Figures 2.3b to 2.3d .

This characteristic classi�es the system as a discrete SOAS. The properties of interest are
the availabilities of tools, robots, and carts, their availability is changing discrete from
available to unavailable. The implemented SO mechanisms, which are again discussed
in greater detail in the evaluation of Chapter 6, are working with these values and even
set the system into a hold-mode (called quiescent state) [70, 109, 110].

The self-organizing production cell, as well as the self-organized individualized medicine
pill production system, are an instance of the system class of SO resource-�ow systems;

18

2.2 Case Studies with Discrete Self-Organization Mechanisms

Resource

Agent

Role

Observer/Controller

Task

Capability

required capabilities

* 1
*

2..* *

*

1
0..1

* 1

1..*

*

available capabilities
0..1

* current tasks

capabilities to apply *

* allocated roles

applied capabilities

Condition
1 preCondition 1

1 postCondition 1

1

1..*

0..1 port

*

*

state

inputs
outputs

* *

Figure 2.4. A UML class diagram giving a simpli�ed overview of the meta-model for self-
organizing resource-�ow systems (according to [145]): Resources are passed along a set of Agents,
each applying certain Capabilities in order to introduce a Resource into the system (Produce), to
remove a Resource from the system (Consume), or to conduct a step towards the completion of the
Resource’s Task. The Observer/Controller—encompassing the SO mechanism—monitors the Agents
and assigns their Roles such that all Resources are eventually fully processed with the correct
order of Capability applications. Such a resource �ow is speci�ed by the Pre- and PostConditions
of all Roles within the system, as well as the inputs and outputs of the Agents that establish their
interconnections.

a meta-model [145] for this system class is explained by Figure 2.4. The case study
maps to the meta-model as follows: The robots and carts are Agents monitored by the
Observer/Controller. The carts transport workpieces, i.e., Resources, between the robots,
which have several switchable tools, i.e., Capabilities, such as drills and screwdrivers
that they use on the workpieces. A Task requires a workpiece to be processed by a
sequence of tool applications, e.g., by applying the drill, insert, and tighten Capabilities.
Therefore, the robots and carts are responsible for processing incoming workpieces in a
given sequence of tool applications. The Roles assigned to each robot and cart indicate
which tools they apply on the workpieces or which robots the resources are transported
between, respectively. The Observer/Controller includes the SO mechanism of the system;
it is responsible for recon�guration to compensate for broken tools, blocked routes, or
to incorporate new tools, robots, or carts, for instance.

Challenges for Testing

For testing the production cell’s SO mechanisms, we have to extract and isolate it
from the system. We are going to investigate a centralized as well as a decentralized
implementation. Both implementations are tightly interwoven with the system, since
the software representations of the robots, carts, and tools, today this is often called
digital twin, are all part of the SO mechanism. The Observer/Controller, hosting the SO
mechanism in Figure 2.4, is presented in di�erent instantiations an implementations:
one Observer/Controller for every software agent in the system. All Observer/Controller
paris together are forming the SO mechanism of the system (representing a strong SO
mechanims). This functionality must be encapsulated and isolated for testing without
changing the behavior of the SO mechanism. That is further necessary to cope with the
problem of error masking, as di�erent agents implement the SO mechanism it might
be the case that one agent takes over for another and the error will not propagate to a

19

2 Case Studies

failure. Indeed, there is also a huge state space to be tested for the SO mechanism since it
is formed by the di�erent combinations that constitute the production cell: the concrete
number and types (each type with a set of given tools of the available tools) of the robots,
carts, and tools as well as di�erent possible production tasks forming the state space
of the SO mechanism. Further, the challenge for testing using these discrete concrete
properties is also in�uencing the setting of the test since the changing of an input
value corresponds with losing a capability that cannot be restored without resetting the
system. Thus, the concrete choose of a test sequence determines the outcome and gives
a lot of di�erent chooses. Next, it is challenging to judge over results, since it is hard to
decide over every role allocation in every situation at design time.

Implementation Details

Seebach et al. [145] implemented the case study in the so-called Organic Design Pattern
Runtime Environment (ORE). The ORE is based on Jadex [123], a Java-based multi-
agent system that is implementing the Belief, Desire, Intention (BDI) paradigm for
the modeling of agents (cf. Haddadi and Sundermeyer [73]). In general two di�erent
SO mechanisms, a central and a decentral one, are available for recon�guring the
system. The SO mechanism has been implemented into a generic Agent, responsible
for recon�guration. This generic agent is coupled to the agents of the system to be
self-organized. The implementation has been carried out in the DFG Priority Program
Organic Computing in the Project SAVE-ORCA, published in [145], and supplied by the
authors for testing.

2.2.2 Self-Organized Personalized Medicine Pill Production System

According to the Personalized Medicine Coalition [120], there is a need for a more
e�cient and personalized treatment of patients in medicine. To overcome the costly and
potentially dangerous trial and error processes to �nd the right kind of medicine for a
patient, the production of drugs must be personalized for each patient. This situation
demands individualized production. However, an automated system that produces
personalized medicine on an industrial scale is crucial to establish individual treatment
at a reasonable price. Chapline et al. [30] introduce an SO system consisting of several
production stations that are connected by conveyor belts as illustrated by Figure 2.5 that
can establish such an industrial batch size one production for individualized medicine.
There are three kinds of stations within the system:

1. Stations that load pill containers on a conveyor belt,
2. stations that dispense di�erent ingredients, and
3. stations that remove processed containers and palletize them.

These stations are communicating with each other to self-organize the overall production
process. In particular, before forwarding pill containers, the stations signal each other
that they are ready to send or receive pill containers to avoid congestions on the
conveyor belts. There are three di�erent types of ingredients for the pills that are
depicted in di�erent shades of gray in Figure 2.5. Recipes specify how the pill containers
should be �lled through ordered applications of speci�c ingredient types and amounts.

20

2.2 Case Studies with Discrete Self-Organization Mechanisms

Palletization
Station #1

Container
Loader Station

Palletization
Station #2

30

20

40

Particulate
Dispenser
Station #1

Particulate
Dispenser
Station #2

Particulate
Dispenser
Station #3

Particulate
Dispenser
Station #4

Pill Container #1

Pill Container #2

40

90 80

10

¬load

¬dispense
¬dispense ¬dispense

¬dispense

¬palletize

¬palletize

¬container

¬response

For each station:

Figure 2.5. A schematic overview, taken from [71, 88], of the self-organizing production system
case study for personalized medicine. Conveyor belts connect the stations; they either load pill
containers onto the belts, palletize them, or dispense speci�c amounts of one or more ingredients
into the containers. The overview shows a very simple con�guration of the production cell: The
pill containers can take two di�erent routes through the system, with only the top route being
able to dispense all three ingredient types into the containers. The routes the pill containers take
therefore depends on their recipes and the number of ingredients left. For example, the lower
route has only 10 units of the medium gray ingredient left, causing all pill containers requiring
more than 10 units to be routed to the upper section of the production cell.

These recipes are unknown at design time of the system as they enter the system
during run time, for instance via web services whenever a personalized product is
ordered. New tasks, therefore, enter the system with a higher frequency than in the
production cell case study. For each recipe, the system’s SO mechanism �nds a sequence
of neighboring stations that are capable of processing pill containers according to the
recipe. In contrast to the production cell case study, the conveyor belts establish the
resource �ow statically, i.e., conveyor belts cannot be dynamically rerouted similar to
the carts. Besides reorganizing the system due to a new task, several environmental
in�uences might cause a need for a reorganization to keep the system able to ful�ll
its goals. In Figure 2.5 there are di�erent environmental changes shown mark with a
�ash. For instance, the dispenser station # 1 is no longer able to dispense pill containers
into the system. In that case, a possible recon�guration might be that dispenser station
2 takes over this responsibility. This case is also an example showing the discrete
properties of that system: Di�erent properties are either available or not, the state
changes discretely from one to another, there is no slight change.
This case study is a further system from the class of resource �ow systems: the pill
container is the resource establishing a �ow through the system and being �lled by the
stations. The pill production system, as presented here, maps to the meta-model for
resource system, as shown in Figure 2.4, as follows: The stations and the conveyer belt
are Agents which are monitored by the Observer/Controller. The conveyer belt transports a
pill container, i.e., Resources, in one direction. That is di�erent from the production cell.
Here the Resources are able to move bidirectional, where here the Resources are only
unidirectional; the input/output relations of the Agents are consequently di�erent. A Task,

21

2 Case Studies

which is a recipe, is requiring di�erent Capabilities, i.e., the pill ingredients. Therefore,
the conveyer belt and the stations are responsible for processing the pill container in a
de�ned order, the Role determines that by holding the Capabilities to be applied and the
route where the pill container is transported. Again, the Observer/Controller encompass
the SO mechanism of the system.

Challenges for Testing

As the production cell and the pill production are applications of the same meta-model,
the challenges for testing are quite similar. However, the pill production has some unique
properties that need to be considered: The resource �ow in this system is di�erent, as it
is unidirectional, that leads to a situation where errors might have a long propagation
chain to the actual failures. A wrong routing at the beginning, caused by an erroneous
allocation of the routes, might cause no direct failure if the �rst capabilities are applied
without a problem and only at the end it might be noticed that the route is wrong. This
is because the dispenser stations are highly redundant in their capabilities. Further,
the tasks in this system are changing very frequently, that is called a batch size one
production, compared to the production cell. That has to be respected and causes a
di�erent view on the tasks during testing. A higher variation of tasks is needed as test
inputs. These two (major) di�erences cause the error masking, which is di�erent, and
the properties of the vast state space, needing a di�erent treatment.
Further, the tight integration of the SO mechanisms, via digital twins, is still challenging
for the isolation and, indeed, self-healing is always a concern for masking errors. Judging
over the results by the test oracle might even need more insights into the complex routing
problem to be solved and detect errors earlier.

Implementation Details

The concepts of this case study have been developed in the project Evolvable Assembly
Systems and published in [30]. We used the descriptions and explanations as well as
discussions with the authors to implement the case study as an instance of the described
meta-model for SO resource-�ow systems. The result is a simulation written in C# using
a simple step-wise execution model that is iterating in a de�ned sequence over each
component in each step to perform its action.

2.2.3 Self-Adaptive Webservice System: ZNN.com

The Znn.com case study is a widely established standard case study for self-adaptive
systems.8 The case study has been �rst described by Cheng et al. [38]. The Znn.com
cases study is an online service serving di�erent kinds of news content to its customers,
like, cnn.com or sz.de, that aims at being highly reliable and responsive. Depending on
di�erent conditions the demand for this web services is highly volatile. For instance, a
football game at the world championship leads to dramatical high demand on sports

8Its description and concepts are provided by http://self-adaptive.org—the website for Software
Engineering for Self-Adaptive Systems, that is a community platform for numerously Dagstuhl Seminars
as well as the Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).

22

http://self-adaptive.org

2.2 Case Studies with Discrete Self-Organization Mechanisms

Server1

…

Servern

Server Pool

Client1

…

Clientk

LB

M

T

T

Figure 2.6. The architecture of the Znn.com system consists of a number of k clients and n
servers in a server pool. The clients send requests to the load balancer (LB) that distributes the
requests to the servers and is able to switch between the modes multimedia (M) and text (T) for
the servers as well as increment (resp. decrement) the server pool size.

news after the game or at half-time. Whereas that situation is rather easy to foresee other
events, like a terror attack, leads to an unpredictable demand for up-to-date news on that
event. Architecturally, Znn.com is a client-server system with a multi-tier architecture
model., as shown in Figure 2.6. However, the actual demand on resources is not fully
predictable and assignable at design time. Znn.com uses a load balancer to equilibrate
requests across a pool of servers, the size of which is dynamically adjusted. The business
objectives at Znn.com are to serve news content to its customers within a reasonable
response time range while keeping the costs of the server pool within its operating
budget. From time to time Znn.com experiences spikes in the news requests that it
cannot serve adequately, even at maximum pool size. To prevent unacceptable latencies,
Znn.com opts to serve minimalist textual content during such peak times instead of
providing its customers no service. The adaptation decision, for self-organizing the
server allocation, is determined by observations of overall average response time versus
server load. Speci�cally, four adaptations are possible, and the choice depends not only
on the conditions of the system but also on business objectives:

1. Switch the server content mode from multimedia to textual and
2. vice versa,
3. increase the server pool size, and
4. decrease the server pool size.

Within the Znn.com case study, the SO allows automation of adaptations that strikes
a balance between multiple objectives at run time. The adaptations of the system are
discrete, leading to a classi�cation of a discrete SO mechanism.

Challenges for Testing

Compared to the previous case studies it is rather obvious how to extract the SO
mechanism since it is located in one component. Nevertheless, the di�erent possible

23

2 Case Studies

scenarios and situations, as well as the various con�gurations for the system, still lead
to a vast state space that as to be addressed. That also leads to a challenge for the oracle:
The di�erent possible states of the system highly depend on the environment of the SO
mechanism. It is not possible to foresee every state at design time and to judge over
its correctness. Further, it is challenging to respect the interdependencies between the
test inputs di�erent. Previous test inputs in�uence later ones since the system adapts
to patterns of the input. Such a pattern is the demand of time. The SO mechanism is
using this pattern to foresee future changes in the demand and thus to be able to act
proactively.

Implementation Details

The Znn.com case study has been introduced by Cheng et al. [38] and is now used as a
standard case study in the community of Software Engineering for Self-Adaptive and
Self-Managing Systems. We used the descriptions provided by Cheng et al. [38] to build
a simulation of the Znn.com in a simulation environment, written in C#. The simulation
uses a step-wise simulation model, where every component is performing its action in a
prede�ned sequence.

Summary and Outlook. We introduced, classified, and discussed five different SOASs in this
chapter. The used SO mechanisms have classified each case study as either discrete or continuous.

The case studies introduced in this chapter and used throughout the thesis are implemented systems
from different developers, institutes, and industry. They have been selected to demonstrate the power
of the testing approach presented in this thesis as well as for illustrating the concepts and methods
explained in the remainder of the thesis. For each system, we discussed the particular challenges
for testing resulting from the particular configuration and characteristic of the SO mechanisms that
run in the case studies. The challenges are summarized as follows:

1. Making SO mechanisms testable as well as isolating and integrating SO mechanisms for
testing

2. Coping with error masking of SO mechanisms in testing

3. Providing a test oracle for SO mechanisms

4. Coping with a huge state space

In the following chapters, we will show how to cope with these challenges by providing a test oracle in
Chapter 3, making SO mechanisms testable in Chapter 4, isolating and integrating SO mechanisms
in Chapter 5, and providing test concepts in Chapters 6 and 7.

24

Summary. The specification of a system is the foundation for testing the software
as it defines the obligations of the System under Test (SuT). In this chapter, the
concept of the Corridor of Correct Behavior (CCB) is introduced, which was pro-
posed by Güdemann et al. [70], that enables a thorough specification of adaptation
as well as SO mechanisms. We will show how these concepts are used in testing
and how the constraints, forming the CCB, are unambiguous, complete, consistent,
and traceable derived by the goal-oriented approach called Knowledge Acquisition
in Automated Specification (KAOS). Further, the resulting obligations for the SuT
are transformed, by an approach presented, into test monitors that act as the test
oracle. The content and contributions of this chapter are published in [47, 154]. 3

Specification of Functional Behavior of
Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

3.1 Related Work . 27
3.1.1 Specification of SOAS . 27
3.1.2 Deriving Automated Test Oracles 28
3.1.3 Runtime Verification . 29

3.2 The Corridor of Correct Behavior—Specification of Self-Organizing Be-
havior . 30
3.2.1 The Restore Invariant Approach—Descirbing the Corridor of Correct

Behavior . 30
3.2.2 Application of the Restore Invariant Approach (RIA) to Software Testing 31

3.3 Goal-oriented Modeling of Functional Behavior with KAOS 32
3.3.1 The KAOS Methodology . 32
3.3.2 RELAX Goals for Introducing SO as Adaptation 33

3.4 Deriving the Test Oracle from the KAOS Model 35
3.4.1 Process for Generating an Automated Test Oracle 36
3.4.2 Implementation of Transforming Requirement and Constraints to a Moni-

tor Model . 37
3.4.3 Implementation of the Transformation for the Monitor Model to an Oracle 39

The prerequisite for testing software is a speci�cation of the System under Test (SuT).
The speci�cation describes the functional and non-functional obligations of the SuT.
The IEEE standard 830-1984 [78] describes the main properties of a speci�cation with
unambiguous, complete, veri�able, consistent, modi�able, traceable, and usable during
the operation and maintenance phase. On the basis of that speci�cation, testing is able
to reveal possible situations where the SuT does not ful�ll these obligations by executing
the SuT. The situation where the speci�ed behavior is not corresponding to the actual
behavior is called a failure [111]. This failure is caused by an error, that is a state in the
SuT which might lead to failure [111]. An error is caused by a fault [111], e.g., a human
programming fault.

25

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Self-Organization (SO) mechanisms, however, are built up on the premise, that decisions
are shifted from the design time into the run time, which enables giving a complete
speci�cation. Because the term complete means, that the speci�cation de�nes “the

responses of the software to all realizable classes of input data in all realizable classes of

situations” [78]. As a consequence the speci�cation of SO mechanisms is underspeci�ed
according to its completeness by intention. The intention is to allow for adaptation and
for SO by creating degrees of freedom, that enable decision making at run time. Indeed,
a Self-Organizing, Adaptive System (SOAS) still has to operate within borders and ful�ll
functional as well as non-functional goals in order to be valuable and applicable. These
borders and goals are forming the speci�cation of the adaptive and SO behavior of the
system.

This chapter presents an approach, that enables the de�nition of unambiguous, complete,
veri�able, consistent, modi�able, traceable, and usable requirements for SO mechanisms,
respecting the special completeness of requirements for SO mechanisms. For this pur-
pose, we will combine di�erent well-established approaches and extend them toward a
thorough procedure, that is designed to directly generate test oracles from the speci�ca-
tion. This minimizes human faults in testing and maximizes the e�ciency in the testing
process when it comes to changing requirements. It establishes a foundation for the
testing methods presented in later chapters.

First the goals and borders of the SO mechanisms have to be formalized. For this pur-
pose, Güdemann et al. [70] introduced the concept of the Corridor of Correct Behavior
(CCB), that formalizes the goals and borders of SO mechanisms by constraints. De�ning
the CCB demands for breaking down the overall goals and speci�cation of the system
to constraints, that are de�ned on component level. The Knowledge Acquisition in
Automated Speci�cation (KAOS) methodology [164] provides an established frame-
work for specifying system goals and deriving sub-goals that can be broken down to
requirements. The goal-oriented speci�cation of functional behavior of adaptive as
well as SO mechanisms enables a clear traceability between high system-level goals
and low-level requirements. Di�erent levels of formalization are possible for de�ning
goals and requirements, supporting an unambiguous and consistent de�nition by clearly
de�ned relations among the goals. In general, between goals there might be an and-
relationship to a set of sub-goals or requirements or alternatively an or-relationship,
describing the relations within the KAOS-tree. Each goal as well as each requirement
encompasses a textual description. For deriving the CCB, we use OCL as a description
language of the requirements. The description is based on a domain model of the SuT,
providing a consistency check of the speci�cation. These requirements are traceable in
the whole document and are also used for generating test oracles for SO mechanisms.
The generation of the test oracle is performed in a Model-Driven Design (MDD) fashion.
Modi�cations in the requirements document are consequently directly transformed into
modi�cations of the test oracle.

26

3.1 Related Work

3.1 Related Work

Specifying and verifying the output of an SuT are closely related in the area of soft-
ware testing. The speci�cation is delivering the obligations that are to be veri�ed by
checking whether or not the SuT shows the expected behavior. For software testing
this veri�cation is done by executing the system and comparing its actual output with
the expected, resp. speci�ed, output. The comparison is based on a so-called test oracle.
As Barr et al. [13] or Binder [17], amongst others, state, the provision of such a test
oracle is far from obvious, this is why it is often referred to as the oracle problem. Barr
et al. [13] outline the necessity of having an automated oracle in software testing, but
also its challenges. The need for an automated oracle is mostly argued by the following:
First, an automated test process builds upon automated oracles. Second, the quality of
the oracle is crucial for the quality of the performed software testing. False positives or
false negatives must be prevented for a valuable quality assurance. Automated oracles
are known to be less failure prone, since human error can be minimized [13]. The
speci�cation is the baseline for all approaches toward an automated oracle. As SOAS
are shifting decisions from design time into run time the speci�cation of these systems
is demanding. This is of special concern for the SO mechanisms, that are responsible for
the run time behavior of the SOAS. The research community follows di�erent directions
for the speci�cation of SOAS, that we will examine. Afterward, we will take a closer
look at the implementation of automated oracles for the categories of speci�ed, derived,
and implicit test oracles. These three categories are, according to the survey carried out
by Barr et al. [13], the main approaches. A related direction to automated test oracles is
Runtime Veri�cation (RV). The approach presented in this chapter is related to these
approaches as well, thus, we take a closer look at the state of the art of RV, too.

3.1.1 Specification of SOAS

We build upon the concepts of Güdemann et al. [70] for the speci�cation of SOAS.
Güdemann et al. [70] uses the concept of the Restore Invariant Approach (RIA) to
describe the SO behavior of a SOAS. The approach is based on a speci�ed invariant
of the SOAS. In contrast to a classically known invariant it is possible, that it is not
ful�lled during the system’s execution, but has to be restored in order to proceed. This
re�ects the characteristics of SO mechanisms, that are responsible for recon�guring,
resp. reorganizing, the system in order to ful�ll its duties. That is formalized by the RIA
and can be described as an CCB for the SOAS. Thus, by having the invariant the system
is either inside the CCB, with no need for SO (only for optimization purposes), or outside
the CCB, if the invariant does not hold and a recon�guration is needed. Schmeck et
al. [143] introduced a similar concept with the three spaces of SOAS: the acceptance,
survival, and dead space. The acceptance space corresponds to a holding invariant, the
survival space to a violated invariant that can be restored, and the dead space to an
invariant that does not hold and cannot be restored. The invariant of the RIA has to
be speci�ed by a set of conjunct constraints for the system. The derivation of these
constraints from the system goals, thus establishing traceability, is an extension of the
concepts presented by Güdemann et al. [70] as well as the linking of the constraints
with a domain model, making the model consistent and unambiguous. This is needed

27

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

for using the approach for deriving a test oracle and having a speci�cation complying
with the standards (cf. [78]). Cheng et al. [36] as well as Whittle et al. [171] are also
investigating the speci�cation in a traceable, consistent, and unambiguous fashion.
These developed concepts are suited for adaptation, we will extend these concepts to SO
in this chapter. This is done by combining the goal-oriented approach with the concepts
of the RIA. Cheng et al. [36] showed how the concepts of KAOS, originally introduced by
van Lamsweerde et al. [164], are applicable for adaptation of system parameters at run
time. We will show how these concepts can be extended to SO behavior and gainfully
integrated with the RIA. A di�erent direction for specifying adaptation was presented
by Morandini et al. [105]. The speci�cation is based on alternative con�gurations for
the system. These con�gurations are available for adapting the system in a particular
situation. Thus, the scope of actions is limited at design time.

3.1.2 Deriving Automated Test Oracles

A system’s speci�cation delivers obligations to be evaluated for a test oracle in order to
judge over the test result. A speci�cation of a SOAS is di�erent compared to classical
system due to its underspeci�cation. But, given the RIA, we are able to clearly specify
the responsibilities and thus are able to distinguish a failure state from a correct state.
Thus, techniques for deriving automated test oracles are indeed related to the approach
proposed in this thesis, but not su�ciently applicable to SO without the concepts
described in this chapter.
In general, there are three di�erent categories of automated test oracles, according to
Barr et al. [13]: the speci�ed, the derived, and the implicit test oracle. The approach
presented in this chapter is classi�ed as a speci�ed oracle, where the speci�cation is
made in model-based fashion. A model-based approach uses some kind of model to
specify the expected behavior of the SuT. Utting et al. [163] show a variety of di�erent
approaches. In most cases, the behavior is described via Uni�ed Modeling Language
(UML) state chart or sequence diagrams, specifying valid states and state changes,
or resp. interaction sequences. The ability of the model to abstract and condense is
used to keep the models and the oracle manageable. The modeling approach used
in this chapter is based on the UML. However, by using the concepts of the CCB for
speci�cation, it di�ers from the classical model-based approaches. These are specifying
all acceptable state-transitions for SuT, that is not possible for an Self-Organization
Mechanism under Test (SOuT). The usage of assertions and contracts (also constraints)
is a further speci�cation-based approach for generation of the test oracle. Hoare [76]
introduced the concepts of assertion and contracts. The approach enables to write the
intention of the program into the code with the ability to check the code. A prominent
development that emerges from Hoare’s approach [76] was the Ei�el programming
language [100]. In this way, the expectations to the system were stated explicitly. A
di�erent approach for the test oracle is the so-called metamorphic approach, which
is a derived test oracle. For this purpose, a relation between the input and the output
is de�ned. Chen et al. [32, 33] introduced that concept for testing software where it
is di�cult to specify the expected output for each and every input. Using the CCB
follows this idea and concept, since it also does not specify each and every combination

28

3.1 Related Work

of input and expected output. However, the CCB is not a de�ned relationship that is
described for an input. Still, the CCB can be seen as a derived concept as well as an
implicit one. Implicit, because the CCB and its constraints are not directly describing
the intended behavior, but the behavior to be restored by an SO mechanism. This is
similar to concepts of implicit test oracles which are classically detecting anomalies like
abnormal termination caused by a crash or an execution failure, as proposed by Cadar
et al. [24]. Thus, the approach for a test oracle for SO mechanisms, that is presented
in this chapter, combines di�erent concepts and di�erent approaches for deriving test
oracles in order to handle the challenges of de�ning an oracle for SO mechanisms.

3.1.3 Runtime Verification

The approaches of automated test oracles are similar to approaches of RV, as proposed
by Leucker & Schallhart [90]. RV is concerned with monitoring a particular part of the
system, during its execution with the intention of checking a proposition. Here, the
veri�cation process of the proposition is shifted from design time into run time. The
reasons for this shift are argued quite similar to the shift made for SOAS: the complexity
of the system does not allow for proving the correctness of an implementation according
to an obligation or going over every possible state, thus, it is done at run time for
the current state. Due to this direct relation of SOAS the concepts are also related and
particularly applicable for monitoring SO mechanisms. Rosu et al. [138, 139] presented an
approach for RV of safety properties of a system. Therefore, they designed a procedure,
that is able to generate monitors, for RV, from Linear Temporal Logic (LTL) formulas.
However, the generation algorithms are highly specialized for some particular safety
properties and need customization for the concrete system. The approach is similar to
the work by Goodloe et al. [67], which has emphasis on real-time safety properties. Both
are di�erent compared to the approach presented here for generating the test oracle
from the requirements in an MDD fashion, since they are focused on di�erent system
properties and types and are not directly applicable as a test oracle for SO mechanisms.
Jin et al. [81] follows a generic approach for generating RV monitors by developing an
Domain Speci�c Language (DSL) for the monitoring approach by Manna et al. [95, 96].
The DSL is used for generating a monitor for locks in Java programs. However, there is
still no traceability and generality as with the MDD approach presented in this chapter.
The approach by Demuth et al. [44] is more general by using the Object Constraint
Language (OCL) as an input language. The target language for checking is Java, which
is not replaceable. Further, all approaches so far are not concerned about the special
characteristics of SOAS. Calinescu et al. [25] have developed an approach for adaptive
systems. Here, the monitoring is based on a global model of the system, that is updated
with the current state of the system and is model checked in a quantitative approach.
The approach of this chapter is more focused on qualitative checking, as common
for software testing. Further, we have also the ability to use requirements for SO
mechanisms. The di�erence is, that here more than one component of the SOAS is often
involved. The needed extension is made in this chapter on the basis of the RIA.

29

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

3.2 The Corridor of Correct Behavior—Specification of
Self-Organizing Behavior

In contrast to classical systems that have a complete speci�ed behavior of each input
and related output, SOAS are known to be underspeci�ed. This underspeci�cation is by
intention. The underspeci�cation is enabling autonomous adaptation of the system’s
parameter, settings, or organizational structure, amongst others. Indeed, not each and
every non-SO system is complete in its description in a narrow sense, since the e�ort of
providing this complete de�nition of the system is too large. This is often mitigated by
de�ning the system’s obligation in less precise or abstract notation, e.g., structured text.
Nevertheless, the aim of the speci�cation is to state the complete list of responses of
the system. Checking these responses by executing the system with the intention of
revealing deviations between the actual and the intended behavior is called software
testing. The same holds for testing SOAS, but the de�nition of the system’s reaction to
all possible inputs is incomplete. In order to adequately test, and foremost judge over the
result of the test cases, a speci�cation is needed that allows for evaluating system states
as correct or incorrect. The CCB describes the needed obligations of self-organizing as
well as adaptive behavior based on the behavior of the controlled system. This is done
by forming a corridor in which the behavior of the system is correct, i.e., no need for
adaptation nor for SO. The corridor is formed by simple constraints, that describe invalid
states of the system and consequently the need for the adaptation or SO mechanisms.
Consequently, the CCB allows for de�ning the functional behavior of SOAS and is the
foundation of the test oracle for SO mechansims.

3.2.1 The Restore Invariant Approach—Descirbing the Corridor of Correct
Behavior

Güdemann et al. [70] introduced in the RIA the CCB for SOAS. RIA’s concept is to specify
a set of conjuncted constraints that should be ful�lled by the system while it is executed.
If a constraint is not ful�lled in any point in time the system is able to restore its invariant,
i.e., recon�gure the system so that the conjunction of all speci�ed constraints holds, by
adaptation or SO mechanisms. Figure 3.1 illustrates this responsibility and its obligations
by showing the CCB of the system. The CCB is formed by the conjuncted constraints,
i.e., the INVRIA. Inside the corridor all constraints are satis�ed by the system, i.e., INVRIA
holds, whereas outside the corridor at least one constraint is broken, implying ¬INVRIA.
Whether or not a system is inside the CCB or not is evaluated at each system’s state.

Definition of the RIA

The RIA [70, 109, 110] is de�ned on a labeled transition system for the system SYS =
(S,→, I, AP,L), with S a set of states,→⊆ S × S a transition relation, I ⊆ S a set of
initial states, AP a set of atomic propositions and L : S → 2AP a labelling function.
Within such a system, a trace π is a sequence of states σi ∈ S, related via→ and starting
from an initial state σ0 ∈ I . For each state S it is possible to evaluate whether or not it is
inside the corridor, like s1 in Figure 3.1, or outside the corridor, like svio in Figure 3.1, by
evaluating INVRIA. The evaluation of INVRIA can be performed based on the constraints

30

3.2 The Corridor of Correct Behavior—Speci�cation of Self-Organizing Behavior

φ ∈ Φ forming INVRIA and having the following relation:

(3.1) ∀si ∈ S :
∧
φ∈Φ

(φ(si))→ INVRIA

Each constraint φ ∈ Φ is de�ned within a given context. This context is a component of
the system SY S which is constrained by φ. The RIA, further, allows for a violation of
INVRIA, as shown in Figure 3.1 with svio, if INVRIA is restored in the next step. Thus, RIA
does not demand for �INVRIA, but for �INVRIA∨�(¬INVRIA → ◦INVRIA) In a classical
system, a violation of the speci�cation is not allowed and is denoted as a failure when it
is observed. For SOAS, the obligation is weaker and further speci�ed less detailed; the
CCB only speci�es what is not allowed, but not a concrete (complete) speci�cation of
expected behavior for a given input.

Implications of the RIA

Equation (3.1) further indicates, that if there exists a constraint φ ∈ Φ where ¬φ(σi)
holds, then ¬INVRIA holds for the whole system. This follows from the conjunction of
the constraints of the system, i.e., each constraint must be ful�lled. Having this relation,
it is possible to monitor the constraints φ ∈ Φ separately and further to observe them
locally. This is exploited by SO mechanisms that are working in a decentralized fashion.
Further, we are going to exploit it by monitoring the constraints φ ∈ Φ separately by
decentralized test oracles.

3.2.2 Application of the RIA to Software Testing

For software testing the CCB can be used as an oracle, to decide whether an adaptation
or an SO mechanism performs as speci�ed. Figure 3.1 illustrates the speci�cation of
the CCB by marking the correct (checkmark) recon�guration as well as an incorrect
(cross) behavior, based on a system state of the system controlled by the corresponding
adaptation or SO mechanisms. In general, if a constraint is violated it has to be recognized
and processed in a way that the next system state restores the INVRIA. Despite the fact
that the system is, in classical sense, underspeci�ed according to an enumeration of
correct and incorrect state-transitions, the CCB provides a complete speci�cation as
needed for test speci�cation for autonomous behavior of adaptive and SO mechanisms.
This can be illustrated by a small example based on the self-organizing production cell.
Let us assume the INVRIA consists of only the following constraint:
context Agent inv capabilityConsistency:

self.availableCapabilities

→ includesAll(self.allocatedRoles.capabilitiesToApply)

The constraint says, that only available tools (here in general capabilities) are allowed to
be selected by an agent (e.g., a robot). In case a robot has the tools for drilling a hole and
inserting a screw it may only be assigned to apply these tools. The adaptation task in
this case is triggered by the loss of a capability, e.g. the drill breaks at some point in time.
Classically, one would expect a speci�cation that speci�es each condition and situation
where a concrete tool that is known at speci�cation time should be applied. Indeed, in

31

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Figure 3.1. A transition system denoting particular states and their transitions within the
con�guration space of the SOAS, according to Nafz et al. [?]. The states s0, . . . , s4 are shown
inside the corridor, i.e., the INVRIA holds implying that all constraints speci�ed for the system
are ful�lled. If a state is in the region of ¬INVRIA (i.e., at least one constraint does not hold), this
violation has to be recognized and �xed by an adaptation or SO mechanism. If the transition
from svio goes to a state outside the corridor, as for serr, this is a failure of the SO mechanism or
the adaptation mechanism that controlled the system. A correct action of the mechanism is to
transfer the system state back into the corridor, as for s4, if possible.

this case also the loss of a capability can be compensated. However, the speci�cation
is bound to the knowledge available at design time, e.g., the concrete products that
are assembled, the concrete tools that are available, the concrete actions to be taken if
one tool is missing and another robot (also a concrete one) needs to take over the task.
Having speci�ed the CCB in contrast enables to have unknown tools, unknown tasks,
and consequently unknown situations to adapt to. The underspeci�cation enables this.
Nevertheless, it is still fully testable by the CCB. The adaptation mechanism needs to
recognize if a capability is selected as a role to apply which is no longer available and
needs to take appropriate actions that this situation is not present afterward. Thus, the
CCB makes adaptation and SO speci�able for testing. The quality depends, however, on
the quality of the de�nition on the CCB.

3.3 Goal-oriented Modeling of Functional Behavior with KAOS

Specifying the functional behavior of SO mechanisms is supported by the CCB. The
obligations are therefore described by constraints for single system components. De�n-
ing these constraints adequately is a challenging task. The quality of the constraints are
determining the quality of the SOAS and testing, as it is described in this thesis. In order
to support this process, we follow the goal-oriented modeling paradigm and extend it
toward modeling the CCB with it.

3.3.1 The KAOS Methodology

The goal-oriented modeling approach we use is called KAOS, introduced by von Lam-
sweerde et al. [164]. KAOS allows for a traceable, consistent, and unambiguous speci�ca-
tion of requirements in the form of goals. For this purpose, a lean concept for specifying
the system goal and putting it into relation with sub-goals and derived requirements is
supplied. Basically the KAOS methodology consists of a graphical and a textual formal
description of the desired system. The graphical notation describes as well as connects
the goals, requirements, agents and obstacles. The connections specify re�nements,

32

3.3 Goal-oriented Modeling of Functional Behavior with KAOS

assignments, or obstructions. These elements are used to model a goal re�nement graph
with speci�c system requirements at its leafs (cf. Figure 3.3). To build this graph, we are
using only a subset of the methodology, i.e., the re�nement consists only of logical ands,
implying that all requirements have to be achieved to ful�ll the global system goal. This
is a consequence of applying the RIA where the INVRIA is a conjunction of constraints,
i.e., requirements in the KAOS speak. Figure 3.3 is showing a simpli�ed KAOS model
of the energy grid case study. The graphical elements shown are representing system
goals and requirements, whereas the requirements are forming the leafs of the goal
tree. The goals are re�ned by the edges and assigned by a di�erent form of edges to
so-called agents. These agents are responsible units or components in the system to be
developed.

3.3.2 RELAX Goals for Introducing SO as Adaptation

The KAOS methodology is not tailored for adaptive nor self-organizing systems. The
aim is still to form a complete set of requirements within the goal model. That is, as
discussed before, not intended for SOAS. The main di�erence, taken into account by
the RIA is the fact of uncertainty at design time leading to an underspeci�ed set of
requirements in the classical sense: RIA only speci�es the correct and incorrect states,
but not the allowed transitions between the states, i.e., the actions to be taken. The
intended use of the KAOS approach is to specify the CCB by deriving all constraints, in
form of requirements, from the system goals. This allows for tracing the constraints as
well as having a consistent model and unambiguous set of obligations. For the latter, the
use of a conceptual domain model of the system as well as the formulation of consistent
OCL constraints is used.

Cheng et al. [36] propose an extension of the KAOS methodology that allows to express
requirements for adaptive systems by incorporating uncertainty factors the system is
supposed to adapt to. These uncertainties are identi�ed with the help of the conceptual
domain model. Their existence can lead to a reformulation of requirements or introduc-
tion of new requirements, e�ectively introducing requirements for system adaptivity.
The proposed process, shown in Figure 3.2, is structured into four parts, which are
performed iteratively. Since it uses progressive re�nements from system goals to indi-
vidual requirements of the agents, it can be easily integrated in an iterative-incremental
software engineering process. The used steps are:

Identify Top-Level Goal: The re�nement process starts with a global goal for the
intended system. Based on this global goal the top-level goals are derived which are
necessary to ful�ll the global goal.
Derive the Goal Model: These top-level goals are the basis for the complete goal
model, which is developed by re�ning the goals until clear and achievable requirements
can be formulated for the ful�llment of the goals.
Identify Uncertainty Factors: This goal model has to be examined to identify uncer-
tainty factors, i.e., obstacles that might prevent the system from reaching the goals.
Mitigate Uncertainty Factors: These obstacles can be mitigated by reformulating
the goal model, introducing new goals, or changing existing goals.

33

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Identify Top-Level
Goal

Derive Goal Model

Mitigate Uncertainty
Factors

Identify Uncertainty
Factors

Figure 3.2. The requirements engineering process, according to [36], starting with the identi-
�cation of the top-level goals of the system, which are re�ned in the next step. The resulting
goal model is afterwards examined according to �nd uncertainty factors. This can be mitigated,
e.g., by introducing new goals. This process is iteratively executed until all uncertainties are
eliminated.

Maintain[FrequencyStability]

Frequency deviation detected

Power output adapted to
compensate for frequency

deviation

ControllablePowerPlant

Network frequency requested Network frequency compared to
optimal frequency

Requirement
System goal

Assignment
Refinement

Figure 3.3. The goal re�nement graph in KAOS’ graphical notation for the goal “Main-
tain[FrequencyStability]”.

After mitigating the uncertainties, the process has to be repeated, until a su�cient
model is developed. As part of this re�nement process, the requirements need to be
augumented with a formal speci�cation of the system goals and constraints in OCL.
The described process by Cheng et al. [36] is not necessarily needed to have a well-
de�ned CCB, however, it turned out be very useful for its development.
Let’s consider a small example from the energy grid case study. We use here the approach
by Cheng et al. [36] to develop a constraint for the CCB. In autonomous power grids,
scheduling of controllable power sources is performed based on predictions of output
and demand. These predictions are based on a number of uncertain factors. Therefore,
even the best scheduling algorithms will never be able to approximate the required
demand and the so-called “residual load”, i.e., the power that needs to be produced when
all production by non-controllable power plants (solar, wind, residential heat-and-power)
has been factored in. However, the power grid is very sensitive to deviations between
production and demand and therefore, there needs to be an adaptive mechanism that
can quickly react to such deviations. Since deviations alter the power grid’s internal
frequency, all power plants can monitor this frequency and react to deviations from the
optimal frequency autonomously.
The necessity of adapting the power plants’ output based on the network frequency
is captured in the goal “Maintain[FrequencyStability]”. It can be re�ned to concrete
requirements for controllable power plants as shown in Figure 3.3. They need to measure

34

3.4 Deriving the Test Oracle from the KAOS Model

the frequency and compare it to the optimal frequency, reacting to deviations by adapting
their output. These requirements capture the control loop: changing the output has a
direct e�ect on the network frequency, thus providing feedback. The constraint that
needs to be observed corresponds to the requirement “Network frequency compared to
optimal frequency”. In OCL it can be expressed as:
context ControllablePowerPlant inv noFrequencyDeviations:

(currFrequency - optimalFrequency).abs() < allowedDeviation

While this constraint may seem simplistic, it is a good example for a property that has
to be monitored as part of a feedback loop in an adaptive system.
The monitoring and the controlling part is both due to the adaptation and SO mechanisms.
Thus, the test obligations can be directly derived from the constraints that form the
CCB. The derivation can further be automtomated due to the tooling used for modeling
the KAOS model in Objective [137] that is supplying a processable xmi format.

3.4 Deriving the Test Oracle from the KAOS Model

The oracle problem is a well-known challenge for all testing endeavors [13, 17]. How-
ever, the properties of SO mechanisms increase this problem: for classical testing the
conditions of execution for the SuT as well as the concrete requirements are known.
Let us call these facts the “known-knowns”. For SOuT we know that there are unknown
conditions of execution where we can hardly decide a priori, i.e., at design time, whether
a state is correct or not; we call these conditions the “known-unknowns”. Moreover,
for the SOuT there might even be situations we are not aware of at all, which we call
the “unknown-unknowns”. An oracle that is capable of evaluating the test results of SO
mechanisms at least has to be able to handle the “known-unknowns”.
For an instance of “known-unknowns” consider a smart energy grid setting where
di�erent power plants are self-organized in di�erent so-called autonomous virtual
power plants. If weather-dependent power plants are included, the SO mechanisms here
will depend on the weather conditions. We know that there are di�erent conditions like
sunny, rainy, and windy, but we also know that we do not know all di�erent possible
combinations and the according correct organizational structures at design time of the
test (or at least we cannot compute all). However, an oracle has to cope with that and
has to decide whether a result is accepted as correct or rejected as incorrect. The CCB
forms the test obligation for adaptation as well as SO mechanisms. Having derived the
complete KAOS model, we now have a traceable, consistent, and unambiguous de�nition
of the obligations to be tested. For testing we are able to use this information as the
foundation of the test oracle. There are two properties of the CCB, which we can exploit
for this purpose: (1) the constraints used for all di�erent kinds of SOAS have shown to
be rather simplistic and straight forward to evaluate, since they have been broken down
to single components and (2) all constraints of the INVRIA can be evaluated locally at
one corresponding agent or class of agents. This simpli�es the task of an automated
procedure of checking whether constraint violations have been detected and treated in
a way, that the system is inside the CCB afterward. To build a highly reliable oracle,
the process of generating the oracle is automated, thus, we minimize the human error.

35

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Requirements
(KAOS Model)

Domain Model
(UML Model)

Constraints
(OCL Model)

Monitor Model
(UML Model)

Generic Monitoring Infrastructure
(UML Model)

Oracle Implementation
(target language)

Transformation

Transformation

1

2

3

1

2

Figure 3.4. The transformation process, starting from requirements modeled in KAOS that
are formally described while the requirements become clear and a domain model is elaborated,
to abstract monitors expressed as UML class and activity diagrams backed by a model of the
monitoring infrastructure, to the �nal implemented oracle for the target platform.

The KAOS model, containing the constraints—formalized as OCL constraints—, is for
this purpose transformed into an infrastructure used as an automated oracle in a test
setting.
The synthesis of the oracle infrastructure follows a model-driven process, outlined in
Figure 3.4, and is divided into three major steps, which can easily be integrated into an
iterative-incremental design process. The process can be repeated when requirements
or the domain model change in an MDD approach. Changed parts of system models and
implementation will be re-generated while existing models and code are preserved.

3.4.1 Process for Generating an Automated Test Oracle

The generation of the automated test oracle is divided into the following steps:
Step 1: System goals and constraints are described formally during the iterative process
of requirements analysis, shown in Figure 3.2. During this process, a domain model
is created that can be used to express constraints in OCL—a language arguably more
accessible to system designers than the aforementioned temporal logics—that formally
describe the requirements. These OCL-constraints φ ∈ Φ de�ne the correct states of
the system and are therefore transformed in a model-to-model transformation to an
abstract monitor model when moving from the test analysis stage to the test design
stage in each iteration. The state-based evaluation of the OCL-constraints, i.e., to check
for all φ ∈ Φ whether φ(σi) with σi ∈ S holds, conforms well with the semantics of
the transition system the RIA is based on as described above.
Step 2: The underlying structure of the monitor model, which is created during the
transformation process, contains the re�ned elements from the domain model and the
generic monitor model. In addition, for each agent that has to be monitored, a monitor

36

3.4 Deriving the Test Oracle from the KAOS Model

class is created and for each OCL-constraint, a new abstract constraint class is created.
Furthermore, the validity check for each constraint φ(σi) is modeled as an UML activity
diagram in the constraint classes.
Step 3: The monitor model is transformed into code from which the actual distributed
test oracle for the SuT can be compiled. This transformation is done when moving
from the test design to the test implementation stage. This last transformation is highly
speci�c to the target system.
If the generic monitoring model proposed here is used, the test engineer has four
responsibilities left:

1. formally describe the constraints based on a domain model;
2. create platform-speci�c transformation rules for the target platform;
3. create code for possible additional checks by the oracle and
4. create code for the state update.

The rest of the infrastructure is created by the transformations.
The additional checks are necessary for implementation-speci�c properties. These
are depending on the concrete implementation of the SOuT and are used to evaluate
intermediate steps this is mostly helpful for fault-localization, �nding the cause of the
failure in order to remove it. In Chapter 6, we will show these speci�c properties for the
case studies presented in Chapter 2.

3.4.2 Implementation of Transforming Requirement and Constraints to a Monitor
Model

After the relevant requirements have been de�ned with OCL constraints, as described
in Section 3.3, the resulting requirements model and the domain model are transformed
into a monitor model, which is the basis of a speci�c monitor implementation. The
transformation is de�ned in QVT (Query View Transformation) [117], which uses
Queries on the source models to Transform them into target models. Part of the views
can be pre-speci�ed. We use this feature to specify a generic monitor model, as depicted
in Figure 3.5, that provides the structure for the monitor models and is based on the
Observer pattern by Gamma et al. [66].
The relevant interaction between the classes is depicted in Figure 3.7. Whenever a
MonitoredAgent registers a change (basically, a transition in SYS from σi to σi+1), it
informs its Monitor by sending the state model with the updated information. The
Monitor then updates its state model for σi+1 of the agent and evaluates all Constraints
φ ∈ Φ. If one of them evaluates to false, i.e., ¬φ(σi+1), the Monitor informs the
executing test suite.
The requirements model and the domain model are transformed into a new monitor
model, which is described by an UML class diagram and activity diagrams. These
diagrams are supplemented by the generic sequence diagram in Figure 3.7 which char-
acterizes the interaction in the class diagram. The activity diagrams, as shown in
Figure 3.6, embed the OCL-constraints in the holds() methods of the implementations
of the Constraint interfaces.

37

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Figure 3.5. Simpli�ed generic monitor model as used in the transformation, speci�ed as an
UML class diagram.

Figure 3.6. The generic UML activity diagram with the placeholder phi for the constraint to
be checked.

Identify Observed Object: First, to generate the monitor model it is necessary to
identify the classes which should be monitored. These are all classes from the domain
model which have an according agent in the requirements model that has a set of semi-
formally de�ned requirements to be monitored. Each class identi�ed in this manner has
to implement the MonitoredAgent interface in the monitor model.
Generate Monitoring Structure: Furthermore, a speci�c state model for each of
these classes is created by generating a simple class containing all attributes of the agent
class which represents the state of the observed class. Additionally a monitor derived
from the Monitor class for this agent is created. Thus, a relationship between the object
that should be observed and the concrete monitor is generated. Another relationship is
generated between the speci�c monitor object and the test suite. Most importantly, the
speci�c constraint class is added in the model.
Generate Dynamic Model: The �nal step in the creation of the monitor model is to
parse the OCL statement and put it into the guards of the activity diagram that describes
the functionality of the holds() method of this constraint class. The generic activity
diagram for the constraint type is used by copying it and replacing the wildcard with
the speci�c extracted guard.

This procedure is repeated for every monitored agent. After the complete transformation
there is one monitor per agent, but there are several constraints per monitor. The
monitors are used as an oracle in the test setting. The main duty of the oracle is to log
failures, as shown in Figure 3.7. This is done by checking the system with the monitor
after the recon�guration by the SO mechanism as well as after each system step in order

38

3.4 Deriving the Test Oracle from the KAOS Model

Figure 3.7. A simpli�ed sequence diagram showing the interactions between the elements of
the generic Observer/Controller model.

to check whether a necessary recon�guration has been detected. Figure 3.8 depicts the
elements that are used in this transformation process as well as a simpli�ed version of
the resulting class diagram. The transformation creates class diagrams for all agents,
as well as diagrams that model the respective methods for the new constraint classes
and the monitor. It also checks the domain model and the requirements model for
inconsistencies, e.g., if the requirements model de�nes agents for which no class exists
in the domain model. The result of the transformation process is a platform independent
model of the monitoring infrastructure speci�ed in the UML2 meta-model of the Eclipse
Modelling Framework (EMF).

3.4.3 Implementation of the Transformation for the Monitor Model to an Oracle

The �nal transformation to the actual monitor (that is used as the test oracle) imple-
mentations contains many platform-speci�c choices, e.g., whether or not monitors are
independent agents or become part of the agents de�ned in the domain model, whether
properties of the agents can be accessed directly or only via message passing, etc. It will
therefore have to be adapted to each target platform and target system. However, some
of the basic principles remain the same, regardless of the transformation target.
We developed a template which can be adapted for the use in a speci�c target system.
This template is de�ned in the language Xpand, which is a part of the EMF and enables
model-to-text transformations. The template contains generic parts, written in the target
programming language that do not change and only have to be copied into the source
code �les. In addition, it contains dynamic (resp. system-speci�c) parts that depend
on the elements in the monitor model and are evaluated when the transformation is
performed. This �nal transformation consists of two steps:
Structural Transformation: First, stubs of the classes contained in the class diagram
of the monitor model are generated. As de�ned in the static part of the transformation
template, these stubs are integrated into the target platform, e.g., the multi-agent plat-

39

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Figure 3.8. This simpli�ed transformed model is taken from the energy grid case
study. The ControllablePowerPlant is equipped with a monitoring infrastructure for the
NetworkFrequencyConstraint.

form or middleware the system will run on and can contain additional initialization or
bookkeeping code. The implementation of the generic sequence diagram depicted in
Figure 3.7 is also part of the generic part and thus has to be included in the template.
This step transforms the entire class diagram into system-speci�c source code.
Functional Transformation: Afterward, the activity diagrams are transformed into
implementations of the holds() methods in the abstract specializations of Constraint.
For this purpose, the OCL statements in the transition-guards have to be translated into
conditional statements expressed in the language of the target system. The dynamic
part of the template parses the OCL statement into an Abstract Syntax Tree (AST),
including the constrained attributes, the OCL functions, logic operators, etc. The AST
can be transformed into code for the speci�c target system. We use the Eclipse OCL
grammar as a basis and employ a custom ANTLR1 parser that supports all standard
OCL constructs. In comparison to using a standard parser such as the one provided
with Eclipse OCL2 or Dresden OCL3 directly, this gives us more �exibility with regard
to the target language and thus the transformation target.
In concrete terms for the monitor model of the autonomous power grid, shown in
Figure 3.8, the output of this last step is as follows: The target system is the middleware
TEAMS [9], which is implemented in the programming language Java. So to generate
the outline of the class diagram for each interface and class of the monitor model, a �le
containing the basic class declarations, including attributes, method stubs, etc. has to
be generated. Next, the holds() method of the class NetworkFrequencyConstraint is
translated into working Java code. For this purpose, the AST created by the OCL parser

1http://www.antlr.org
2https://projects.eclipse.org/projects/modeling.mdt.ocl
3https://github.com/dresden-ocl

40

http://www.antlr.org
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://github.com/dresden-ocl

3.4 Deriving the Test Oracle from the KAOS Model

is translated into Java syntax, e.g., an OCL “and” into a Java “&&” and OCL methods such
as “includesAll” into corresponding Java constructs.
Instead of parsing the constraints, it would also be possible to use the faculties of tools
like Dresden OCL, developed by Demuth et al. [44] to check the constraints at runtime.
However, a parser like the one used here can be used to create code for target systems
other than those based on a Java Virtual Machine which Dresden OCL is limited to as
it uses Bytecode weaving. In principle, tools like Dresden OCL do not provide data
gathering facilities or infrastructure for interactions with controllers. They can thus
be used for constraint checking within the monitoring infrastructure, but not as a
replacement for the concepts proposed here.
The classes and sequence diagrams have to be translated into the target programming
language and the target platform, i.e., the multi-agent platform or middleware the system
will run on. Sequence diagrams become implementations of the methods of the classes.
The OCL constraints are parsed to conditional statements within Constraint.holds()

for the corresponding constraint classes. Note that the multiple inheritance in the class
diagram can be implemented di�erently, depending on the target language. In Java, an
interface can be used, especially if the methods are abstract methods anyways.
An important decision has to be made with regard to the �ow of information at this
point. Changes in the MonitoredAgents cause updates to an internal model of the
Monitor on which the constraints will be evaluated. Alternatively, the monitor or
the implementations of the Constraints can request the required information from
the MonitoredAgents directly. Which choice is best depends on many properties of
the system, including whether message-based communication is used, how often the
information changes and how complex an internal model would be.
A concrete monitor implementation will have to be coupled with the test suite which
is executed. The transformation creates stubs for the appropriate classes and methods
such as activate().

41

3 Speci�cation of Functional Behavior of Self-Organization Mechanisms and Derivation

of an Automated Test Oracle

Summary and Outlook. The specification of an SuT is the foundation for testing, it delivers the
obligations the system has to fulfill. As SO mechanisms are characterized by making decision at
run time which are actually specified at design time we called them underspecified. Indeed, the
SOAS (controlled by SO mechanisms) still has to operate within borders and fulfill system goals,
these borders and goals can be described by the CCB. The CCB is defined by constraining the SO
and thus specifies the functional behavior of SO mechanisms and allows for the needed degrees
of freedom for the SO mechanisms to autonomously make decisions at run time. In order to use
the concept of the CCB, the specification needs to be traceable, consistent, and unambiguous, as
defined by the IEEE standard 830-1984 [78]. The goal-oriented modeling paradigm of the KAOS
approach delivers the necessary toolset which is used to break down the systems goals of the SOAS
to define the constraints and form the CCB. The goal model enables to trace the single constraints
back to overall goals. Further, it provides a consistent model with the coupled domain model of the
system. The domain model also enables to be formulated the constraints in an unambiguous fashion
by using the OCL constraint language. We further showed that the formalization of the CCB enables
to derive a test oracle by transforming the KAOS model in an MDD fashion. The result is a highly
reliable test oracle which is not prone to human errors. It builds a reliable foundation for the further
presented testing approach and solves one of the key challenges of testing SO mechanisms: the
oracle problem.

42

Summary. The software architecture describes the principal design decisions
made concerning the components, subsystems, and relationships amongst them
in a system. As a good software engineering practice, the development of an
architecture is based on patterns. The here presented Corridor Enforcing Infras-
tructure (CEI) is an architectural pattern for SOAS, that enables testability for
SO mechanisms. Further, based on the concepts of the CEI and the CCB the
definition of a failure for an SO mechanisms is given, and failures are categorized.
However, it is possible to show that the realization of these concepts is possible for
a large system group, which can be tested on that foundation. The content and
contributions of this chapter are published in [48, 52, 72]. 4

A Testable Architecture for Implementing
Self-Organization Mechanisms

4.1 Related Work . 45
4.2 The Corridor Enforcing Infrastructure: An Architectural Pattern for Self-

Organizing, Adaptive Systems . 46
4.3 Failure Definition and Categorization of Self-Organization Mechanisms . 48

4.3.1 Weaker Notion of Correctness for Self-Organization Mechanisms: Defini-
tion of Failure . 48

4.3.2 Boundaries of Self-Organization: Tolerable and Intolerable Environmental
Faults . 50

4.4 Prerequisites and Benefits for Testing Based on the Corridor Enforcing
Infrastructure . 51
4.4.1 Gain for Testing Based on the Corridor Enforcing Infrastructure . . . 52
4.4.2 Realizations of the Concepts of the Corridor Enforcing Infrastructure:

Application Cases . 52

The architecture of a software system is “the set of principal design decisions about the

system” [157]. The design decisions made within an architecture are in�uencing the
capabilities of the software. For instance, the design of the communication architecture
of a system is determining the scalability capability; thus, a peer-to-peer infrastructure
is more scalable than a central switch, whereas, the central switch is less complicated. In
general, there are quite a lot of decisions to be made for setting up the architecture of a
software system. Each decision in�uences the capabilities of the system and comes with
advantages and disadvantages. It is of utmost importance to be aware of all decisions
and their consequences. As a good software engineering practice, the development of a
software architecture is grounded in patterns. Patterns enable to rely on the collective
experience of software engineering experts in order to provide a high quality of the
architecture [23]. Di�erent quality aspects are of concern and have been considered for
the architectural design. On the one hand, the functional properties of the system need
to be ful�lled. The functional aspects are either directly visible to the user or in�uence
aspects of the implementation of a function visible by the user. On the other hand, the
non-functional properties are beyond a speci�ed functionality. Typically these aspects

43

4 A Testable Architecture for Implementing Self-Organization Mechanisms

are reliability, compatibility, cost, maintainability, or testability [23]. We focus on the
testability aspect of an architecture here: a testable architecture for Self-Organization
(SO) mechanisms. Indeed, all other properties have some merits, too, and play a role
in developing a successful system. However, they are not within the scope of this
thesis. We will discuss the testability of architectures as well as investigate a general
architectural pattern for SO mechanisms which brings this capability with it.

Testability of Software Architectures & its Challenges for Self-Organizing, Adaptive Sys-
tems The testability of an architecture describes the support of an architecture to
ease the evaluation of its correctness. Testability of an architecture is according to
Freedman [65] provided if it supplies the capabilities to control and observe the software.
Controllability is necessary to execute a test suite and setting up the system. Observabil-
ity is needed to monitor the system while the test suite is executed in order to evaluate
the results. Providing these two capabilities for the architecture of SO mechanisms is far
from obvious. This follows from the responsibilities of SO mechanisms of “[modifying]

the [system’s] behavior and/or structure in response to [its] perception of the environment

and the system itself, and its goals” [40]. Controlling means mastering the environment
of the system as well as the way it is perceived by the SO mechanism, controlling the
complete system managed by the SO mechanism, and controlling the goals of the SO
mechanism. Observing means to make the system’s behavior, its response to the SO
mechanism, and the structure of the system accessible and visible. The SO mechanism is
highly interwoven with the system it controls, making a testable architecture even more
desirable, but hard to achieve. Another aspect that has to be taken into account is that
SO mechanisms are often non-deterministic, e.g., since they use particle swarm opti-
mization or non-deterministic heuristics. The non-deterministic behavior makes it hard
to control it in a way that a distinct input leads to a distinct output, as Freedman [65]
de�nes controllability.

Approach for Testability of an Architecture for Self-Organizing, Adaptive Systems The
Corridor Enforcing Infrastructure (CEI), an architectural pattern for Self-Organizing,
Adaptive System (SOAS) tackles the challenge of making an SO mechanism testable.
Following the concepts of a feedback loop, the CEI encapsulates the SO (as well as the
adaptive) behavior and implementation into a control loop. The control loop consists of
de�ned components, states, and results that are the foundation of the SO. Thus, the SOAS
can ful�ll its requirements in an ever-changing environment by being recon�gured
and controlled according to its needs. The only prerequisite is to provide a Corridor
of Correct Behavior (CCB) in the form of constraints that speci�es the need. However,
the CCB is not mandatory for the implementation of the Self-Organization Mechanism
under Test (SOuT). It is possible to test SO mechanisms which have been developed and
implemented without explicitly stating the CCB.
The encapsulation enables to address the SO directly, the input and output are speci�ed
and observable as well as controllable. The CEI not only provides a testable SO mecha-
nism, but it is also possible to de�ne and categorize failures of SO mechanisms. Besides,
we will establish a notion of failure for SO, based on the CCB and the implementation

44

4.1 Related Work

of the CCB within the CEI. Thus, the CEI will also enable us to complete the set of
requirements for testing SO mechanisms.

4.1 Related Work

A software architecture describes components and the subsystems that compose the
overall system. Di�erent views are applied to describe the parts of the system and their
relationship to manifest the principal design decisions made. Buschmann et al. [23]
provide a set of architectural patterns collected from practice and science. Selecting
patterns and building an architecture is driven by di�erent goals. Foremost, the aim is
to provide speci�c capabilities within an architecture. These are divided by Buschmann
et al. [23] into functional and non-functional aspects. Functional properties, concerning
capabilities, directly in�uence the implementation of the functional goals of the system
and non-functional properties are related to other aspects like testability. Testability
denotes the ability of an architecture to enable its evaluation. Freedman [65] described
testability of an architecture by controllability and observability. These two aspects are of
concern in this chapter for the CEI, building an architectural pattern for SO mechanisms.
There are further patterns for the architectural relations of SO, mostly with emphasis
on functional aspects concerning the adaptation. The most prominent ones are the
MAPE cycle introduced by Kephart and Chess [87] and the Observer/Controller (O/C)
architecture proposed by Schmeck et al. [143]. The main idea is similar for both, as well
as for the CEI: The system is within a feedback loop under control by an SO or adaptation
mechanism. Therefore, information is gathered and analyzed (Monitor and Analyze by
MAPE, Observe by O/C), an algorithm computes a new con�guration if necessary (Plan
by MAPE, Control by O/C) and distributes it afterward (Excecute by MAPE, Control
by O/C). We stick to this feedback loop character for the CEI pattern. As shown by
Brun et al. [22] and Sabatucci et al. [140] most of the implemented self-adaptive systems
follow this feedback-oriented character. The emphasis of the CEI is incorporating the
CCB concept into the architecture and providing testability. We can say the CEI is a
non-functional-oriented pattern in contrast to O/C and MAPE. Nevertheless, it is indeed
possible to provide functional aspects as well. The fact that many applications follow
the principle of feedback-orientation is an advantage since the test approaches based on
the CEI are thus widely applicable.
Besides the testability, the CEI is also providing the ability to de�ne the notion of a
failure for SO mechanism. This de�nition further enables to reason about the abilities of
SO in more detail, concerning the border of the abilities of SO. Some related approaches
are also concerned about testing adaptive systems and thus have their de�nition of a
failure of adaptation. Indeed, adaptation is not SO, but quite related: SO is the adaptation
of the organizational structure of the system (or parts of the system). The approach by
Fredericks et al. [64] for a de�nition of a failure of an adaptation is relying on human
judgment. For this purpose, the results of the tests are evaluated afterward whether or
not they are faulty by a human. Indeed, that limits the number of test cases, since the
e�ort of evaluation is quite large and not automated. Further, no concrete de�nition of a
failure is given. Nguyen et al. [115] are not directly de�ning a failure. However, they set
the pre-/postcondition as mandatory �elds of the test case. This prerequisite is enabling

45

4 A Testable Architecture for Implementing Self-Organization Mechanisms

the automatic evaluation, but still involves human judgment for the generation. The
approach by Nguyen et al. [115] for testing starts with a test suite compiled by a test
engineer, including the speci�ed pre- and postconditions. Afterward, the developed
genetic algorithm can mutate the whole test suite automatically. This procedure helps
to generate more test cases based on a failure de�nition for one test case. The degree of
automation despite lacking a clear failure de�nition is thus more signi�cant. Hänsel
et al. [74] de�ne a failure based on a model-based description of the target system:
whenever it di�ers from the actual state, i.e., the actual state is no instance of the model
description, it is a failure. This de�nition, however, leaves it to the test engineer to
incorporate for example the particular self-healing aspects of the SOAS. We clearly
de�ne in general a failure for SO mechanisms in this chapter.

Püschel et al. [127] are o�ering a taxonomy of failures for the MAPE cycle and show
the propagation of the faults. However, the failure de�nition is too loose to apply it for
instance in a test oracle directly. It is more an approach, similar to the responsibilities
of SO here, that de�nes what might go wrong in an SO mechanism.

This chapter adds the missing failure de�nition for SOAS and further enables testability
by providing a testable architecture that can be widely used. Thus, a foundation for
testing SO mechanisms is laid.

4.2 The Corridor Enforcing Infrastructure: An Architectural Pattern
for Self-Organizing, Adaptive Systems

The CEI is an architectural pattern for SOAS, that is focused on encapsulating the
SO as well as the adaptive behavior of the system. Therefore, the CEI is using decen-
tralized feedback loops that monitor and control single components or small groups
of components in order to ensure that the system’s requirements are ful�lled at run
time. The pattern thus is based on the components that are monitoring a dedicated
part of the system. Each monitor has a particular responsibility for a condition that
needs to be satis�ed at run time. A detected violation of the condition is leading to
a reorganization of the system (or parts of the system) by a dedicated controller. A
constraint describes the condition and its responsibility within a speci�c context, all the
constraints of the system form the CCB. Thus, the CEI is the infrastructure, consisting of
feedback-loop-oriented pairs of monitors and controllers which enforce the corridor of
the CCB. The CEI describes a decentralized architecture of feedback loops, similar to the
MAPE cycle [87] or the O/C architecture [143]. The schematic view in Figure 4.1 shows
an implementation of the CEI pattern where the monitor and control infrastructure is
based on an O/C architecture. The essential parts of the O/C architecture are:

• The system under observation and control (SuOC), i.e., single agents or groups of
agents controlled by the SO mechanism(s).

• The observer (O), i.e., the component monitoring the state of the SuOC and
providing information to the controller.

• The controller (C), i.e., the SO algorithms controlling the SuOC.

46

4.2 The Corridor Enforcing Infrastructure: An Architectural Pattern for Self-Organizing,

Adaptive Systems

O

SuOC

C O

SuOC

C O

SuOC

C

Observer
Constraint Monitor

Controller
Self-x-algorithms

O C O C O C

O C

O C O C O C

O C

O

SuOC

C O

SuOC

C O

SuOC

C

O C

Self-
Organization

Figure 4.1. Schematic view of the CEI, according to Eberhardinger et al. [52]. The three main
components of the CEI are the Observer (O), the System under Observation and Control (SuOC),
and the Controller (C) that form together distributed, decentralized feedback loops on di�erent
levels, i.e., the CEI consists of sets of nested feedback loops (symbolized by the nested set of
di�erent system parts in the upper part of the �gure) controlling the entire system. If a group of
components forms the SuOC, the feedback loop is an SO mechanism.

Note that the CEI consists of sets of nested feedback loops controlling the entire system.
The pattern of MAPE as well as O/C can be combined with the CEI pattern, as shown.
We di�erentiate within the CEI pattern between the controlled components by the
feedback loops: if a set of components (resp. agents) forms the SuOC, we call it SO (as
exempli�ed in Figure 4.1), if one component forms the SuOC and internals (setting,
parameter, etc.) are changed this is called adaptation. For the SO, we call the entire
feedback loop SO mechanism, the algorithmic part in the controller SO algorithm, and
the constraint monitoring part observer and vise versa for adaptation mechanisms.

Application Case of the Corridor Enforcing Infrastructure Let us consider a realization
of the CEI pattern within the smart-grid scenario. The small groups controlled in the
smart-grid scenario are the power plants partitioned into Autonomous Virtual Power
Plants (AVPPs). Furthermore, single power plants are in control loops to adjust, in
particular, their energy production. The reorganization by the controller is performed
by one or more SO algorithms resulting in a new system con�guration. Such a system
con�guration has to satisfy the constraints describing valid organizational structures,
e.g., a maximum number of controlled components within each organization. Concern-

47

4 A Testable Architecture for Implementing Self-Organization Mechanisms

ing the partitioning problem—applied for the AVPPs—this means that each power plant
belongs to precisely one AVPP. For other application scenarios, one might require a
structure in which each component belongs to at least one organization. The particular
choice of the SO algorithms and their constraints has no impact on the approach, both
set covering and partitioning SO algorithms can be implemented within the concept of
the CEI.

Testability of the Corridor Enforcing Infrastructure Inside the CCB, the system behaves
like a traditional software system and traditional test techniques can be used to ensure
the quality of the SuOC. The CEI instead is responsible for the SO and adaptive behavior
of SOAS. The testability for the SOAS within the CEI is achieved by the decomposition
and encapsulation of the SO as well as the adaptation mechanism. There is a de�ned
responsibility of each observer/controller pair and a precise allocation of the responsi-
bility within each observer/controller pair. The responsibility is de�ned by a constraint
and its context, where the observer is sensing within the context, and the controller
is activated via a de�ned interface and calculates a solution that is distributed to the
components within the context. This modular structure and concrete allocation of
responsibilities makes it able to decouple the parts of the SO resp. adaptation, equip it
with a test harness to make it controllable as well as observable since there are de�ned
in- and outputs. Indeed, the in- and outputs are not trivial, but clearly de�ned by the
context and responsibility.

4.3 Failure Definition and Categorization of Self-Organization
Mechanisms

The CEI enables to address the SO mechanism directly via test, since it breaks it down
to the major components of SO. These components are responsible for implementing
the concepts of the CCB, which describes the obligations of SO mechanism: to restore
the INVRIA if it is broken. This obligation is di�erent from a classical invariant—,
where a failure occurs if the speci�ed invariant is broken. Consequently, for an SO
mechanism, a weaker notion of correctness is needed. The CCB enables to de�ne this
notion. Giving this notion is possible based on a more detailed investigation of the
phases and responsibilities of an SO mechanism as implemented in the CEI, concerning
the meaning of the INVRIA. However, SO is not almighty, not every violation of INVRIA
can be restored. The environmental faults can describe the boundaries of SO, that lead
to a violation of INVRIA which need to be restored. This is also respected in the failure
de�nition for SO mechanisms, which is formulated by the weaker correctness notion.

4.3.1 Weaker Notion of Correctness for Self-Organization Mechanisms: Definition
of Failure

A failure is a deviation of the actual behavior from the expected resp. the de�ned behavior
of software. Our de�nition of the expected behavior of an SO mechanism is formalized
by the CCB. We use that de�nition as a test obligation. A failure, however, does not
occur if the CCB is violated and the INVRIA is broken. The SO mechanism is responsible

48

4.3 Failure De�nition and Categorization of Self-Organization Mechanisms

Figure 4.2. The three phases of an SO mechanism are shown: (1) the detection of a necessity
to intervene in order to enable the controlled system to continuously ful�ll its goals despite the
changing conditions, (2) the calculation of a new system con�guration by an SO algorithm (here,
di�erent algorithms might be suitable as well as di�erent solutions), and (3) the distribution and
implementation of the computed solution in the system.

for coping with the situation of an invariant violation, which would be a failure for
a non-SOAS, by recon�guring the system. The completion of this responsibility is
illustrated in Figure 4.2 where the three major phases of an SO mechanism are shown:

1. Detection of a necessity to take action. This intervention is needed to cope with a
situation which would for non-SOAS cause a failure. In the context of the CCB: it
is necessary to detect whether the system leaves the CCB. This phase is realized
in the CEI in the monitor component.

2. Computation of a new system con�guration by an SO algorithm, the controller
part of the CEI. This con�guration needs to ful�ll the speci�cation for a valid
con�guration; the con�guration needs to be inside the CCB.

3. Distribution of the computed solution, also by the controller of the CEI, to the
a�ected components (resp. agents) of the system which is under control by the
SO mechanism.

If these three responsibilities are ful�lled, the SO mechanism works correctly. Thus, the
notion of correctness for SOAS is the following, according to Güdemann et al. [70]:

(4.1) �INVRIA ∨�(¬INVRIA → ◦INVRIA)

A failure, i.e., Equation (4.1) does not hold, can further be categorized by the responsi-
bilities of an SO mechanisms, leading to this categorization:

49

4 A Testable Architecture for Implementing Self-Organization Mechanisms

1. Detect The detection of a violation of the CCB has failed.
2. Compute The computed solution is not inside the CCB or no solution is delivered,

though there is a reachable one.
3. Distribute The computed solution is not correctly distributed, i.e., the system

con�guration after distribution does not match with the con�guration calculated
by the SO algorithm.

Testing an SO mechanism is consequently aiming at revealing these failures.

4.3.2 Boundaries of Self-Organization: Tolerable and Intolerable Environmental
Faults

Following Equation (4.1), we have included the implicit assumption, that an SO al-
gorithm is always able to �nd a con�guration where INVRIA holds, after a violation
has been detected. Indeed, that is practically impossible as SO has boundaries. Thus,
Equation (4.1), the failure de�nition, needs at least a constraint, that states:

if there exists a con�guration in the con�guration space where INVRIA holds that is

reachable from the current, faulty one.

However, it is not straightforward to answer the question of whether or not there
exists such a con�guration, which might be a valid solution. This question needs to be
answered within the automated oracle, forming the non-generic part of the oracle. That
part needs to be added to the implementation that is transformed from the requirements
model, as described in Chapter 3. Within the realization of the test methods in Chapter 6
we will show how that is done for the described case studies.
An alternative solution might be that a failure occurs if Equation (4.1) does not hold and
the system is in a productive state. The productive state is depicted by completion of SO
mechanism. If the SO mechanism is not able to �nd a new valid con�guration for the
system, it is in a non-productive state. Güdemann et al. [70] called this non-productive
state the quiescent state. However, the drawback of this solution is, that setting the
system to a non-productive state after each detection of a violation would lead to a
correct, but not to a productive system.
In order to setup the requirements as stated above, it is necessary to distinguish situa-
tions where SO is powerless and where it has the power to restore INVRIA. We therefore
separate tolerable environmental faults and intolerable environmental faults. Environ-
mental faults are the situations to be considered; situations that are characterized that
they change the environment of the SOAS so that it is not able to proceed. These envi-
ronmental faults are either tolerable (such as broken tools in the production cell scenario)
or intolerable (such as failures of workpiece sensors of the production cell scenario).
Tolerable faults are those faults the system can compensate, continuing correct and
safe operation after a recon�guration by an SO mechanism. SO can, therefore, be seen
as a mechanism that increases the system’s fault tolerance in order to prevent hazards
for as long as possible. However, SO cannot cope with all faults that occur during the
lifetime of a system: Intolerable faults are outside of its reach, either because their
occurrences cannot be detected or there is no possible way to react to their occurrence.

50

4.4 Prerequisites and Bene�ts for Testing Based on the Corridor Enforcing Infrastructure

In particular, a fault discovery mechanism might be missing due to a deliberate design
decision in order to reduce costs or because the discovery is physically impossible for
some reason. Additionally, at some point, there is not enough redundancy left in the
system to continue operating safely after the occurrence of a tolerable fault, in which
case a recon�guration failure occurs. Phrased di�erently, occurrences of su�ciently
many tolerable faults represent the occurrence of an intolerable fault, resulting in a
safety hazard. In the case study, recon�guration fails, for instance, when all tools of the
same kind no longer work.
This distinction between tolerable and intolerable faults is necessary for the failure
de�nition since only tolerable faults can be part of the INVRIA.

4.4 Prerequisites and Benefits for Testing Based on the Corridor
Enforcing Infrastructure

So far, the CCB and the CEI are two powerful concepts for making SO mechanisms
amenable for testing. The CCB is providing the test obligations for an SO mechanism,
enabling to give a failure de�nition, and derive an oracle. According to Goodenough and
Gerhard [177] as well as Weyuker and Ostrand [170], the fundamental prerequisite for
testing a system is ful�lled based on this. Further, the CCB provides a clear understanding
of the mode of operation of SO. That understanding enables to tailor a testing approach,
that is able to reveal failures e�ciently by either black-box or white-box testing. Black-
box testing is also known as speci�cation testing, i.e., de�ning the test selection criteria
for tests based on a speci�cation; here, provided by the CCB. White-box testing is based
on the actual code, i.e., the test selection criteria are de�ned on code fragments or
component elements; here, the needed insights are provided by the CEI. Thus, the CCB
and the CEI are a fundament for testing SO mechanisms. Further, the CEI provides an
architectural pattern that is testable in the sense of observability and controllability.
This lays the ground for building a test harness that can automate and execute the tests
and their evaluation. The CEI enables as a result of this to directly associate test cases
to SO mechanisms, having the components and their interfaces de�ned, and capture
the results, by having a de�ned output. Indeed, the input and output are not classical
values, like objects or primitives, but the controlled system and its controlled parameter,
setting, and con�gurations. The controlled system acts quasi as input and output.
However, the gains of the CCB and the CEI also sets prerequisites to a testing approach
as well as the System under Test (SuT) itself. If the prerequisites were too restrictive,
it would imply an approach that is limited to a few systems and thus would limit its
contribution.

Prerequisites for the Test Approaches Based on the Corridor Enforcing Infrastructure The
prerequisites for a test approach are set by the de�nition of the CCB: The test obliga-
tions are de�ned as constraints describing valid system states to be maintained by the
SO mechanism, as shown in Chapter 3. As a consequence, the de�nition of a failure,
as described in Section 4.3, is used for testing and especially for determining the test
oracle. As testing aims in general at revealing failures, the de�nition of failure further

51

4 A Testable Architecture for Implementing Self-Organization Mechanisms

in�uences the testing process. However, the application of the CCB should not be seen
as a restriction more as an enabler for testing SO mechanisms. Thus, no general test
approach is excluded by the prerequisites.

Prerequisites for the System under Test Tested by Approaches Based on the Corridor En-
forcing Infrastructure Assuming the testable architecture provided by the CEI goes
along with assumptions about the SuT, we assume an SO mechanism with a speci�c
goal to be implemented by the CEI: the SO mechanism is using the information about the
system, itself, and the system’s environment in order to provide a system’s organization
in order to enable the controlled system to be productive despite an ever-changing
environment. This procedure is implemented in the CEI by a feedback loop with three
phases for the SO mechanism: sensing for detecting a need for intervention, computing
a solution, and distributing the solution. These phases are assumed to be separated
responsibilities that are tested separately afterward. Further, by the constraints of the
CCB the monitoring part of the feedback loop is concerning speci�c properties that
need to be accessible. This access also allows for controlling and observing the SuT.

4.4.1 Gain for Testing Based on the Corridor Enforcing Infrastructure

The assumption of having the CEI implemented in the SuT delivers some implications
for testing, besides the general controllability and observability. Since the CEI guaran-
tees that all system states ful�ll the system requirements, an error-free CEI makes it
unnecessary to test concrete system states. Consequently, only the CEI and its mecha-
nisms must be tested instead of the whole SOAS en bloc, which signi�cantly reduces
the test e�ort. Inside the CCB, the system behaves like a traditional software system
and traditional test techniques can be used to ensure the quality of the SuOC. The
CEI instead is responsible for the SO behavior of SOAS. Hence, we need techniques to
examine the CEI and its mechanisms. Fortunately, this can be done separately from the
SuOC which consequently reduces the test e�ort. Test techniques are needed for the
responsibilities of the CEI that are de�ned by the three phases of an SO mechanism:
detection, computation, and distribution. Testing these phases can be done separately
from the rest of the system which consequently reduces the test e�ort.

4.4.2 Realizations of the Concepts of the Corridor Enforcing Infrastructure:
Application Cases

Overall, the realization of the concepts of the CEI can be broken down to the following:
1. SO is implemented in a feedback loop.
2. The feedback loop has the components for detecting, computing, and distribution;

the components are decoupled.
3. The conditions for recon�guration and successful recon�guration are speci�ed.

Indeed, there is a limited number of applications that explicitly implement the CEI by
design. However, there is a bunch of applications that implement the CEI in principle.
Implementing the CEI in principle means that the concepts of the CEI are not explicitly

52

4.4 Prerequisites and Bene�ts for Testing Based on the Corridor Enforcing Infrastructure

stated or designed, but still, the system uses SO by a feedback loop and has de�ned
patterns describing a need for SO as well as a successful SO. These principles are
named as the generic mechanism for self-adaptation by Brun et al. [22]. The authors
describe how adaptation is driven by feedback in general. The authors cluster the
feedback into the steps: collect, analyze, decide, and act (which is based on the MAPE
loop by Kempart [87]). This clustering corresponds to the CEI, where the detection
phase is subsuming monitor and analyze, the computation phase subsumes the decide
step, and the distribution phase the act step. There are according to Brun et al. [22]
a bunch of systems, especially from the community of the International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Two of
these systems have been selected as case studies for this thesis (cf. Chapter 2): the self-
adaptive web-service system, called ZNN.com, and the self-adaptive Apache Hadoop
Manager. Both systems are not equipped with an CEI by design, but they have an MAPE
architecture, that is mapped directly to the CEI components. Further, the requirements
of the systems can be easily translated into an CCB. The concrete steps taken for testing
these systems are described within the model-based testing approach of Chapter 6.
Sabatucci et al. [140] provide further evidence that the implicit CEI is quite widespread
in the implementation of adaptive systems, here SO systems are often subsumed as
adaptive systems. The authors developed a general meta-model for adaptive systems
resp. SOAS. The meta-model is clustered into four types where the types are extended
by increasing type classi�cation, i.e., the type II includes the components of type I and
type III the one of type II and type IV the one of type III. The components of type I) are
the adaptive system, an e�ector, an environment monitor, and the world representation.
The components are described to work similar as intended by the CEI, the adaptive
system and its environment are monitored in order to detect a need for reorganization,
the adaptive system computes a new con�guration and implements it (distribute if the
system is to be distributed). Due to the generalization relation between the types, all
types described in the meta-model follow this basic implementation and are therefore
categorized as CEI by intention. As the meta-model by Sabatucci et al. [140] is based
on a literature review, there are a lot of di�erent systems that can be tested based on a
realization of the concept of the CEI.

Summary and Outlook. Software testing makes it necessary to distinguish between the expected
output and the actual output, that enables to reveal failures. However, this comparison is often not as
obvious as it sounds. We have seen, that the correctness of a SOAS differs from the classical notion
of correctness: A system’s invariant is repaired by SO mechanism as one duty, and thus it may be
violated before if it is restored. This insight is necessary for testing and is one of the contributions
of this chapter. The insight is a result from the concepts of the CCB and the categorization of SO
mechanisms, presented in this chapter. A further condition is a testable architecture, an architecture
that allows for evaluation of its correctness. Therefore, the architecture needs to be observable
as well as controllable. The CEI achieves both, an architectural pattern, presented in this chapter.
Indeed, there is no such thing as free lunch, the CCB, as well as the CEI, are setting prerequisites to
the test approach and the SuT. However, we were able to show, that these prerequisites are not too
restrictive and are fulfilled by a large class of SOASs.

53

Summary. Testing software systems on different integration layers is a common
practice [17, 108, 121] for systematically reveal failures. For this purpose, the SuT
is disassembled into so-called smallest testable units, which are tested in isolation.
These units are afterward integrated and assembled for further testing. Different
strategies are available to do so. The most effective one is to compose the system
step-wise in a given sequence functionally. The challenges and contributions of
this chapter are to identify the smallest testable units for SO mechanisms, to isolate
them, to reassemble and integrate them, to find an adequate integration sequence,
and to supply the test scaffold for implementing these concepts. The content and
contributions of this chapter are published in [46, 48, 49, 52]. 5

Isolating and Integrating Self-Organization
Mechanisms for Testing

5.1 Related Work . 57
5.2 Disassemble and Isolate Self-Organization Mechanisms 59
5.3 Reassemble Self-Organization Mechanisms 61
5.4 Test Architecture for Isolated Testing of Self-Organization Mechanisms . 62

Decomposition of a System under Test (SuT) and addressing di�erent test requirements,
techniques, and methods on di�erent stages or levels is the common practice for testing
software [108]. Myers et al. [108] have introduced this classi�cation and decomposition
into di�erent test levels, that has been implemented later, amongst others, in the V-Model.
Here, testing encompasses the three di�erent stages: system, subsystem, and component
level. These levels correspond to di�erent levels of the software development. Thus,
it is possible to explicitly match test processes and artifacts to development processes
and artifacts. In the V-Model this is graphically notated in a V-like shape, where the
development processes and the test processes are on the opposite sides of the V, and
the top is completely integrated getting more and more decomposed to the bottom.
The aim is to solve the problem of software testing by dividing it into di�erent levels—
according to the divide-and-conquer principle. For this purpose, the SuT is systematically
disassembled and reassembled for the di�erent tests. All these levels are today relying on
automated tests in order to cope with the test requirements for large systems. However,
it has been shown (cf. Cohn [39]) that the highly decomposed components of a program
are tested more e�ectively and e�ciently than more integrated components. This gain
is since tests can be more focused on dedicated functions and are executed faster, as
the complex environment is mostly stubbed. These �ndings are described as the test
(automation) pyramid by Cohn [39], that is shown in Figure 5.1. The pyramid is small at
the top, and wide at the bottom, that should illustrate the number of tests by the area of
the sub-pyramids in the di�erent phases, but also the e�ort for testing is marked at the
y-axis of the drawn pyramid. According to Cohn [39] the following aspects that lead to
a high e�ort are increasing with integration: Tests for integrated systems are

55

5 Isolating and Integrating Self-Organization Mechanisms for Testing

Integration
Tests

Component
Tests

System
Tests

Te
st

in
g

E
ff

or
t

Figure 5.1. The testing pyramid, following Cohn [39], shows the di�erent levels of testing and
its corresponding e�ort. The shown correlation of integration scope and e�ort is re�ected in the
number of test cases that are recommended, shown by the area of the sub-pyramids. Thus, the
implication is the higher the integration level is, the lower should be the number of test cases.

• Brittle: A small change in the interface of the system can break many tests.
• Expensive to write: Writing tests that can cope with changing interfaces takes

time.
• Time-consuming: Tests that run through the system are often taking a long time

to run.
Implementing the idea of the test pyramid is demanding good concepts and implemen-
tations for the isolation of the SuT. Nevertheless, a system cannot be tested thoroughly
only at the lowest level of the testing pyramid, i.e., a Self-Organization (SO) mechanism
cannot be test only in the di�erent phases isolated from each other. Some e�ects, and
consequently some failures, only emerge at the integration level. Indeed, this is of par-
ticular concern for SO mechanisms, since, the mechanisms are relying on this emergent
behavior. Therefore, testing SO mechanisms is divided into three stages:

1. The three de�ned phases of an SO mechanism (cf. Chapter 4) are tested in separate
units,

2. the SO mechanism is tested integrated, and
3. the SO mechanism is tested within the system to be controlled.

An e�ective integration, as well as an e�ective disassembling and isolation of testable
units, is built on a testable architecture, we rely on the Corridor Enforcing Infrastructure
(CEI) (cf. Chapter 4). Disassembling an SO mechanism from the system is based on a
clear component-based description of an SO mechanism in the CEI. We disassemble the
monitor, the SO algorithm, and the distribution mechanism from the Self-Organization

56

5.1 Related Work

Mechanism under Test (SOuT). The SOuT is disassembled from the system it controls,
that is possible due to the de�ned interfaces in the CEI. Note, that in most cases more
than one SO mechanism is tightly integrated into the controlled system and needs to be
extracted. Sca�olding is one of the crucial parts in order to make the SO mechanism
testable.
For the later integration di�erent strategies are available for object-oriented software,
according to Pezzè and Young [121]: big bang, structural, or sandwich resp. backbone
integration. The big bang integration strategy more or less is a shortcut to the system-
level, since, the whole system is integrated at once. This strategy is also known as the
desperate tester strategy, saying that it is less a rational strategy than a recovery from
a lack of planning. Structural approaches are di�erent. Here a plan issues an order
for modules that need to be constructed, assembled, and tested in a given sequence.
Structural approaches are either focused on features or (as described) on modules that
drive the integration. The integration can be either bottom-up or top-down according
to the use/include relation of the modules. The top-down strategy starts the integration
at the top of the use-hierarchy. Thus, the need for test drivers is reduced. Conversely,
bottom-up starts the other way round, reducing the need for stubs or mocks. The
sandwich resp. backbone strategy is starting from both ends of the hierarchy.
For SO mechanisms, we follow the feature-oriented approach (which is due to the
characteristics of the CEI similar to the module orientation): the di�erent phases of the
SO mechanism are combined, and afterward the possible di�erent SO mechanisms are
integrated into the system.
In order to be able to test the SO mechanism in three stages, the SO mechanism has to
be disassembled and isolated and later integrated stepwise. We consequently have to

1. disassemble and isolate the SOuT into the smallest testable unit,
2. integrate the testable units of the SOuT, and
3. provide an adequate test sca�old to operationalize all that.

5.1 Related Work

Isolation and integration of an SuT for systematic testing on di�erent levels is traced
back to the �rst edition of Myers et al.’s [108] textbook in 1979. Testing an SuT in
di�erent levels of integration is an implication of Weyuker’s general test axioms [169]
and is consequently well-investigated in functional and object-orient programming, cf.
[17, 39, 108, 121]. For this purpose, the SuT is disassembled into the smallest testable units
and integrated systematically. The modules of an SuT are often selected as the smallest
testable units, which are to be tested thoroughly with di�erent proposed test methods
to reveal failures from these modules. For objected-oriented software Binder [17], Pezzè
and Young [121], and others de�ne the units also by classes. However, even entire
module tests are not enough to reveal the potential failures from the SuT, shown by
Myers et al. [108] and Weyuker [169]. The consequence is the addition of higher-order
tests to the test suite. Higher-order tests subsume integration tests, system tests, and
acceptance tests. The test suites and methods on the di�erent levels correspond to the

57

5 Isolating and Integrating Self-Organization Mechanisms for Testing

development level of the SuT, forming the V from the well-known V-Model. We follow
the approach of systematically isolating and integrating the SuT.

For isolated testing di�erent methods and techniques have been investigated in the
area of isolated testing of component-based systems. An approach in this area, made
by Thillen et al. [158], promotes the “tester in the middle” idea that aims at improving
testing of distributed components depending on other components in the system. Their
application area is the testing of network components. For this purpose, they model
dependencies within the network to be able to build mock-ups out of this models. We are
going one step further and execute the model for mocking the environment of the tested
component, that is possible due to the run time model concepts introduced in Chapter 6.
Bauer et al. [14] propose a statistical strategy for isolated testing of component-based
systems. Their approach is based on state-based models that are used to generate
interaction test models. The goal is to test the interactions and functionalities within
the SuT which is composed of several system components. The composition of the
components is not straightforward. We are o�ering an approach in this chapter for
addressing this problem for SO mechanisms. Toroi [160] makes a more general approach
for improving testing in component-based systems. His work aims to enhance testing
methods from the integrator view. Yao and Wang [176] present a framework for testing
distributed software components that provides an environment to allow a client-side
software component to de�ne tests for a black-box component published on the server-
side. The framework focuses on automatic test execution without considering the
generation and evaluation of the tests explicitly. Wu et al. [175] propose Jata, a testing
language for distributed components enabling the usage of JUnit in the context of
service-oriented systems and o�ering support for a message-oriented middleware; like
Yao and Wang [176] it focuses on the execution of component tests on web services. In
contrast to the approaches in [175, 176], the here presented approach is handling another
system class with di�erent properties: SO mechanisms. One of the main di�erences in
the properties is the interleaving of the SO mechanism with the controlled system, as
described by Tomforde et al. [159], making new concepts necessary.

Integration is the process of reassembling the isolated components of the system during
testing. Di�erent levels of integration are speci�ed in the literature [17, 108, 121], where
in most cases we di�erentiated between a fully disassembled system (in modules resp.
units), a partially assembled system, and a fully integrated system. The challenge is to
provide a test sca�old which can execute test suites on the di�erent integration levels
and to �nd an integration order for the partial integration. The integration order is
de�ning a sequence of components in which they are systematically integrated. For the
integration of object-oriented software, there has been intensive research to solve the
test integration order problem. The standard strategies, according to Binder [17] are
mainly de�ned over the dependencies of the structure from the classes, e.g., de�ned
by inheritance, associations, implementations, etc. This structure, forming a tree, is
integrated bottom-up, starting from the lowest dependencies, top-down, beginning with
the control objects, or based on collaboration, starting with the class mostly coupled. All
strategies that are introduced by Binder [17] are relying on human judgment. However,
there are also automated approaches to solving that problem. Abdurazik and O�utt [2]

58

5.2 Disassemble and Isolate Self-Organization Mechanisms

compute the sequence for integration. The sequence is built based on the coupling-
between-objects-metric—a common software metric for object-oriented software. For
this purpose, a graph of all objects is generated, where the edges are weighted with the
coupling metric’s values. This graph is used to compute the sequences of integration.
Belli et al. [16] base their integration strategy on the communication sequence graphs.
Within that graph the communication mutants1 of the system are integrated in order to
optimize the selection of the integration sequence. Thus, a heuristic is used to optimize
the integration based on covering mutants in the communication by the integration
scope. The idea is that di�erent mutants are not able to be revealed if not a particular
integration sequence is used. Briand et al. [20] are using evolutionary algorithms for
an optimal choice of the integration sequence, based on di�erent possible optimization
functions. Winter’s [172] approach is also based on solving an optimization problem.
The problem is de�ned by minimizing the dependencies for an integration sequence.
We build upon that idea and de�ne an optimization problem for the integration of SO
mechanisms, that, for instance, can be solved by evolutionary algorithms or constraint
solvers.

5.2 Disassemble and Isolate Self-Organization Mechanisms

Testing on di�erent system-levels of an SO mechanism demands for decomposition.
The decomposition is done by disassembling and isolating the SOuT into the small-
est testable units. A smallest testable unit is described by the responsibilities, from
a speci�cation (resp. black-box) testing perspective, or a de�ned behavior that can
be executed separately, from a functional (resp. white-box) testing perspective. For
functional software, the disassembling and isolating is straightforward, as the functions
provide a clear point for separation. Indeed, there might also be interdependencies
between functions that needed to be stubbed, but the conceptual decomposition is
rather simple. For object-oriented software, the disassembling is more sophisticated;
Binder [17] dedicated himself to the challenges of testing object-oriented software and
comes up with di�erent solutions to the responsibility (he calls it result-oriented) as
well as the behavior-based (de�ned by classes) integration strategies. We extended the
strategies for SO mechanisms, as SO mechanisms extend the concept of software that
is entirely determined at design time. The challenges arise from the characteristics of
Self-Organizing, Adaptive Systems (SOASs):

1. Non-Determinism in the execution of the SO mechanisms, due to the used SO
algorithms (e.g., particle swarm optimizer).

2. Ever-changing environment, that is unpredictable due to its complexity and
determines the behavior of the SO mechanism.

3. Intense interaction between the system components to be controlled.

4. Concurrent execution within the controlled system and, possibly, concurrent SO
mechanisms.

1Changing the code of the SuT and rating the test suite how well it can reveal the changes, which are
called mutants, is a standard techniques for evaluating the quality of test suites.

59

5 Isolating and Integrating Self-Organization Mechanisms for Testing

For the disassembling follows, that these interdependencies need to be burst. The
interdependencies are described by a chain of in�uences, starting with the ever-changing
environment of the SOAS. The environment of the system is the inherent cause for a
need for recon�guration by the SO mechanism. A change of the system’s environment
causes a violation of a constraint of the Corridor of Correct Behavior (CCB). Indeed, that
depends on the de�nition of the environment, but as we de�ned it, the environment is
consisting of all parts that are not under full control by the system but use or in�uence
the system’s outcome. An example from the production cell is the tool of a robot, it is
not under full control of the SuT, e.g., the system cannot control whether or not the tool
breaks, but it is necessary for the outcome—a processed workpiece by applying tools.
Another example from the energy grid: the weather conditions are not controlled by
the system, but in�uence its outcome to produce energy and in�uence the reliability
of the prediction of a power plant. The system, i.e., the system controlled by the SO
mechanism, is thus in�uenced by the environment, whereas the resulting state of the
system, as well as the environment, in�uence the SO mechanism. First, the detection
phase of the SO mechanism is in�uenced by a situation that leads or does not lead to a
detection and activation of the SO mechanism. Second, the computation is in�uenced
by the system state as well as by the activation of the detection phase before. Last, the
distribution phase is in�uenced by the system the solution is distributed to and the
computed con�guration. Knowing the interdependencies enables to break them. The
di�erent described parts are the smallest testable units of the SO mechanism, de�ned
by the phases of SO, cf. Chapter 4. The in�uences, as well as the interfaces de�ned by
the CEI (cf. Chapter 4), enable to isolate them by knowing the behavior to be stubbed.
Further, having more control over the smaller parts to be tested, the non-determinism
can be limited to the computation unit of the SO mechanisms. The rest of the system is
thus made deterministic. The concurrent execution is eliminated for the smallest units
as is the intense interaction and the interleaved feedback loops that result from di�erent
SO mechanisms in one system.

These units in general are:

• The SOuT’s detection mechanism, depending on the environment of the SOAS
and the con�guration of the SOAS.

• The SOuT’s computation mechanism, i.e., the SO algorithm, depending on the
detection mechanism, the environment of the SOAS and the con�guration of the
SOAS.

• The SOuT’s distribution mechanism, depending on the SO algorithm, the envi-
ronment of the SOAS and the con�guration of the SOAS.

First, that might sound a bit oversimpli�ed: decomposing a complex SO mechanism
to only three generic units, which are to be the smallest testable units. Indeed, there
might be smaller units within the three general units. However, these units are most
likely to be methods that can be tested classically, as described in the classical testing
literature. We focus on the individual needs of SO mechanisms. Thus, the testable
units have to re�ect the behavior (which is here the same with the functionality, as the
behavior drives the functional design in the CEI) of SO. The isolation is described insofar

60

5.3 Reassemble Self-Organization Mechanisms

as a concept. For the operationalization of that concept, a test architecture is needed
which technically enables the decomposition by providing the sca�olding. Further, the
decomposed parts have to be integrated in order to thoroughly test the system, since,
the decompositions might cover errors.

5.3 Reassemble Self-Organization Mechanisms

Integrating the SO mechanism(s) is essential for revealing failures which do not occur
in separation. This situation directly follows from the testing axioms of Weyuker [169]:
According to the anti-decomposition axiom, a test suite that can achieve high coverage
for the system at component scope does not necessarily achieve the same coverage
at system or subsystem scope. Thus, testing at system-scope cannot guarantee that
components or subsystems have been covered and vice versa. For instance, achieving a
speci�c coverage for the detection component, the computation component, and the
distribution component does not necessarily achieve the same coverage for the whole
SO mechanism. Following the anti-composition axiom, a coverage at SO mechanism
level is not necessarily achieved by rerunning the test suites of the units of the SO
mechanism. That is, adequate testing of the units is not equivalent to adequate testing
of the SO mechanism and consequently not able to reveal the same failures.

For integration, we follow an incremental strategy, shown to be the most e�cient
techniques, according to Binder [17]. The argumentation of the e�ectiveness is based on
the systematic of exercising the components in interaction by adding one after another.
Thus, the foundation is already adequately tested and the further integration builds
upon proven stable interfaces while the integration continues.

Although the incremental integration is conceptually straightforward, the identi�cation
of the sequence in which the components are integrated is complicated to identify.
This identi�cation is made by carrying out an analysis of the component dependencies.
Indeed, the dependencies and the whole integration process is linked to the architecture
of the software. We rely here on the CEI. The decisive dependencies are here the
in�uences and interfaces between the units for detection, computation, and distribution,
as described above. These phases form the �rst integration step. The second one is
formed by the collection of the SO and adaptation mechanisms in the system if more than
one is available. Thus, we have di�erent building blocks for the composition, and at every
integration step, one block is added. Every block is described by its dependencies. The set
of dependencies of a block is every interaction outside the block, often called fan-in [172].
For instance, an SO algorithm is interacting with the monitoring unit, the controlled
system, and the distribution unit, forming the direct dependencies. The interaction with
the environment and other SO or adaptation mechanisms is indirect via the controlled
system. For isolated testing a stub is needed for every direct dependency, the direct
dependencies can thus be diminished by integrating other blocks, e.g., integrating the
SO algorithm with the distribution unit. Indeed, the di�erent dependencies have a
di�erent e�ort for the test sca�olding, and maybe an integration may lead to a larger
dependency in the newly formed block than in a single block before, but the union of
both is at least the same size, however the aim should be to have a smaller one. This

61

5 Isolating and Integrating Self-Organization Mechanisms for Testing

information is used to form a cost function, according to Winter [172]. Therefore, we
use the following optimization problem for integration, adapted from Winter [172]:

(5.1)
minimize

o
C(o) = Σn

i,j=1cd(i, j) + cid(i, j)

subject to c(i) < c(j).

Where o ∈ σ is the computed integration order having σ as the set of all possible
permutations of the integration, and c(i) = k with i, k ∈ 1, . . . , n the assignment of
the integration position of the ith numbered component (assuming we have a complete
numbered order of all smallest testable components), cd(i, j) the cost function for the
direct dependencies between i and j, and cd(i, j) for the indirect dependencies between
i an j. The cost functions have to be supplied by a test engineer, and the dependency
graph needs to be cycle free. Having Equation (5.1), a general purpose constraint solver
like IBM ILOG CPLEX [1] can be used to solve the integration problem, as shown by
Winter [172]. The result is a sequence optimal to the indirect and direct dependencies.
That sequence is optimized for the test stubs and mock, which turned out to be most
challenging in the technical implementation for the test sca�olds of the case studies
discussed in Chapter 2.

5.4 Test Architecture for Isolated Testing of Self-Organization
Mechanisms

So far, we have conceptually separated and integrated an SO mechanism for staged
testing. The isolation and disassembling are based on the CEI pattern. We identi�ed the
units of an SO mechanism which are tested in separation and afterward systematically
integrated into the SOAS: the detection, computation, and distribution unit. In order to
enable testing as described a test sca�old is needed. A test sca�old is an additional code
needed for the execution of a test suite on isolated, partially integrated, and completely
integrated SuTs. The three main components of a test sca�old are the test driver, the
test stubs, and the test oracle.2 The test driver is responsible for executing test cases
from the test suite, the test stubs are in charge of simulating the environment, i.e., all
components the SuT is isolated from, and the test oracle is responsible for the evaluation
of the test cases, as described in Chapter 3.
The e�ort for providing the test sca�old is often underestimated. According to Pezzè
and Young [121], the average e�ort spent on providing the test sca�old is almost half as
much as for the complete SuT. Consequently, it is worth to engineer the test sca�old
systematically. For this purpose, a test architecture is designed and implemented in this
thesis. The test architecture is shown and described in Figures 5.2 and 5.3. Figure 5.2
shows the structure of the test architecture, it is separated into a Test Suite Generator

2Often in literature, cf. Pezzè and Young [121], a test harness is mentioned as an additional component
of the test sca�old. The test harness is used for providing the deployment environment of the SuT.
As for SO mechanisms the functional environment of the SuT and the environment where the SO is
deployed are amalgamated, we use only the term test stub. Further, we have a completely automated
test oracle, as described in Chapter 3, there is no use for mocks, which are enhanced stubs which are
also responsible for test case evaluation.

62

5.4 Test Architecture for Isolated Testing of Self-Organization Mechanisms

Figure 5.2. The shown Uni�ed Modeling Language (UML) Component Diagram describes the
general architecture for the test sca�old used for testing SO mechanisms. It is separated into the
three main components for full automatization: the Test Suite Generator, the Execution, and
the Monitoring and Evaluation components. For testing, di�erent parts of the SO mechanism
or the whole SO mechanism is plugged into the system via an interface. The adapter enables to
execute the test suite by simulating the environment and the controlled part of the SO mechanism
as Agents. Further, the adapter enables to monitor the SuT and use that information to judge
over the results of the test execution by the Test Oracle.

63

5 Isolating and Integrating Self-Organization Mechanisms for Testing

and a Test System. The Test Suite Generator is responsible for supplying System

Configurations and matching Test Sequences to be executed, forming together the
test suite for the SuT. Indeed, the level of isolation resp. integration is in�uencing the
needed information provided in the test suite. This information concerns the integrated
components and the not integrated components, and is supplied for the Test System by
the System Configuration. It shows which part of the SuT is accessed via test drivers
and which part is mocked by test stubs. Both, test drivers and test stubs, are integrated
into the Agents and the SO Mechanism Adapter. The Test Sequences are describing
environment changes, simulated by the Environment Simulator. They are independent
of the degree of integration. The Execution component, within the Test System, is
responsible for setting up a test suite and executing it. For execution, the Environment

Simulator is manipulating the state of the Agents in the Test System according to the
test cases described in the Test Sequence. The Agents are the controlled system of the
SO mechanism. They are initialized and set up by the System Initializer. For this
purpose, complex properties of the real system are condensed to more straightforward
value representations. The mechanism of these complex properties is incorporated
into the test case generation, as shown in the next chapters (Chapters 6 and 7). This
parting supports a clear separation of concerns: The test stubs and test drivers are
responsible for feeding the input into the SuT and have to be able to make di�erent test
levels (integration levels) accessible. The test generation needs to be able to describe
the complex process of creating di�erent inputs. For instance, a solar power plant
might be represented by an Agent that only has a numeric value for its state (depicting
the credibility of energy production), if that is the observed variable of the SO. This
abstraction is done by the test engineer within the test case generation (either manually
or, like proposed in Chapters 6 and 7 in a model-based fashion) and described in the
System Configuration by di�erent types of Agent that need to be created as well
the properties. The change of a property is then described in the corresponding Test

Sequence.

The SuT is plugged into the system via an interface. Depending on the level of integration
of the test to be executed di�erent components are integrated and tested. The SO

Mechanism Adapter stubs the not integrated parts of the SO mechanism. Therefore,
the stubbing behavior needs to be provided within the SO Mechanism Adapter. Thus,
the external behavior in the Execution component of the SO Mechanism Adapter is
always the one of a complete SO mechanism. The Monitor and Evaluation component
observes the test execution via di�erent interfaces by the Test Monitor and evaluates
the data by the Test Oracle, that is implemented as described in Chapter 3.

Figure 5.3 shows an UML Sequence Diagram of the test architecture, which describes
the dynamic behavior of the architecture in more detail. We use this architecture for
the further implementation of the test systems in this thesis and will illustrate how it is
implemented for di�erent test approaches and di�erent SuTs. The architecture re�ects
the nature of SO mechanisms by emphasizing the environment and the controlled
components of the SO mechanism. Simulation is for this purpose an essential part
for stubbing the not integrated parts of the SuT. The simulation enables to provide
inputs to the SuT, which are described in the Test Sequence. As described in Figure 5.3,

64

5.4 Test Architecture for Isolated Testing of Self-Organization Mechanisms

Fi
gu

re
5.
3.

Th
e

sh
ow

n
UM

L
Se

qu
en

ce
D

ia
gr

am
de

sc
rib

es
th

e
ab

st
ra

ct
dy

na
m

ic
be

ha
vi

or
of

th
e

ex
ec

ut
io

n
of

on
e

te
st

su
ite

in
th

e
de

ve
lo

pe
d

te
st

ar
ch

ite
ct

ur
e,

sh
ow

n
in

Fi
gu

re
5.2

.T
he

de
sc

rib
ed

st
ep

sw
ill

ta
ke

se
ve

ra
lt

im
es

fo
rd

i�
er

en
tT

e
s
t
S
u
i
t
e
sg

en
er

at
ed

.F
irs

t,
th

es
ys

te
m

is
se

tu
p

an
d

in
iti

al
ize

d
ac

co
rd

in
g

to
th

e
S
y
s
t
e
m

C
o
n
f
i
g
u
r
a
t
i
o
n

of
th

e
ap

pl
ie

d
te

st
su

ite
.A

fte
rw

ar
d,

th
e

gi
ve

n
T
e
s
t
S
e
q
u
e
n
c
e

is
ex

ec
ut

ed
by

sim
ul

at
in

g
th

e
en

vi
ro

nm
en

ta
nd

m
an

ip
ul

at
in

g
th

e
A
g
e
n
t
sw

ith
in

th
e

sy
st

em
.T

he
S
O

M
e
c
h
a
n
i
s
m
A
d
a
p
t
e
r

is
ru

nn
in

g
th

ro
ug

h
th

e
di

�e
re

nt
ph

as
es

an
d

ei
th

er
sim

ul
at

es
a

pa
rt

th
at

is
no

t
su

pp
lie

d
or

pa
ss

es
th

e
in

fo
rm

at
io

n
vi

a
th

e
in

te
rfa

ce
to

th
e

Su
T.

Th
e
M
o
n
i
t
o
r

is
sa

m
pl

in
g

da
ta

at
th

e
ne

ur
al

gi
cp

oi
nt

so
ft

he
SO

m
ec

ha
ni

sm
(a

td
i�

er
en

t
po

in
ts

of
th

e
in

te
ra

ct
io

n)
.T

hi
si

nf
or

m
at

io
n

is
ev

al
ua

te
d

by
th

e
T
e
s
t
O
r
a
c
l
e

to
fo

rm
th

e
T
e
s
t
O
u
p
u
t
.

65

5 Isolating and Integrating Self-Organization Mechanisms for Testing

each Agent needs an initialization according to the con�guration of the test suite.
Afterward, the test cases, within the Test Sequence are executed by setting them for
the Environment Simulator. The setup involves in general, as shown in Figure 5.3, the
Test System’s stubs, but also the con�guration provides information about the SuT,
its composition, and con�guration. The SO Mechanism Adapter is the centerpiece of
the architecture, enabling to integrate the SOuT, but also to stub not integrated parts.
The steps 8, 10, and 12 of the UML Sequence Diagram in Figure 5.3 can be either used
as a stub or test driver. These steps correspond with phases of an SO mechanism, as
described in Chapter 4, and are the neuralgic points for the Test Monitor to sample
data for later evaluation, as shown in the steps 9, 11, and 13 in Figure 5.3. All that
information is collected by the Test Monitor and processed with the Test Oracle.

Summary and Outlook. Theory [169] as well as practice [17, 121] have proven staged testing of
software systems as the most effective and efficient method for revealing failures. Testing of SO
mechanisms is no exception, here the divide and conquer principle and the dedicated examination
of the units of the SO in the SOAS is needed to reveal failures. As we will show in Chapter 6
failure masking—an aspect to be considered due to the self-healing capabilities of SOAS—is only
identifiable in isolation, whereas some other errors are only propagated to a failure in interaction and
thus integration. We set the stage to enable different test techniques to act at different test stages
in this chapter. We explained how to disassemble an SO mechanism despite its tight integration
in the SOAS and its interleaving with other SO mechanisms. We showed how a disassembled
SO mechanism is testable in isolation. The concepts for isolation of SO mechanisms are needed
for fully disassembled SO mechanisms as well as for partly integrated SuTs. Integration of SO
mechanisms is based on the identified dependencies, which are either direct or indirect. The
indirect dependencies are responsible for the emergent behavior, that is characteristic of SOAS.
Having the dependencies, identified by a test engineer, a constraint optimization problem can be
formulated and solved for computing the integration sequence for an SO mechanism with the minimal
dependencies, which need to be stubbed. Stubbing is beside the test driver and the test oracle
the primary responsibility of a test framework. In order to enable a systematic development and
implementation of a test framework, we supplied an architecture that is used in this thesis for all
further testing approaches and is applied to all case studies.

66

Summary. We establish a closed-loop Model-Based Testing (MBT) concept
for SO mechanisms. Therefore, the information from the executed SuT and its
environment is fed back into an executable run time model. Thus the model
is used for the evaluation of test results, the provision of information for test
case generation, and the execution of the tests by executing the models. We
differentiate test models for continuous and for discrete SO mechanisms. For
continuous SO mechanisms, the focus is on describing the environment based
on probabilistic profiles, which are used for test case generation. A fault-based
test model, describing environment faults as tests, for discrete SO mechanisms is
further provided. We show how Back-to-Back (BtB) testing is used for providing
high-quality test models. Afterward, we evaluate the approach in the context of five
different case studies. The content and contributions of this chapter are published
in [45, 48, 49, 51, 52, 57].

6
Closed-Loop Model-Based Testing for

Continuous and Discrete Self-Organization
Mechanisms

6.1 Related Work . 69
6.1.1 Run Time and Design Time Approaches for Testing Adaptive Systems 70
6.1.2 Model-Based Testing . 71
6.1.3 Back-to-Back Testing . 73

6.2 Closing the Loop of Model-Based Testing 73
6.2.1 Feedback in Model-Based Testing 75
6.2.2 Concept of Run Time Models 77
6.2.3 Model Reflection for Reflecting Changes in the System under Test . . 78

6.3 Probabilistic Models for a Continuous Self-Organization Mechanism . . 79
6.3.1 System Model . 79
6.3.2 Environment and Test Model 81

6.4 Fault-based Testing Models for Discrete Self-Organization Mechanisms 85
6.4.1 The System Model for Discrete Self-Organization Mechanism 86
6.4.2 The Environment and Test Model for Discrete Self-Organization Mecha-

nisms . 86
6.4.3 Designing Test Models with Environment Faults 88

6.5 Back-to-Back Testing of Test Model and Implementation 90
6.5.1 Using Executable Run Time Models for Back-to-Back Testing 91
6.5.2 The Special Case of Back-to-Back Testing Self-Organization Mechanisms 91

6.6 Evaluation . 92
6.6.1 Production Cell—Testing an Integrated, Discrete Self-Organization Mech-

anisms in a Back-to-Back Test Setting 94
6.6.2 Energy Grid—Testing a Disassembled, Continuous Self-Organization

Mechanism . 103
6.6.3 Load-Balancing Web-Service—Evaluating the Test Approach in a Con-

trolled Experiment . 117
6.6.4 Pill Production—Investigating Reusability and Generalizability of the Test

Model in Resource-Flow Systems 121
6.6.5 Apache Hadoop—Testing an Industrial Case Study in Full Integration . 123

67

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

So far, we have developed an approach for specifying the behavior of Self-Organization
(SO) mechanisms, automatically derived a test oracle, designed a testable and widely
applicable architecture, where we showed how it is used to isolate and integrate the SO
mechanisms. In this chapter, we will use all these foundations for actual testing the SO
mechanisms against their speci�cation in a Model-Based Testing (MBT) fashion. When
we say testing we mean the execution of the System under Test (SuT) under di�erent
conditions with the intention of revealing failures. For this purpose, a test suite has to
be generated, executed, evaluated, and rated according to its adequacy. We will show
how that is possible in full automation within the MBT concept.
The MBT concept enables to handle the complexity of the SO mechanism by abstraction.
For this purpose, we will build the overall model from three di�erent parts: the system
model, the environment model, and the test model. The system model is used to describe
the SO mechanism itself. The environment model describes its dependencies to the
environment as well as the environment itself. The test model enriches both models
with information for deriving test cases. Further, the model even enables to script the
test suite and execute it on the SuT, by using the model as a test sca�old.
The environment is of utmost importance for SO mechanisms, as it is determining
its abilities. As the environment of SO mechanisms comes in di�erent shapes, as
described in Chapter 2, di�erent modeling approaches are needed for the test and
environment model of discrete and for continuous SO mechanisms. Thus, for discrete
SO mechanisms, discrete changes of the properties of the environment are to be modeled
and for continuous SO mechanisms, continuous property changes are described. For
the �rst, we rely on the concept of fault-based testing applied to the environment of the
SuT, annotating possible faults into the controlled environment of the Self-Organization
Mechanism under Test (SOuT). A possible environment fault might be the following: a
drill in the production cell is broken, i.e., a particular environment fault, and consequently
is no longer available to the Self-Organizing, Adaptive System (SOAS) and thus changes
the solution space of the responsible SO mechanism. For the continuous SO mechanisms,
the model is a probabilistic description of the continuously changing environment, this
is called Environment Pro�le (EP). An EP is a probabilistic description of state changes
in the environment. For instance, the changing prediction quality of a solar power plant
is described by a continuous variable, that is changing each step1 by a de�ned change
described in the model with a de�ned probability. These environment models, both for
discrete and continuous SO mechanisms, are used for the test case derivation. This is
done in a so-called online testing approach, i.e., the test cases are derived, completed
with test data, and executed right after another. Since we use executable models, the
test execution is the execution of the model that is producing an output that could be
fed into the SuT as a test input. Besides the environment of the SuT, the SuT itself
is part of the model. That makes it easy to integrate di�erent parts of the SuT since
parts of the model change their roles, i.e., the test stub becomes a test driver for the
SuT and vise versa. Further, the generated test oracle, from Chapter 3, can execute its

1Note that we described in Chapter 5 a step-wise execution model. Thus, although the properties of
continuous SO mechanisms are changing in �xed time steps the value is still continuous.

68

6.1 Related Work

constraint evaluation on the test model that is instantiated with the current state of the
environment and the SuT. For this purpose, the models need to evolve with the system
and re�ect the current state of the system. We describe how that is possible with the
concept of run time models.

Testing the test model and its sca�olding is necessary since the complexity of the test
framework, i.e., the complete environment for testing, is vast and human faults may
also occur in designing and implementing the test setting. We show how this is done
by applying Back-to-Back (BtB) testing [166]. For this approach, the test engineer and
the development engineer are developing the actual system and the test framework
back-to-back. That enables to reveal inconsistencies by executing the developed system
with the test framework. The test engineer and the developer have to decide whether
the test system or the SuT is incorrect according to the speci�cation.

The whole approach of MBT for SO mechanisms, as presented in this chapter, is thor-
oughly evaluated. In Chapter 2, we describe how �ve di�erent systems have been tested.
The evaluation demonstrates di�erent capabilities of the approach presented in this
chapter. Two of the systems, the energy grid (with a continuous SO mechanism) and the
production cell (with a discrete SO mechanism) are investigated in depth. However, all
described case studies are thoroughly tested, we use them to show di�erent aspects of
the approach and consequently put di�erent emphasis on the details. Showing a detailed
version of the probabilistic model and the fault-based model is the starting point of the
evaluation. As proposed in Chapter 5, we start by disassembling the system and test
the SO algorithm in isolation, this is shown for two di�erent SO algorithms within the
energy grid. Next, we show how to integrate the SO mechanism of the production cell for
testing. The full integration is shown for the Hadoop system, here we switched all stubs
to test drivers and can execute the test cases on the system-level. Further, the Hadoop
testing endeavor allows us to judge over the abilities of the approach to be applied to
industrial systems. The web-service case study is used with emphasis on the usability
of the approach. As the implementation was carried out in a student project, we discuss
our observations from this point of view. Last, the pill production demonstrates how
generic the approach is by relying on generalization. The pill production, as well as the
production cell, are implemented on the basis of the same meta-model for resource-�ow
oriented systems.

6.1 Related Work

The necessity of testing adaptive systems has been recognized both in the testing
community [114, 118, 173, 174, 180] and in the community of adaptive systems [40, 63,
127]. Siqueira et al. [148] present an overview of the di�erent concepts and techniques
for testing adaptive system given in the literature. They summarized non-determinism
and the emergent behavior as the main challenges for testing adaptive systems claimed
by their investigated papers. Testing SO mechanisms face similar challenges, caused by
moving decisions from the design time of the system’s development to the run time of
the system’s execution. In general, the approaches for the quality assurance of adaptive
systems could be clustered into run time and design time approaches. The idea is to

69

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

use similar concepts and ideas for testing as for designing the SuTs. The design time
approaches focus on assuring the quality before the system is released, in most cases via
testing. The run time approaches instead are carrying out the quality assurance after
the release, that is what in most cases is called at run time in the related approaches.
The approach for quality assurance in this chapter is executed at design time but makes
use of run time concepts, but denoting run time with the execution time of the test suite.
We show how MBT could be used to assure the quality of SO mechanism.
The review of the related work focuses on di�erent areas: we will discuss in general
the design and run time approaches for testing adaptive system, as the approaches are
entirely related to testing of an SO mechanism. Further, we are reviewing the approaches
in the �eld of MBT, which is the central methodology in this chapter, as well as the
work of the model@runtime community. Besides, the approaches of BtB testing are also
discussed in this section, relating to the concept of BtB testing of SO mechanisms as
proposed in this thesis.

6.1.1 Run Time and Design Time Approaches for Testing Adaptive Systems

All, run time as well as design time approaches, presented here are focused on assuring
the quality of adaptive systems. Siqueira et al. [148] summarize the work in this area and
show the main challenges, namely non-determinism and emergent behavior which are
due to autonomous decision making at run time. The adaptive systems are, in contrast
to the SO systems, focused on the adaptation of parameters, settings, and capabilities
of the system by (in the most cases) a central instance. Self-organization instead is
adapting the organizational structure of the system or parts of the system in (most cases)
a decentralized approach. The di�erence is the integration of the mechanisms and the
abilities to change the system. Nevertheless, the approaches for quality assurance are
still related to the work in this thesis.

Run Time Approaches Run time approaches for testing take up the paradigm of run
time veri�cation [59, 60, 90]. They shift testing into run time to be able to observe
and test, e.g., the adaptation to new situations. Camara et al. [26] are using these
concepts to consider fully integrated systems. Their testing approach focuses mainly
on testing non-functional properties of the system or more precisely, the resilience
of the adaptive system. The authors, therefore, investigated the system’s adaptive
capabilities by collecting and analyzing data in a simulated environment. The gained
information is used as feedback for the running system. Ramirez et al. [130] take a
similar approach, that is also focused on non-functional requirements. The authors use
the sampled data from a simulation to calculate a distance to expected values derived
from the goal speci�cation of the system. This information is used to adapt the system
or its requirements proactively during run time. Run time approaches, however, are
limited to tests of the fully integrated system and therefore are faced with problems
like error masking which is very likely in such self-healing systems. In this thesis, we
bene�t from the piecemeal integration of the system for testing relying on the Corridor
Enforcing Infrastructure (CEI). Thus, it is possible to avoid error masking within this
approach by testing the SO mechanisms in isolation.

70

6.1 Related Work

An essential di�erence to the mentioned work is that the approach of this thesis is using
testing for revealing failures instead of analyzing the current system state for generating
feedback for the adaptation. Still, we also use the basic concepts of run time testing.
The CEI allows us to split the evaluation into the three responsibilities Detect, Solution,
and Distribution which in turn enable us to evaluate the runs without the evaluation
of complex system states on the system-level. As the evaluation shows, the CEI-based
testing approach is especially bene�cial in the context of self-organization.

Design Time approaches Design-time approaches like [92, 114, 118, 155, 180] test the
systems during its development. All of these approaches are considering some dedicated
parts of the system. Consequently, it is not possible to give evidence about the correct
functionality of the overall system. Zhang et al. [180] compose their tests towards a
fully integrated system test, but they do not consider adaptivity or SO explicitly since
they focus on testing the correct execution of plans within multi-agent systems. Nguyen
et al. [114] promote an approach for a component test suite (where the components
correspond to agents) but do not consider interaction or organization between the agents
as it would be necessary for SO.

The evaluation of the test results, i.e., the application of a test oracle for adaptive
behavior, is only considered by Fredericks et al. [63, 64] and Nguyen et al. [116]. Both
approaches are relying on goals re�ecting the requirements of the system that are
somewhat loosened in order to re�ect the ever-changing environment the agents have
to adapt to: The approaches mitigate the goals with the RELAXed approach [171] or
consider soft goals that do not need to hold at all times. Consequently, the decision of
the test oracle is somewhat fuzzy. In the approach proposed in this thesis, the de�nition
of correct and in-correct behavior is given by the Corridor of Correct Behavior (CCB),
that enables us to decide whether a failure occurs or not.

6.1.2 Model-Based Testing

Using models, in an implicit or an explicit form, is a widely used testing technique, that
has been proposed by di�erent authors [17, 21, 68, 126, 162] for easing and structuring
the process of testing. Model-Based Testing is used for reducing the complexity by the
abstraction ability of models. Pretschner and Philipps [126] summarize di�erent areas of
applications and methods that are all commonly known as MBT. However, none of these
cases are using the information of the executed tests to provide feedback within the
model; this is what is proposed in this chapter as closing the loop of MBT. Further, the
focus is mostly on generating test models by describing abstract test cases as a model,
e.g., by using an Uni�ed Modeling Language (UML) sequence diagram and deriving a set
of concrete test cases based on a data set of test data. The use of models in this chapter
highlights the environment and includes di�erent concepts of test case description. All
these concepts and extension serve the purpose of testing SO mechanisms. One crucial
aspect is closing the loop and using the model at run time. The aspects of using models
at run time are also investigated in the models@runtime community.

71

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Models@Runtime Aßmann et al. [12] describe the concept of models@runtime. The
main idea is to instantiate the model at run time and also to make intense use of di�erent
types of models for improving the system while it is executed. In general, the concepts
are in the most cases applied to enhance the modeled system at run time by using
the prediction or computations for new con�gurations of the system [12]. Trapp and
Schneider [161] investigate the usage of models at run time for safety certi�cation
with similar approaches like the one introduced for run time veri�cation by Leucker
and Schallhart [90]. In this case, the evaluation of the properties is executed on the
model, similar as done in this chapter for testing, and if a property fails the safety of
the system is no longer given, and some sort of quiescent state is needed, as described
by Güdemann et al. [70]. Habermaier [71] as well as Leupolz [91] applied the concepts
of models@runtime for the veri�cation of safety properties. They used the abilities of
the executable models to check its state space via executing every possible state in the
model. This execution is a form of model checking for safety properties. In this context,
the modeling language S# has been developed, which is a language used to describe run
time models in this thesis.

Test Models of Environmental Changes There are several approaches to tackle uncer-
tainties about the expected usage of an SuT within testing models. They can be summed
up under the idea of operational pro�les [149]. The information within these test mod-
els represents the user’s behavior in a probabilistic model. For this purpose, di�erent
techniques for generating and using these pro�les have been provided.

Operational pro�les thus are an established technique for modeling uncertain behavior—
mainly of the user—for designing test models and for evaluation purposes. In this
chapter, we use environment pro�les which are based on a similar concept to deal with
the complexity of the ever-changing environment of SOAS by reducing its state space
using a probabilistic approach.

Sammodi et al. [142], e.g., generate usage pro�les, as they call them, by monitoring
the user’s interaction with the system and deriving the pro�les for the observed usage
afterward. One of our possibilities to establish EPs also follows this monitoring and
analysis process with the di�erence that we are not monitoring users of the system.
Instead, we monitor the whole system environment which includes all in�uences on
the SOuT. Samih et al. [141] present another approach to design models of the usage.
They enrich the models by introducing capabilities in order to model variants of speci�c
features, i.e., product features, to form test models for product line engineering. The
approach made by Ehlers et al. [58] focuses on using the usage pro�les for detecting
anomalies in adaptive systems in order to use the information about the anomalies
during the adaptation process. Besides focusing on handling user behavior, there is also
some work on representing the behavior of other system components in the test model,
like Popovic et al. [125]. The authors use the models for protocol testing and therefore
represent valid and invalid communication between components.

72

6.2 Closing the Loop of Model-Based Testing

6.1.3 Back-to-Back Testing

Back-to-Back testing was initially proposed by Vouk [166] and describes the concept of
the co-development of a test system and the actual system or mechanisms based on the
same requirements, letting the two systems compete with each other in order to reveal
discrepancies and errors. Back-to-Back testing emphasizes the correct interpretation of
the actual requirements and their implementation. The assumption made is that two
di�erent developers resp. development teams will not make the same mistake twice, i.e.,
misinterpret or neglect functional requirements, and so the discrepancies between the
two systems reveal potential development errors. This concept is in this thesis applied
to the development and test of SO mechanisms.

6.2 Closing the Loop of Model-Based Testing

Testing aims at revealing failures, i.e., showing that the actual and the intended behavior
of the SuT di�ers. For that purpose, the test engineer has to get clear about the intended
behavior of the system. Test engineers use the requirement speci�cation of the SuT
to gain the necessary understanding of the intended behavior. We could say the test
engineer builds a mental model of the system’s behavior, requirements, and of possible
test cases. Binder [17] argues that consequently, all testing is model-based. Indeed,
this approach is ‘implicit, unstructured, not motivated in its detail, and not reproducible”,
according to Pretschner and Philipps [126]. Model-Based Testing makes these implicit
models explicit. Thus, MBT is used for structuring the testing approach and its activities
and further, allowing for automation of testing activities by using models describing
either abstract test cases or the system’s requirements and behavior. The focus of the
test engineer can be shifted from implementation and execution of tests to the design
and analysis. This is possible as the test models are used for [162]:

1. Test data generation

2. Test case generation

3. Test case generation with a corresponding oracle

4. Test script generation

Focusing on design and analysis is of special interest for large and complex systems, that
is where the additional e�ort for the creation of the models pays o� [21, 131]. However,
models are easier to understand, validate, maintain and are useable for automation
making the initial e�ort paying o� [126]. Therefore, the model requires to be more
abstract than the SuT and/or concrete test cases and needs a de�ned syntax and semantics
to be machinable for automation. Abstraction is an inherent property of models following
their de�nition: A model is, according to Stachowiak [151], de�ned by the following
properties:

1. The mapping property: Models are mappings from the concrete (original) into an
abstract representation.

73

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Test Engineer

Test Model

Test ScriptsTest Cases

Specification

Figure 6.1. The generic MBT process, according to Götz et al. [68]. Starting position is the
speci�cation, the test engineer uses it for generating a test model. The test model comes in
di�erent shapes, either abstract test cases and test data or a description of the intended behavior
of the SuT. The model is used for the automatic generation of test cases and/or test scripts to be
executed on the SuT.

2. The simpli�cation property: Models are not re�ecting all attributes of its repre-
sentation (original), only those which are relevant for the corresponding usage of
the model.

3. The pragmatism property: Models serve a speci�c purpose.
Abstraction is achieved by omission and/or encapsulation of details within the model
[126]. The details of the concrete systems are omitted to get rid of clutter, i.e., information
that is deemed irrelevant for the speci�c purpose. However, if missing information is
considered as necessary, it should be re�ned by the test engineer. The omission is needed
for providing the intended properties of the model, which supports handling complex
systems. Encapsulation of details further supports these properties by reducing the
complexity by incorporating references and not the content they stand for [126]. Indeed,
omission and encapsulation of details are two related activities. Test models might omit
details for getting the intended simpli�cation of the SuT, used for generating test cases.
However, to execute the test cases more concrete information might be needed; we need
the encapsulated detail to �ll in this information. We are consequently working on a
di�erent level of abstraction.
Figure 6.1 illustrates the process of MBT from system speci�cation to test cases and test
scripts. The responsibility for assembling the test model is due to the test engineer, who
needs to �nd the right abstraction for the model. Once the test model and the toolchain

74

6.2 Closing the Loop of Model-Based Testing

for automatic derivation of test cases and test scripts is established it is possible to
easily add or change aspects within the model, for instance when the speci�cation is
changing. The focus is set on the design and speci�cation of the test suite which comes
with a bunch of bene�ts. First of all, the test models enable an in-depth understanding
of the speci�cation of the SuT, making it explicit in the model. That model is traceable
in the sense that each part of it is connected with the speci�cation, but also with the
generated artifacts, like the test cases and the test scripts. The test model, in contrast to
an implicit model of a test engineer, can be validated, i.e., checking whether the test
model conforms to the speci�cation, but also whether the speci�cation tackles the actual
needs of the users. Thus, the test model is well-suited to de�ne and check the adequacy
of the desired test suite on it [162]. This integration of di�erent vital aspects helps to
improve the quality of the test artifacts, as demonstrated by Utting and Legeard [162].
For this purpose, there is an implicit closed-loop where the model is giving feedback to
the test engineer, but also to the speci�cation. That is of importance when the SuT and
its speci�cation is complex, as it is for SOAS, to achieve the desired high quality of the
system.
However, the process from the test model to the SuT and its environment as well as the
execution of the test cases is directed one-way (cf. [68, 126, 163]), as shown in Figure 6.1.
For SOAS, this feedback is needed in order to cope with the self-organizing behavior.
Having a closed-loop MBT approach enables to use the feedback for enhancing the
test model. The model has now the ability to adapt to the SuT and could be used for
evaluations and decision making at run time. Figure 6.2 shows the process of Figure 6.1
extended by a closed-loop. In order to incorporate the feedback into the model and
re�ecting the results of the executed tests as well as the state of the test model, model
re�ection is needed: Model re�ection describes the instantiation of a model at run
time with the current state of the SuT, the environment, the test results, among other
things. To enable that re�ection and to use the information for test case generation and
execution, or even for adaptation of the test model, run time models are needed. Run
time models, following the de�nition of Aßmann et al. [12], are models that, �rst, can
be instantiated with a concrete state and, second, are executable.

6.2.1 Feedback in Model-Based Testing

Model-Based Testing is, as introduced above, a static process for the automation of
testing activities. This process and method have been proven, as shown by Binder et
al. [18], to be very successful when established for systematic testing of complex systems.
The information of the test engineer is set and, in an open-loop-control manner, the test
activities are carried out without considering the output of the system. As described by
Binder et al. [18], that works quite well, even for complex systems. However, testing SO
mechanism extends the challenges for testing by the following:

• Making SO mechanisms testable as well as isolating and integrating SO mecha-
nisms for testing

• Coping with error masking of SO mechanisms in testing
• Providing a test oracle for SO mechanisms

75

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Test Engineer

Test Specification
Model

Test ScriptsTest Cases

Specification

O C O C O C

O C

O C O C O C

O C

O

SuOC

C O

SuOc

C O

SuOC

C

O C

SuT

Test Base Model

Figure 6.2. The generic MBT process from Figure 6.1 has been extended here by feedback.
That is closing the loop between the SuT and the test model. Further, the test model itself is split
into a test speci�cation model and a test base model. The latter is delivering input to the test
engineer by providing standard information used for MBT, the test speci�cation is an extension
of that model.

76

6.2 Closing the Loop of Model-Based Testing

• Coping with a huge state space
These requirements are derived in Chapter 2. At a �rst glance, it looks as standard
requirements of complex systems, however, the characteristics are entirely di�erent to
address. That is due to the fact that the systems are highly depending on the environment
and are acting in a partially unpredictable way according to the environment. We have to
cope with that by closing the loop of MBT. Figure 6.2 illustrates that idea, the information
from the SuT as well as its test execution is fed back into the model, the test cases, and
test scripts. Thus, this information can be used for controlling the test execution, the test
generation, and the test case evaluation; consequently, for the whole test activities.
Establishing a closed-loop MBT requires the following:

1. A monitor of the SuT and its environment is needed to feed back the output into
the test system.

2. A processing needs to be carried out, i.e., the test model instances need to be
updated (including encoded test goals).

3. A situation aware test case generation is needed, that is producing the input to the
SuT (in control theory the plant).

4. A test goal is needed to steer the test case generation.

The monitor is part of the test sca�olding, already described and discussed in Chapter 5,
where di�erent parts of the SuT are monitored in order to provide the necessary infor-
mation. Which information is necessary is directly derived by the test model, where
each part needs information about the current state by the monitor. This information is
processed in the run time model, a concept that is described in Section 6.2.2, by using
the concept of re�ection, introduced in Section 6.2.3. The test case generation, that is
described in Sections 6.3 and 6.4, is able to use the run time model and the provided
information for test case generation, that is able to ful�ll the test goals, discussed in
Chapter 7 as well as throughout Sections 6.3 and 6.4. This forms the approach of MBT
for SO mechanism, based on feedback.

6.2.2 Concept of Run Time Models

The model in MBT is in general consisting of three main components [68]:
1. The system model,
2. the test model, and
3. the environment model.

Whereas the system model is a mapping of the SuT, the test model is a description of
the test cases for the SuT within the model, and the environment model describes the
SuT’s relevant environment. Within these models, it is possible to conceptually describe
the SuT, its environment, as well as its test suite. Further, this model is used to re�ect
the current state of all these components during testing by merely instantiating the
model. The current instance of the model should then re�ect the current state. For this
purpose, so-called run time models are used. These models are characterized by the
ability to be instantiated at run time. Thus, the model can re�ect the current state of

77

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

the modeled system in order to reason about its state. Besides this ability, the run time
models used in this thesis are also executable. The execution of the model allows for
the simulation of the modeled components. This simulation is used in this thesis for
the test case generation: By simulating the test model possible inputs for the SuT are
generated. Further, the executable model is used as a test sca�old. The run time model
is either used as a test stub or as a test driver. The driver provides the necessary binding
between the SuT and the run time model. The test stub provides information needed by
the SuT for its execution, by directly simulating the stubbed component.

Aßmann et al. [12] “perceive re�ection, modeling and separation of concerns as the three

main pillars to achieve models@run.time”. We follow this thought of run time models.
For the implementation of the run time model in the MBT approach we use object-
oriented programming languages for describing our models. Thus, re�ection, modeling,
and separation of concerns, as well as the fact that they are executable, is already built-in.
Indeed, only a subset of the programming language is needed for the desired modeling
language. We build upon the concepts of S#, a modeling language designed by Haber-
maier and Leupolz [71, 72, 91] for modeling safety-critical systems. S# brings forward
established software engineering principles, e.g., re�ection and separation of concerns,
and best practices to the modeling and analysis during all phases of development. It is an
integrated approach for the systematic development of comprehensible, adequate, and
modular models [72]. S# is a modular modeling language based on the C# programming
language. Thus, it provides a component-oriented domain-speci�c language built on
top of an object-oriented language. Similar concepts can be applied in Java, as we will
demonstrate in the evaluation (in Section 6.6).

6.2.3 Model Reflection for Reflecting Changes in the System under Test

Establishing a situation awareness of the test system, e.g., for test case generation, as
well as being able to execute the test oracle, as described in Chapter 3, on the test model,
requires a processing of the monitored data from the system and its environment into
the test model (to be precise into the system and environment model). Model re�ection
is responsible for that task within the proposed closed-loop MBT approach. Knowing
its structure and being able to modify it, if necessary, is the ability of model re�ection.
Model re�ection is similar to the re�ection known from programming languages like C#
or Java. As we rely on these two languages as a modelling language, we can use these
concepts of re�ection here, too. To apply re�ection, we have to analyze the executed
SuT. This is done via test drivers, as described in Chapter 5. The test driver is written in
the object-oriented language of the model and is responsible for getting the information
from the sensors in the SuT. This is done either invasive, by incorporating code into the
SuT, or non-invasive, by using the given interfaces of the SuT. The test infrastructure,
as described in Chapter 5 o�ers interfaces to access the system. Nevertheless, there is a
domain-speci�c implementation e�ort needed to implement these interfaces and the
test driver for the speci�c SuT, as we will show in the evaluation in Section 6.6. The
information gained from the test driver is used to change the instances of the system and
the environment model (and if needed even the test model, if test cases are adapted, as

78

6.3 Probabilistic Models for a Continuous Self-Organization Mechanism

shown in Chapter 7) and also the structure. Changing the structure of the model at run
time is only possible due to the re�ection capability of the used modeling language.

Generating a Snap Shot During Model Reflection In a distributed system the generation
of a consistent snapshot is far from obvious due to the needed synchronization. We
gather the information for a snapshot at every test step (a test step lasts for a maximum
of 300ms) by sampling the information in a �xed order. The resulting time di�erence of
the sample (with a maximum of 300ms) showed no impact on the overall results of our
investigated case studies. This is due to the e�ect that con�gurations outside the CCB
that are missed within this time slot are not of interest since they can be considered
as a successful recon�guration by the adaptation mechanisms if the con�guration is
inside the CCB again. Further, the systems have shown to be not as quick in changing
its con�guration within milliseconds. Thus, the snapshot generated is valid for our
testing approach. That is one of the results that is further discussed in the evaluation
(Section 6.6).

6.3 Probabilistic Models for a Continuous Self-Organization
Mechanism

Continuous SO mechanisms are characterized by the environment they are designed for,
that is formed by the continuously changing properties. The domain and solution space
of the SO mechanisms is thus continuous. In this section, we will demonstrate how
the environment and the tests are modeled with probabilistic models. The underlying
idea is that a pro�le of the continuously changing environment is formed. This pro�le
describes the delta of a change as well as the likelihood of such a delta to occur. The
system, test, and environment models are designed to enable this description within the
run time model.

6.3.1 System Model

Starting with the system model, we can reuse the domain model resulting from the
requirement analysis, as described in Chapter 3. This model is re�ned by adding technical
classes that are needed for the implementation of test the framework and removing
clutter not needed for the implementation of the test system. For generating the initial
system con�guration of a test run, a description of the test con�guration is needed. The
intention is to provide the information necessary to automatically generate and also
reasonably constraining the following setting within a test run:

• Set of agents of di�erent types

• Initial state of the agents

• Agent groups and members

• Initial system structure

• Fully parametrized SOuT

79

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

The needed speci�cation is further subdivided into the test system and the SOuT.

The system model speci�es all vital information from the domain the SOuT belongs to
and is used for generating the system con�guration within the test suites. Further, the
system model is provided that is enriched by constraints describing the CCB (cf. Chap-
ter 3). Concerning our power plant case study, the constraints de�ne valid partitionings,
e.g., the maximum and the minimum number of power plants for each Autonomous
Virtual Power Plant (AVPP) as well as the constraint that each power plant must be
contained in exactly one AVPP. Further, the behavior of each agent type (e.g., wind
turbines, solar panels, or biogas power plants) is de�ned by standard design documents.
In our power plant case study we additionally have to de�ne groups of agents which
are in�uenced by similar environmental changes, such as wind turbines with a speci�c
locality. Accordingly, a group of agents shares one EP, a stochastic model abstracting
possible environmental changes (more details are given at the end of this subsection).
The fact that an agent is in a speci�c group is not known to the SOuT and has no direct
in�uence on the partitioning decisions of the SOuT. The members of a group of agents
can be of di�erent agent types.

We de�ne how the environment in�uences certain types of agents so that a reduction
of the test cases to realistic scenarios is possible. Specifying the scenarios and their
likelihood is due to the test engineer based on the environment, i.e., what is the real-
istic surrounding of the SO mechanism. Having the in�uences’ relation to the agents
controlled by the SO mechanisms, i.e., in some sense the test input, these scenarios
are transformed automatically in realistic test data. The realistic test data is necessary
to increase the reliability of the test result. Indeed, describing the in�uences relation
between the environment and the types of agents is rather complicated. At this step we
rely on simpli�cation and abstraction within the model to keep the approach scalable:
We assume that the mapping of environmental in�uences to agent types (in its ab-
stracted form) can be determined and de�ned a priori, i.e., we neglect that the in�uence
might change over time or is non-deterministic. Based on this assumption, a mapping
function is de�ned from the environment state (relevant to the concerning group) to
states of the agents within the group. Thus, the in�uence might be described by mapping
delta-values, describing the change of the current state according to the appearance
of an environment state. The consequences of this assumption and simpli�cation are
on the one hand that the model is scalable within the approach and can be handled
by the test engineer, but, on the other hand, that it might neglect some situations for
testing. The evaluation results (cf. Section 6.6), however, showed that it is still possible
to �nd di�erent kinds of failures and without having evidence that a failure has been
overlooked.

The information which is described in this model encompasses the speci�cation used
for generating the system con�gurations of the test runs. For this purpose, a domain
description (in the form of an UML class diagram) is used that is enriched by constraints
for co-domains for the classes and their states.

To recap, the system model must contain at least:

• Types of components

80

6.3 Probabilistic Models for a Continuous Self-Organization Mechanism

• De�nition of possible initial states for the components
• Suitable ranges for the minimum and maximum number of components of a

speci�c component type
• Constraints concerning groups of components (minimum and maximum number

as well as size)
• Mapping of environmental in�uences to agent components
• Constraints concerning valid system structures, i.e., the relevant part of the CCB

Additional parameters for the test cases generation are a minimum and a maximum
number of test cases within each generated test sequence and the number of test
sequences that should be created for each test suite.
Since the model of the SuT depends on the application domain, the overall description
of the model itself is quite generic and coarse. However, this generic description needs
to be transferred into a speci�c model of the SuT for each application case, as described
in the evaluation in Section 6.6.2.
Further, the system model speci�es valid con�gurations for the SOuT. It is used to derive
valid ranges for all relevant parameters, such as the algorithm’s maximum run time.
The selection of relevant parameters highly depends on the concrete algorithm (e.g.,
some algorithms allow to specify a maximum execution time, and some do not), the
situations that should be covered by the test runs (e.g., some failures only occur if we
give the algorithm enough time), and the domain knowledge (e.g., in some domains, the
maximum run time is naturally bounded). Clearly, in contrast to the random testing
approach, a suitable parametrization can be used for directed testing. This means that
we can push the algorithm into interesting directions, e.g., to use speci�c functionality,
which might reveal failures of the SuT.
The parameters of the SOuT and dependencies between the parameters are speci�ed
as constraints of the permitted setting of the parameters of the SOuT. The model is
speci�ed with variables for the parameter that are restricted by domains and relations
between them. The resulting Constraint Satisfaction Problem (CSP) is solved by the input
component of the framework for forming a system con�guration within a test run. For an
SOuT that is based on a particle swarm optimization algorithm to form organizational
structures (like the PSOPP algorithm described in Section 6.6.2) a parameter of the
algorithm is the number of particles to use, constrained in the model of the SOuT, for
instance, by an upper and lower bound. Further, the number of particles is related to
the constraints concerning the number of partitions to be formed. This relationship
is incorporated into the CSP. The described CSP is the foundation for automatically
generating valid settings for the SOuT. The second aspect of the description of the test
setting is the model of the SOuT.

6.3.2 Environment and Test Model

Recalling our idea of isolated testing of SO mechanisms from Chapter 5, the environment
and test model are describing environmental changes and in�uences. This abstraction
is because of possible interferences with other SO mechanisms due to interleaved

81

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

feedback loops as well as the huge state space induced by the di�erent possible states
of the environment and the SO algorithm’s non-deterministic behavior. We address
the problem of a huge, �at-branching state space by providing stochastic models of the
environment and can describe its in�uences on the SOuT by functions describing the
environment’s in�uence on the system that enables to decouple the SO mechanisms.2

As we do not assume that all agents controlled by the SO mechanism share the same
environment (e.g., because of their geographical distribution) and are equally in�uenced
by environmental conditions, we de�ne these EPs and in�uence functions concerning a
speci�c group of agents G.3 This abstraction allows us to deal with large state spaces
even better.

For example, it is not necessary to consider the complete set of possible states of the en-
vironment E = {(cloudy, high price), (rainy, high price), (sunny, high price), (cloudy,
low price), (rainy, low price), (sunny, low price)} if we regard a group of solar power
plants whose output mainly depends on the current weather conditions and is more or
less independent of the current market price (a property that is de�ned in the mapping
of environmental in�uences to agent types). Instead, for each group of agents G, we
map one or more states of the environment from the set E to a single so-called relevant

state that describes the relevant parts of the environment’s state for G, i.e., those that
have an in�uence on G’s behavior. By gathering all relevant states, we obtain the entire
set of relevant states RG for G. In case of our group of solar power plants the states
(cloudy, high price), (cloudy, low price) ∈ E are mapped to a state cloudy that becomes a
member ofRG . In this example,RG is �nally equivalent to the set of weather conditions
{cloudy, rainy, sunny} considered in E .

The identi�cation of relevant states is supported by the mapping of environmental
in�uences to agent types as described in the model of the system under test. Thus, if
the environment state or a set of environment states corresponds to an environmental
in�uence that is already mapped to an agent type of the concerning agent group, this
state has to be included into the set of relevant states for this agent group. However,
mapping the environment’s states to relevant states of an agent group is—as the mapping
of environmental in�uences to agent types in the model of the system under test—not
generically solvable; in every application domain, this classi�cation of relevance has to
be explicitly made. Further, the relevant states are not limited to the mapping described
for the environmental in�uences to agents’ types, since, among other things, the other
SO mechanisms are here also part of the environment (whereas the model of the SuT
does not consider that).

The exempli�ed description above shows what the necessary steps are and how this
mapping should be achieved. The mapping, in general, does not have to be disjoint but
we expect it to be complete since only useful environment states should be included in
E , i.e., states that in�uence at least one of the agent groups.

2Note that the environment also covers, in this case, other SO mechanisms of the system.
3This technique of state reduction is performed according to the state abstraction principles that are well

known in classical testing [121].

82

6.3 Probabilistic Models for a Continuous Self-Organization Mechanism

sunny

cloudyrainy

0.20.5

0.3

0.2

0.2

0.6

0.5

0.1

0.4

Figure 6.3. In this �gure a transition graph model of an EP for a group of solar power plants
at a designated location is shown. It shows that weather changes between “rainy”, “sunny”, and
“cloudy” with a certain probability. These environment states are decisive for solar power plants,
because they are mainly depending on the current weather condition.

Concerning a speci�c group of agents, an EP not only captures the relevant statesRG of
G’s environment but also probabilities for changes from one state to another. Assuming
that the next state only depends on the current state, an EP represents a �rst-order
Markov chain. Figure 6.3 depicts a simpli�ed example of an EP for a group of solar power
plants in a speci�c region; as a matter of fact, the models used for testing are much more
complicated (cf. Section 6.6.2). The transition graph model of the EP in Figure 6.3 is used
to derive the model in Figure 6.4 where the states are re�ned by the description of state
changes of the component group concerned. Such an EP can either be created by using
domain knowledge or is derived from statistical data gathered during the execution of
the SuT, or a combination of both.
To model the way the environment in�uences the members of an agent group G, we use
a function fG : RG ×SG → SG , where SG represents all possible states of G’s members.
With regard to a member a ∈ G, the function fG maps the new state σ′env ∈ RG of G’s
environment and a’s current state σa ∈ SG to a new state σ′a ∈ SG . For instance, the
change of the current weather conditions from sunny to σ′env = rainy could impair a
solar power plant’s ability to make adequate predictions of its future output, which
is re�ected in the transition from σa = good predictions to σ′a = bad predictions.
Di�erent in�uences of the weather on di�erent types of weather-dependent power
plants—represented as di�erent agent groups—can be formalized by group-speci�c
functions fG . On the other hand, if an EP describes possible developments of the prices
at an energy market, fG can model the way a power plant or consumer behaves at the
market, i.e., its strategy. For example, if the market price falls below a certain threshold,
some consumers might change their strategy to “buy energy”, whereas the producers
might become more reluctant to sell their production. As is the case with the creation
of EPs, such in�uence functions can be deduced from domain knowledge and statistical

83

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

σ′ = σ + δ0

σ′ = σ + δ1σ′ = σ + δ2

0.20.5

0.3

0.2

0.2

0.6

0.5

0.1

0.4

Figure 6.4. The transition graph model of the EP in Figure 6.3 is used to re�ne the model in
this �gure, where the states describe state changes of agents within the speci�ed group. Every
node in the transition graph model has some speci�c δi which describes the change between the
current state σ of an agent which is within the context of the EP towards the following state σ′.

data. Note that, in some cases, the in�uence function might depend on random variables
and thus becomes probabilistic. This re�ects the fact that we cannot assume perfect
knowledge about the in�uences of the environment on the agents due to the high
complexity and the components’ autonomy. However, it depends on the test designer’s
choice as well as on the application domain whether to use a probabilistic function to
map the environment in�uences to the states of component groups. The drawback of
modeling these functions on random variables is that the process of test case generation
is less controllable, but it might reveal some interesting test cases. In the evaluation (cf.
Section 6.6.2), we use deterministic functions which especially paid o� in the process of
getting more control over the test case generation procedure and gaining higher failure
detection rates by incorporating domain knowledge of the test engineer. This re�ects
the overall goal of testing that is �nding failures. Thus, it is worthy to abstract from
some characteristics if that leads to better handling in test case generation procedure,
in order to gain a higher failure detection rate. Of course, there might be applications
where detailing the model applies better in order to gain a higher failure detection rate
due to the more accurate model that is, for instance, able to reveal border cases that are
failure prone. The choice depends here on the test designer that adapts the presented
approach to speci�c algorithms and application domains.

As we will explain in the next subsection, the EPs are used for the test case generation
by simulating the Markov chains, yielding random but representative test sequences
describing environmental changes for the di�erent groups of agents. The probabilistic

84

6.4 Fault-based Testing Models for Discrete Self-Organization Mechanisms

information of the EPs can be used to estimate the relevance of generated test cases
and test sequences and their likelihood of occurrence in a realistic setting. As we will
see in the evaluation in Section 6.6.2, this property makes EPs also a tool for coverage
analysis.
In sum, the test model is used (1) to create a realistic test environment with relevant
test sequences and (2) to identify relevant subsets of the complete state space.
To address (1) we introduced a probabilistic modeling concept where it is possible
to re�ect the uncertainty with a probability distribution according to the possible
states. Within this concept, we introduced a context for the environment to handle the
complexity of the environment model en bloc. The isolation of the SO mechanism is
possible by using the technical concepts introduced in Chapter 5. These concepts are
complemented by modeling not only the state changes of the environment but having a
connection to the internal state of the component a�ected by an environmental change.
This relation consequently unplugs a layer of indirection in testing the SO mechanism.
Subsequent we introduced the techniques and concepts for shaping the ever-changing
environment of SOAS within a test model.

6.4 Fault-based Testing Models for Discrete Self-Organization
Mechanisms

Discrete SO mechanisms are designed for an environment where the change of envi-
ronment properties (described in the environment model) is not a slight change, as
described in the section before, but a discrete event for a change of a (mostly) boolean
property. The production cell cases study is one example of a discrete environment:
Tools of the robots are one part of that environment. They might either be broken or
not. For the pill production, another example of discrete environment SOAS, it is the
same; a conveyer belt either is working or not. The change in the environment is due to
a discrete event. We are going to model these changes as environment faults since the
event leads to an environment that does not match with the expectation of the system
(a fault from the system’s view) and demands for a recon�guration. This notion is used
in the test model, i.e., the model describing abstracts test cases for the SOuT. Letting a
particular tool of a particular robot fail is a concrete test case for the SO mechanism
since its responsibility is to maintain the ability of the production cell to ful�ll its task
under ever-changing conditions, the failing tool is one of such changing conditions
(a discrete change to be precise). Having abstract test cases described as environment
faults is on the one hand quite intuitive for discrete, boolean changes of properties and
on the other hand common practice in testing. However, classical fault-based testing,
as described by Morell [106], is in some sort di�erent, but with the same intention:
Fault-based testing is aiming at revealing di�erent, speci�ed faults within the SuT by
directing the test e�orts toward �nding these faults. We are using the faults as test
input, as the SO mechanism is dependent on the environment changes. Indeed, we
also assume that by activating these faults, i.e., simulating the fault via the test driver
(integrated into the test model), failures of the system should be revealed. Thus, we
have introduced another dependency layer and a di�erent interpretation for fault-based

85

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

testing. As our modeling language S# is incorporating the concept of faults and fault
activation, we build upon these concepts presented by Habermaier [71]. The test model
is used to describe the possible environment faults. These faults are completing the
environment and system model.

6.4.1 The System Model for Discrete Self-Organization Mechanism

Describing the system test model for discrete SO mechanisms is quite similar to the
continuous, as described in the section before (Section 6.3). The system model speci�es
the interfaces of the SO mechanism, as described in Chapter 5 in Figure 5.2 divided
into the following components: the detection component, the computation, and the
distribution component. That is exempli�ed in Listing 6.1 where a simpli�ed model
of the whole SO mechanism in the Hadoop case study is shown. The test engineer
implements the interface of the SO mechanism component (cf. Figure 5.2) by de�ning
the methods for the three SO mechanism functions. Depending on the integration level
either a test driver or a stub is implemented in the function. The �rst is shown for the
detection and the computation component. The methods call a function that maps to
the SuT. The latter is the case for deployment, here just the model is updated, and the
input is accepted from the SuT. The technical details are not shown in Listing 6.1, they
encompass the system-speci�c implementation for connecting the SuT that are further
discussed in Section 6.6.

6.4.2 The Environment and Test Model for Discrete Self-Organization Mechanisms

The environment and test models for discrete SO mechanisms are illustrated by the
simpli�ed model of the web-service system case study in Listings 6.2 and 6.3. Two
di�erent parts are of interest:

1. The description of the environment and its relation to the SOuT in the environment
model.

2. The possible environmental faults and their behavior in the test model.

Both models are integrated into the description in one class per environment object.
The �rst is described as shown in Listing 6.2 The properties describe the necessary
information for di�erent states (instances) of the environment object as well as its
relations to the SOuT and the methods allow for manipulating the state and/or providing
stubbing for the SOuT. The second part is exempli�ed in Listing 6.3, it extends the
Listing 6.2 by faults. The faults are replacing merely the functionality stubbed in the
environment with the functionality provided in the fault. We have two di�erent kinds
of faults. The �rst is persistent, i.e., the fault is replacing the function permanently,
depicting that these kinds of environment faults are not repairable. The second kind
is transient, i.e., the fault is present by activation and inactive afterward in a non-
deterministic way. That simulates a highly unreliable environment. Indeed, there might
be some more complex behavior where the faults take longer to be repaired, for that
reason the Fault class might be extended with another fault behavior.

86

6.4 Fault-based Testing Models for Discrete Self-Organization Mechanisms

1 public class Controller : ISOMechanism
2 {
3 public List<Client> ConnectedClients { get; private set; }
4 public List<Server> ConnectedServers { get; private set; }
5 public List<App> Apps { get; private set; }
6 /* ... */
7
8 public void Monitor()
9 {

10 MonitorServers();
11 MonitorApps();
12 }
13
14 /* ... */
15
16 public void ComputeSolution()
17 {
18 var nodeAllocation = ComputeServerAllocation();
19 /* ... */
20 DeploySolution(nodeAllocation);
21 }
22
23 public void DeploySolution(Dictionary<Server,ServerAllocation> serverAllocation)
24 {
25 foreach (Server server in serverAllocation)
26 {
27 server.updateAllocation(serverAllocation[node]);
28 }
29
30 }
31
32 /* ... */
33
34 }

Listing 6.1. The Controller is the SO mechanism in the web-service system case study,
responsible for reorganizing the Servers. The simpli�ed version of the model shows a set of
properties forming the system model of the SO mechanism. The ISOMechanism interface is part
of the test base model that is de�ning the three parts of an SO mechanism, that are implemented
in Monitor, ComputeSolution, and DeploySolution here. These methods are either test drivers
in the implementation or stubs. Monitor and ComputeSolution are showing a driver calling the
driver methods that needs to be implemented and call the SuT. The DeploySolution is a stub
that distributes the solution in the model.

87

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

1 class Server : Component {
2
3 Controller _connectedController;
4 bool _isActive;
5 List<Query> _executingQueries;
6
7 public void Activate() {
8 _isServerActive = true;
9 }

10
11 public virtual void AddQueries(List<Query> queriesToExecute) {
12 _executingQueries.AddRange(queriesToExecute);
13 }
14
15 public virtual void UpdateAllocation(ServerAllocation serverAllocation)
16 {
17 _isActive = serverAllocation.isActive;
18 _connectedController = serverAllocation.conntectedController;
19 /* ... */
20 }
21
22 /* ... */
23
24 }

Listing 6.2. Simpli�ed S# component representing a web-service Server. The Server is mainly
described by its properties _isActive and _connectedController. The �rst is describing its
abstract status and the latter one refers to another model element, the controller. The provided
methods allow for stubbing as well as updating the model state.

6.4.3 Designing Test Models with Environment Faults

Technically, environment faults can be added to every environment object that is show-
ing some behavior. There are di�erent types of environment faults: the environment
fault may cause no behavior at all, a faulty behavior leading to a wrong state at once or
after a few time steps, amongst others. The concept of changing the environment with
a faulty behavior is related to the well-known fault-based or mutation-based testing
approach, proposed by de Millo et al. [43]. Mutation testing assumes that errors in
programming are not simple (the competent programmer hypothesis) but of a similar
kind. Thus, if a test suite �nds one of this kind others will be found, too. For that
purpose, errors are added to the software, for di�erent kinds and a test suite is optimized
to �nd these, the errors are removed afterward, and the test suite is re-run on the SuT
(and reveals actual failures). In the case of testing SO mechanisms, where the structure
of the program itself highly depends on the environment, the structure and state of the
environment are decisive for the execution of the SO mechanisms. That is why we are
focused on modeling this environment as a test input for the SO mechanism. We mutate
the environment with the environment faults. Thus, similar rules for mutations apply
to create environment faults. However, it is not the resilience of the test suite which
is evaluated. It is the resilience of the SO mechanism in order to reveal failures. The
information which faults are relevant for the test model and which fault behavior is
chosen is due to the test engineer. The decision is focused on the tested behavior of the
SO mechanism. This is done by concentrating on aspects of the environment that are

88

6.4 Fault-based Testing Models for Discrete Self-Organization Mechanisms

1 class Server : Component {
2
3 Controller _connectedController;
4 bool _isActive;
5 List<Query> _executingQueries;
6
7 public void Activate() {
8 _isServerActive = true;
9 }

10
11 public virtual void AddQueries(List<Query> queriesToExecute) {
12 _executingQueries.AddRange(queriesToExecute);
13 }
14
15 public virtual void UpdateAllocation(ServerAllocation serverAllocation)
16 {
17 _isActive = serverAllocation.isActive;
18 _connectedController = serverAllocation.conntectedController;
19 /* ... */
20 }
21
22 [Transient]
23 class ServerCannotActivate : Fault {
24 public override void Activate() { }
25 }
26
27 [Persistent]
28 class CannotExecuteQueries : Fault {
29 public override void AddQueries(List<Query> queriesToExecute) { }
30 }
31
32 /* ... */
33
34 }

Listing 6.3. Simpli�ed S# component from Listing 6.2 extended with faults. The Transient

annotation indicates a fault that may be presented and repaired afterward in a non-deterministic
way, the Persistent annotated fault is active for the rest of the execution, as the functionality
might not be restored.

89

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

described in the goal model and the derived CCB, as described in Chapter 3. The included
faults should cover at least all properties that are part of the CCB and be faulty in a way
to execute di�erent kinds of SO that are needed. The standard mutation operators could
be used to de�ne a di�erent kind of faults. The mutation operators [4, 19, 94] that apply
for design environment faults are the follwoing:

• Information about the object’s state is not provided

• Information about the object’s state is provided in a wrong way (type, format,
content, order)

• Information about the object’s state is processed wrong (extended or limited)

• Information about the object’s state is provided too late/early

• Object is blocking information or critical sections in the execution

These operators are used to provide standard operators for environment faults. The
operators have to be checked if they modify the behavior in a way that the SO mechanism
is e�ected, that is done by checking the CCB constraints and domains.

6.5 Back-to-Back Testing of Test Model and Implementation

Engineering the overall test model proposed for SO mechanisms in this chapter is
challenging. Many decisions and assumptions have to be made based on the requirements
of the SuT. The environment needs to be adequately de�ned and described, either by
probabilistic or fault-based models. The system components have to be identi�ed
and assigned with properties. Further, the CCB needs to be designed and derived, as
described in Chapter 3, in order to build the test oracle and use it as a foundation of
the aforementioned tasks. This design demands expertise and good modeling skills
from the test engineer. Indeed, the development engineer needs to perform a similar
task in developing the actual system. This e�ort is also crafted from the set of initial
requirements. In both tasks, human errors by the engineers have to be expected. In order
to support these hard engineering tasks, we follow the BtB testing concept, proposed by
Vouk [166]. The primary virtues of this method are a structured process to automatically
detect di�erences in the understanding of requirements, or even erroneous requirements,
through deviating interpretations necessary for implementation. Such deviations can
be used for debugging and discussing whether the test model or the implementation is
correct and needs correction and/or re�nement. This form of quality assurance increases
users’ trust in the obtained models and is indispensable for the practical usage of the
overall approach.

In a nutshell, the approach relies on the interplay of a test engineer with a development
engineer that work together to formalize informal requirements properly. The develop-
ment engineer is responsible for an e�cient and correct SO mechanism implementation.
The test engineer has to provide a correct test model as well as the necessary connection
of the SuT with the test framework. Upon presenting a test input to the SuT and the test
model, we can at least identify deviating opinions of, e.g., whether a situation is valid
or not. For the development engineer, this decision involves selecting the right type of

90

6.5 Back-to-Back Testing of Test Model and Implementation

recon�guration(s) to match the requirement. This feedback leads to modi�cations of
either of the test model, the SOAS, or the requirement’s speci�cation.

6.5.1 Using Executable Run Time Models for Back-to-Back Testing

The approach for BtB testing is making use of the concepts presented in previous sections
of this chapter and throughout this thesis. The test engineer uses the requirements to
build the CCB, as described in Chapter 3, the SOuT is de�ned within the test setting
by its interfaces, the decomposition is designed as described throughout Chapters 4
and 5, and the corresponding test model is designed as described in this chapter. All
these steps of the development of a test setting are needed for BtB testing. Further, the
SOuT has to be connected to the test framework in order to execute the tests. As the
test model is an executable model, we are able to start BtB testing directly. Having
an executable model allows for executing and generating input on the test model as
well as executing the input on the SuT and comparing the results by mapping the state
of the SuT into the system model and checking it with the test oracle. These are the
necessary prerequisites for BtB testing, coming right out of the box. In Chapter 5, we
discussed the disassembling and isolation as well as the stubbing of the SO mechanism.
Using these concepts allows for applying BtB testing at di�erent development stages.
It is possible to BtB test the SO algorithm, the observer part, or the deployment SO
mechanism. However, the part to be stubbed needs to be implemented in the system
model to be executed.
As the executable models are object-oriented code, a further possibility is to use de-
bugging along with BtB testing, i.e., the execution of the model could be paused and
in-depth investigated according to its state. That allows for identifying the mismatch
in detail, saying the model operation that is the �rst di�ering from the SuT can be
identi�ed.
For the time being, the execution of the test model is random, i.e., random environment
faults are selected, and random transitions in the EP are taken. Di�erent test case
selection techniques are discussed in the next chapter.

6.5.2 The Special Case of Back-to-Back Testing Self-Organization Mechanisms

Self-Organization mechanisms are responsible for adapting the structure of a controlled
system to an ever-changing environmental surrounding. The test model, presented in
this chapter, can model this highly volatile environment of the SOuT. The adaptation
of the SOAS is made possible by, what we called, underspeci�cation (cf. Chapter 3),
i.e., the system is allowed for decision making at run time as long as it stays inside
the CCB or returns into the CCB if possible. Designing the CCB from an initial set
of requirements and implementing the SO mechanisms within the CEI is based on
decisions according to the range of the SO. The development engineer has a scope of
discretion how wide the CCB is, �guratively speaking. The same task is due to the test
engineer, who has to design and derive the CCB, too, in order to implement the test
framework. This is di�erent from systems with a precise speci�cation where every
interaction with the system is de�ned by an expected behavior. However, even in these

91

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

systems, Vouk [166] showed that there is often a mismatch between the implementation
of the requirements and the test engineer’s perspective on it. That is why BtB testing
is used for these systems. The particular case of how the behavior of SO mechanisms
is speci�ed leads to the fact that BtB testing is even more needed here. This is mainly
since SO mechanisms are more loosely speci�ed, as elaborated in Chapter 3, is giving
more room for interpretation. Thus, the interpretation of the expected behavior of
SO mechanisms has been investigated in an BtB testing process, as proposed in this
section.

6.6 Evaluation

We will show di�erent aspects of the so far proposed approach for MBT for SO mecha-
nism evaluated on di�erent systems. The systems used for the evaluation are described
in Chapter 2 in detail. We will complete, if necessary, that description here with more
insights on the investigated approaches. The evaluation for the concepts of MBT in-
cludes not only the aspects presented in this chapter, but also the aspects of speci�cation
of SOAS and deriving a test oracle (Chapter 3, using the concepts of the CEI and the
concepts for isolation and integration presented in Chapters 4 and 5). These concepts are
all needed to establish testing, however, till the presented concepts of MBT we were not
able to test the system. Each case study has di�erent aspects that we use to demonstrate
the approach proposed in this thesis. Thus, not every aspect of the testing concept will
be described for each case study. The focus is on demonstrating the abilities of the
approach, and thus we choose the case study accordingly for this purpose.
In this section, we will investigate the following aspects:
R1 Is the way of specifying SO mechanisms with the CCB applicable for di�erent
kinds of SO mechanisms?

R2 Is it possible to derived test requirements based on the CCB and de�ne a test
model?

R3 Is the CEI testable, i.e., observable and controlable, as proposed for testing?

R4 Is the proposed approach for isolating and disassembling the SO mechanisms
applicable for testing?

R5 Is the proposed approach for integrating the SO mechanisms applicable for testing?

R6 Does the proposed test architecture enable testing SO mechanisms?

R7 Is the closed-loop MBT approach for continuous SO mechanisms able to execute
an SOuT and reveal failures?

R8 Is the closed-loop MBT approach for discrete SO mechanisms able to execute an
SOuT and reveal failures?

R9 Is the BtB testing approach able to support the engineering process by revealing
failures in the test system and the SOuT?

92

6.6 Evaluation

R10 Does the MBT approach enable to build generalizable test concepts and models
for system classes?

R11 Besides full integration testing, is it possible to address system testing within the
given concepts?

R12 Is the approach scaleable for industry-size systems?

R13 How usable are the presented concepts for test engineers new to testing SO
mechanisms?

In order to supply answers to these questions, we will investigate the following aspects
of the implementation of the case studies (presented in Chapter 2).

R1 to R9: First, two case studies, one of the continuous and one of the discrete class,
are investigated thoroughly from the speci�cation of the CCB, de�ning the test models,
disassembling the SOuT, integrating it in the proposed test sca�old and executing tests
on it. This will guide us through the questions R1 to R9. The two case studies are the
production cell and the energy grid. The production cell has a central SO mechanism that
is controlling a complex environment that is discrete. We will focus here on testing on
the integration level where the SO mechanism is completely integrated. One interesting
aspect here is that the SO mechanism and the test framework have been developed in
a real BtB setting: two di�erent engineers implemented it at the same time BtB. We
will discuss these aspects. For the full disassembling of an SO mechanism, we will
extract the SO mechanism from the energy grid. Here, the disassembling is highly
demanding as the SO mechanism is regio-central, i.e., there are distributed blocks which
are autarkically organized by an SO mechanism. Further, this system’s SO mechanism
controls a continuous environment. These two investigations are able to cover the
questions R1 to R9 fully.

R10 to R13: We will further take a look at the other three cases studies where we
are investing questions R10 to R13. The implementation of the load-balancing web
service has been developed in a student project accordingly with a test framework as
proposed in here, supplying insights to the questions R13. The case study of the pill
production will focus on the aspect of abstraction and reusability of the test models,
focusing on question R10. The pill production is sharing the same underlying paradigm
of the resource-�ow with the production system, even though it has been invented and
implemented by di�erent research groups. We extracted the generic concepts of the test
model for resource-�ow systems and will show the abilities of the MBT approach for
generalization. For the Hadoop case study, we selected an application from industry
to show how the approach is scaling in this setting (R12). Further, we are going to test
this system on a system-level, going beyond the integration of the SO mechanism and
supply an answer to R11, too. We will show how that is possible and investigate the
abilities of the approach for sca�olding in depth.

93

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

6.6.1 Production Cell—Testing an Integrated, Discrete Self-Organization
Mechanisms in a Back-to-Back Test Setting

The production cell is a case study introduced in Chapter 2. The implementation and
concepts for SO are the results of a phase of six years of intense research and development
in an DFG founded program, resulting in two dissertations [109, 144]. We classi�ed the
system and its SO mechanism as discrete in Chapter 2.

Within this section, we will address R1-R6 and R8-R9. Despite the fact, that the system has
been already implemented, the SO mechanism has been newly built in a team consisting
of one development engineer and one test engineer for this evaluation. The requirements,
formulated in [109, 144], have been used independently for the development of test
system and SO mechanism. The following discussion of that development will focus
on the test system. However, the feedback from the development engineer is also
incorporated here.

Development of the Self-Organization Mechanism

In the case at hand, we used MiniZinc4 as a constraint modeling for designing an
SO algorithm that can allocate the roles in the production cell. The SO mechanism is
consequently a central solution, that can access information from all system components
and also control them.

The system requirements have been translated into constraints formulated in a MiniZinc
model that describes valid con�gurations for the production cell; an exemplary MiniZinc
input for a system con�guration is shown in Listing 6.4. Thus, it is possible to feed the
SO algorithm with a speci�cation of a task, the number of agents (carts and robots), the
capabilities, and the routing table. If satis�able, the SO algorithm returns a solution that
assigns each tool needed for the task to some robot and that routes the carts between
the robots accordingly. To complete the SO mechanism an observer has been developed
in Java which is mainly consisting of boolean functions to be called at each time step of
the system to check the current system con�guration. That monitor is integrated into
the Jadex implementation of the original project. Further, the distribution component is
an adapter between the MiniZinc results and the Jadex agent system in order to update
the role allocation.

Scaffolding for the Self-Organization Mechanism

This SO algorithm has been plugged into S# via an interface that provides the speci�ca-
tion of the problem to be solved by the SO algorithm and that parses the MiniZinc results.
That includes generating a text-input �le for MiniZinc and converting a text-output �le
into an instance of the test model. An exemplary �le is shown in Listing 6.4, the �le
format is input as well as output, showing the current con�guration or the con�guration
to be. The constraints of the observer of the SO mechanism—originally developed in
Java for our implementation of the production cell based on the multi-agent system

4http://www.minizinc.org/

94

http://www.minizinc.org/

6.6 Evaluation

1 task = [1,2,3,4,5,6]; noAgents = 6;
2 capabilities = [{1},{3},{4,5,4,2},{5,6},{},{}];
3 isConnected = [|true,false,false,false,true,false
4 |false,true,false,false,true,false
5 |false,false,true,false,false,true
6 |false,false,false,true,true,true
7 |true,true,false,true,true,false
8 |false,false,true,true,false,true|]

Listing 6.4. The input model for MiniZinc describing a task, the available capabilities of
the robots, as well as the connection matrix based on the carts’ routes, corresponding to the
con�guration instantiated by Listing 6.7.

Jadex5—have been manually converted to C# in order to integrate them into the S#
model. Indeed, a cross-compiler from Java to C# could also have been used. However,
there were only slight syntactical adaptations necessary. Thus, the conversion was done
manually. Indeed, every revealed failure was also checked whether this conversion had
caused it, that was not the case for this evaluation.

Development of the Corridor of Correct Behavior and Deriving the Test Oracle

The development starts with the main system goal from the requirements. The primary
system goal of the production cell is to process the workpieces according to their task.
During requirements analysis, this goal is re�ned to the system goals visible on the right-
hand side of Figure 6.5: the resource has to be processed according to a role allocation,
which de�nes which agent performs which capability and how the carts transport the
resources. Further, an obstacle has been identi�ed: the role allocation can become
invalid due to environmental changes such as a capability that is no longer available.
This circumstance is captured in a hierarchy of obstacles, shown as red rhombuses.
A new goal is introduced to change a role allocation if necessary, to mitigate this
uncertainty. Re�nement of this goal leads to a requirement for the agent: the capability
it has to apply must be available to it. Formally, this can be captured in the Object
Constraint Language (OCL) as:
context Agent inv capabilityConsistency:

self.availableCapabilities

→ includesAll(self.allocatedRoles.capabilitiesToApply)

The basis for this formulation is the domain model of a self-organizing resource-�ow
system depicted in Figure 2.4 in Chapter 2.
TheCapability-Consistency constraint is by far not the only one that needs to be observed.
The requirement “Agent communicates the loss of a capability it is con�gured to apply”
could be further re�ned to yield a requirement that observes neighboring agents by
sending them heartbeat messages. If an agent does not answer anymore, the I/O-

Consistency constraint is violated that states that agents’ with which resources are
exchanged have to be reachable. This constraint, as well as the part of the invariant
should be observed accordingly by the test oracle. As already discussed in Chapters 3
and 4, the test oracle further needs to know whether or not there exists a valid solution

5http://www.activecomponents.org/

95

http://www.activecomponents.org/

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

to be found and deployed by the SO mechanism. The algorithmic of this function is
shown in Algorithm 1.
The result is a complete KAOS model that is shown in parts in Figure 6.5, an extended
domain model that is including all the monitoring infrastructure for the test oracle,
shown in parts in Figure 6.6, and OCL constraints that are included in the KAOS model
that are transformed into C#, like the one shown in Listing 6.5.

Require: robotAgents, cartAgents, tasks
Ensure: a Boolean value indicating whether a recon�guration is possible

1: m ← GetConnectionMatrix(robotAgents) // transitive closure of all connected
robots

2: for all t ∈ tasks do
3: if ¬∀c ∈ t.Capabilities: ∃a ∈robotAgents: c ∈ a.AvailableCapabilities then
4: return false
5: end if
6: A← {a ∈ robotAgents | t.Capabilities[0] ∈ a.AvailableCapabilities }
7: for i = 0 to |task.Capabilities| −1 do
8: A← {a ∈ m[a′] | a′ ∈ A ∧ t.Capabilities[i+ 1] ∈ a.AvailableCapabilities }
9: if |A| = 0 then

10: return false
11: end if
12: end for
13: end for
14: return true

Algorithm 1. Checks whether a recon�guration is possible for a given set of robot and cart
agents as well as the tasks to be carried out.

Building the Test Model

The model in the here proposed MBT approach consists of a system, an environment,
and a test model. For the system and the environment model we use the classes from
the domain model of the KAOS model, as shown in Figure 6.6, to build the S# model
by de�ning the classes and the properties. This is done from the already discussed
information. The test model is based on environment faults, Listing 6.6 shows an
excerpt of the test model written in S#. These are two of twelve environment faults
that have been speci�ed for the robot and the carts, the two environment classes of
concern.
As shown in Listing 6.7, we can build di�erent setups for the testing. We call this virtual
commissioning for testing SO mechanisms.

Virtual Commissioning of SOAS Systems The concept of virtual commissioning is
mainly applied in the �eld of large manufacturing systems where a virtual manu-
facturing system is built in order to simulate individual manufacturing processes for
optimization and validation purposes [89]. Within this virtual environment, the real

96

6.6 Evaluation

R
ol

e
al

lo
ca

tio
n

is
 c

ha
ng

ed
 d

ue
 to

an

 e
nv

iro
nm

en
ta

l e
ve

nt

R
ol

e
al

lo
ca

tio
n

is
 c

ha
ng

ed

w
he

n
a

ro
bo

t i
s

no
 lo

ng
er

av

ai
la

bl
e

R
ol

e
al

lo
ca

tio
n

is
 c

ha
ng

ed
 w

he
n

ro
bo

t c
an

 n
o

lo
ng

er
 a

pp
ly

ca

pa
bi

lit
y

Ag
en

t f
ai

lu
re

 is
 d

et
ec

te
d

N
ew

 ro
le

 a
llo

ca
tio

n
is

 e
nc

at
ed

 in

sy
st

em

N
ew

 ro
le

 a
llo

ca
tio

n
is

de

te
rm

in
de

d
O

bs
ol

et
e

w
or

kp
ie

ce
s

ar
e

pu
rg

ed

fro
m

 s
ys

te
m

Ag
en

ts
 a

re
 in

fo
rm

ed
 o

f n
ew

al

lo
ca

tio
n

Lo
ss

 o
f r

eq
ui

re
d

ca
pa

bi
lit

y
is

de

te
ct

ed

C
ap

ab
ilit

y
th

e
ag

en
t i

s
co

nf
ig

ur
ed

to

 a
pp

ly
 is

 a
va

ila
bl

e

R
ob

ot

C
ap

ab
ilit

y
is

 n
ot

 a
va

ila
bl

e

R
ob

ot
 c

om
m

un
ic

at
es

 th
e

lo
ss

 o
f a

ca

pa
bi

lit
y

it
is

 c
on

fig
ur

ed
 to

ap

pl
y

C
or

re
ct

 c
ap

ab
ilit

y
is

 a
pp

lie
d

C
ap

ab
ilit

y
ca

nn
ot

 b
e

ap
pl

ie
d

R
ol

e
al

lo
ca

tio
n

is
 in

va
lid

R
es

ou
rc

es
 a

re
 p

ro
ce

ss
ed

ac

co
rd

in
g

to
 a

 ro
le

 a
llo

ca
tio

n

Fi
gu

re
6.
5.

Sh
ow

in
g

an
ex

ce
rp

to
ft

he
Kn

ow
le

dg
e

A
cq

ui
sit

io
n

in
Au

to
m

at
ed

Sp
ec

i�
ca

tio
n

(K
AO

S)
m

od
el

re
pr

es
en

tin
g

th
e

re
qu

ire
m

en
ts

fo
rt

he
pr

od
uc

tio
n

ce
ll.

It
is

sh
ow

n
ho

w
a

hi
gh

-le
ve

lg
oa

l,
th

e
R

ol
e

al
lo

ca
tio

n
is

ch
an

ge
d

du
e

to
an

en
vi

ro
nm

en
ta

le
ve

nt
is

br
ok

en
do

w
n

an
d

m
iti

ga
te

d
to

in
tro

du
ce

se
lf-

or
ga

ni
za

tio
n.

A
tt

he
le

av
es

tw
o

re
qu

ire
m

en
ts

,i
.e.

,g
oa

ls
th

at
co

ul
d

be
as

sig
ne

d
to

an
ag

en
t(

a
co

m
po

ne
nt

in
th

e
sy

st
em

in
KA

O
S

sp
ea

k)
th

at
is

re
sp

on
sib

le
fo

ri
ts

fu
l�

llm
en

t,
ar

e
de

pi
ct

ed
.T

he
se

re
qu

ire
m

en
ts

ar
e

fo
rm

ul
at

ed
as

O
CL

co
ns

tra
in

ts
an

d
ar

e
tra

ns
fo

rm
ed

in
to

a
te

st
or

ac
le

,a
ss

ho
w

n
in

Li
st

in
g

6.5
.

97

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Fi
gu

re
6.
6.

An
ex

ce
rp

to
ft

he
tra

ns
fo

rm
ed

sy
st

em
m

od
el

is
sh

ow
n,

th
at

ha
sb

ee
n

co
m

pl
et

ed
by

th
e

m
on

ito
rin

g
in

fra
st

ru
ct

ur
e

fo
rt

he
te

st
or

ac
le

.T
ha

t
m

od
el

is
us

ed
as

th
e

fo
un

da
tio

n
of

th
e

sy
st

em
an

d
th

e
en

vi
ro

nm
en

tm
od

el
of

th
is

ca
se

st
ud

y.
Fu

rth
er

,i
ts

er
ve

sa
st

he
do

m
ai

n
m

od
el

fo
rf

or
m

ul
at

in
g

th
e

co
ns

tra
in

ts
an

d
se

le
ct

in
g

th
e

ag
en

ts
in

th
e

KA
O

S
m

od
el

,c
f.

Fi
gu

re
6.5

.

98

6.6 Evaluation

1 public static IEnumerable<ITask> CapabilityConsistency(BaseAgent agent)
2 {
3 yield return RoleInvariant(
4 agent,
5 role => role.CapabilitiesToApply.All(cap =>
6 agent.AvailableCapabilities.Contains(cap))
7);
8 /* ... */
9 }

10 }

Listing 6.5. Showing a extracted part of the test oracle, here the capability consistency
constraint has been transformed into C# code, enabling executing it on the S# model we
use for testing.

1 /* ... */
2
3 public readonly Fault Broken = new TransientFault();
4 public readonly Fault ResourceTransportFault = new TransientFault();
5
6 /* ... */
7
8 [FaultEffect]
9 public class BrokenEffect : RobotAgent

10 {
11 protected override bool ApplyCurrentCapability() => false;
12 protected override bool CanApply(ProcessCapability capability) => false;
13 protected override bool TakeResource(Cart cart) => false;
14 protected override bool PlaceResource(Cart cart) => false;
15
16 protected override bool CheckInput(Agent agent) => false;
17 protected override bool CheckOutput(Agent agent) => false;
18
19 public override IEnumerable<ICapability> AvailableCapabilities =>

Enumerable.Empty<ICapability>();
20 }
21
22 [FaultEffect]
23 public class ResourceTransportEffect : RobotAgent
24 {
25 protected override bool TakeResource(Cart cart) => false;
26 protected override bool PlaceResource(Cart cart) => false;
27
28 protected override bool CheckInput(Agent agent) => false;
29 protected override bool CheckOutput(Agent agent) => false;
30 }
31
32 /* ... */

Listing 6.6. Showing an extracted part of the S# test model where the faults are de�ned. They
are simply overwriting the functionality of the environment that is mapped into the environment
model.

99

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

1 CreateWorkpieces(5, produce(), drill(), insert(), tighten(), polish(), consume());
2 CreateRobot(produce());
3 CreateRobot(insert());
4 CreateRobot(tighten(), polish(), tighten(), drill());
5 CreateRobot(polish(), consume());
6 CreateCart(new Route(Robots[0], Robots[1]), new Route(Robots[0], Robots[3]));
7 CreateCart(new Route(Robots[2], Robots[3]));

Listing 6.7. Parts of the S# instantiation code for a con�guration of the case study consisting
of �ve workpieces that require the task produce, drill, insert, tighten, polish, and consume
to be carried out on them. Four robots are created with some minor redundancy in available
capabilities. The two carts connect all four robots via bidirectional routes.

controller is executed on the virtual plant enabling to test, tune, or initialize it for a
speci�c con�guration of the plant. We adopt this concept for the reduction of possible
con�gurations of the system to be tested. The idea is to base the tests on only one
con�guration, namely, the one which should be rolled out afterward. Indeed, there will
be changes at run time, e.g., new robots are integrated, new tools are added, or tasks
change. Before such a change is rolled out to the running system, the model instance
must �rst be updated, and the tests have to be re-run on the new instance. Since the
change of the current con�guration of the system is due to a human intervention—we
assume the system is not able to extend itself by other components or similar—it is
possible to run this test-�rst-deploy-after strategy while the real system is running
separately. Thus, we select only the con�guration for testing that is crucial for the
deployment and have the ability to test new con�gurations on demand. This is possible
due to the generic S# test model in which it is easy to instantiate new con�gurations (cf.
Listing 6.7) and to automate the testing process.

This forms altogether the test model for the production cell.

Discussion of the Testing Results

For evaluation purposes, we analyzed di�erent con�gurations (cf. Table 6.1) of the
production cell. The con�gurations di�er in the number of agents (robots and carts), the
average number of capabilities per robot, the number of tasks, and the number of routes
established by the carts between the robots. The test case generation technique at this
stage is simple random testing, i.e., the faults are activated in a random order for testing.
Further concepts for test case generation and selection are discussed in Chapter 7.

One main achievement of the evaluation is that it was possible to reveal the following
faults6 with the implementation of the SO mechanism; each fault is annotated with the
responsibility of the SO mechanism, as described in Chapter 4, where the fault was
detected:

6Note that the description is emphasizing the fault, i.e., the incorrect state of the SuT due to a human
error, and not the observable failure. Thus, it is possible to give more insights into the faulty behavior
and describe the root cause.

100

6.6 Evaluation

#capabilities #capabilities #test time
#robots #carts per Robot per Task #routes cases (in min)

4 3 2.75 6 6 131,000 570
3 2 1.67 5 4 49 0.2
3 2 3.67 5 4 26,763 69.25
3 2 1.67 5 6 157 0.78
3 2 1.67 8 4 47 0.38
5 2 1.6 5 5 1,577 6.88
3 4 1.67 5 5 369 1.08

Table 6.1. Statistical data concerning the con�guration used in the evaluation, the number of
test cases generated and executed, the required time. Note that the time is used for complete
testing. Note that the runs within our framework are deterministic, i.e., there is no need to
consider mean values or standard derivations.
F1 The fault a�ected route handling: the MiniZinc implementation interpreted transi-
tive routes as direct ones. Its computed con�gurations included direct connections that
were not available, e.g. 0→ 2 6= 0→ 1→ 2 (Computation).

F2 The fault was that the SO algorithm expected the routes to be unidirectional while
they were bidirectional. The failure manifested itself as overlooked solutions even
though at least one existed (Computation).

F3 The fault was a wrong implementation of the interface for the SO algorithm. The
interface expected �rst the capability of a designated agent but got the �rst capability
of the task assigned to the designated agent (Computation).

F4 The fault was a wrong format for the mapping of the solution from the SO algorithm
to the system model concerning the pre- and postconditions of a role (Distribution).
The pre-/postconditions contained the state of the workpiece in form of the remaining
part of the task, e.g., for task [D, I, T] the precondition contained [D, I, T] and the
postcondition [I, T] if D had been performed. However, the mapping should lead to
states of the workpiece representing the part of the task which already had been done,
e.g., for task [D, I, T] the precondition should contain [] and the postcondition [D] if
D had been performed (Distribution). This fault was detected even though the testing
approach was initially not focused on Distribution.

F5 The fault was a too narrow restriction in the SO algorithm that did not allow to use
intermediate robots that apply no tools since the maximum length of concatenated roles
was restricted. Thus, Listing 6.4 was mistakenly considered to be unsatis�able instead
of returning the following solution, for instance: agents = [1, 5, 4, 6, 3, 6, 4, 5, 2, 5, 4, 6,
3, 3, 6, 4]; workedOn = [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 5, 0, 6] (Computation).

F6 The fault was a missing constraint with the observer, namely the I/O-Consistency
constraint checked in the oracle. The failures occurred after activating a component
fault that deactivates a cart that is part of the active task (Detection).
The faults F3, F4, and F6 have been detected in all investigated con�gurations. Indeed,
F1, F2, and F5 mainly depend on the routing structure used in the con�guration, e.g.,

101

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

smaller con�gurations would not be able to reveal the faults. F6 mainly depends on
changing the active robots or carts of a task, since their removal might not be detected
and the controller is consequently not activated. All detected faults mainly concern
misinterpretation of requirement speci�cations. The kind of faults that we detected
underpins one of the strengths of the BtB testing approach: the ability to reveal faults
which are the result of a misinterpretation of the speci�cation.

Discussion of the Research Question R1-R6 and R8-R9 Having discussed the evaluation
that has been carried out within the production cell scenario, we will now elaborate on
the research questions. The test setting, which has been implemented in an BtB testing
endeavor is grounded on the systematic derivation of the CCB. We showed how this is
done in the described case study. The result was a quite huge KAOS model resulting
in nine di�erent constraints of di�erent complexity. These constraints are assigned
to the agents of the domain model and were su�cient for deriving a valid test oracle.
In the case at hand, we can compare the outcome not only with the developer’s view
but also with the previous work documented in [109, 144] that also follows the CCB
concept. The results were comparable and covered the same requirements for the CCB.
The overall e�ort for compiling the documents was about three to four person-days
(plus becoming acquainted with the case study) and is rather low for a complex system.
Having the results of the model at hand is very useful for starting the MBT approach, as
presented in this chapter since the documents are directly used to build the �rst version
of the model. Indeed, this model needed some re�nement during the development of the
test model and needed to be connected to the SuT, but it turned out to be an excellent
input here. Concluding with R1 and R2, the speci�cation of the SO mechanism with the
KAOS model and deriving the CCB within this approach by applying the relaxation of
the goals worked well on this complex case study and are a well-suited input for the
MBT testing approach. The KAOS documents are also re�ecting the test requirements
needed for the test engineer, mostly by the CCB. Further, the test oracle is given and
directly transformed into C#. However, the test oracle needs to be completed by the
information whether or not there is a valid recon�guration at hand. Developing an
algorithm solving that problem is still a challenging task for the test engineer.

The CCB and the other artifacts from the �rst phase enable testing of SO mechanisms,
as well as the CEI architecture. R3 questions whether the CEI is testable. The implemen-
tation of the production cell and the SO mechanism follow the CEI architecture and,
indeed, enable observability and controllability. The task of building the test sca�old was
made easy by the clearly de�ned interfaces on test engineer and development engineer
side. The di�erent parts of the SO mechanism are identi�ed and also clearly di�erenti-
ated in their responsibilities. The model also enables isolation and disassembling. The
disassembling is given by the de�ned parts of the SO mechanism, and the isolation is
available by the model that can stub the not integrated parts. We used that concept
successfully by stubbing the distribution phase of the SO mechanism and integrating it
later on. Technically, the switch between stubbing and using the test driver is just one
con�guration parameter, if the functionality is implemented. Thus, answering R4 and

102

6.6 Evaluation

R5, isolation, disassembling, and integrating is possible and applicable for testing SO
mechanisms.

The test architecture embeds all the di�erent concepts discussed and is helpful for
the concrete implementation of the test approach. This test architecture has been
successfully used as a foundation and skeleton for the test model in the production cell.
It helps to organize and structure the model and its implementation. Thus, it is indeed
enabling testing of SO mechanisms (R6).

Having the approach for MBT complete it was possible to start testing by randomly
generating test cases, as shown above. The test cases revealed failures, and it was
possible to execute the testing in full automation. The closed-loop enabled to use the
information of the system state and map the actual state of the SuT. This information
was primarily used for evaluation of a test case execution, but will also be used, as
shown in the next chapter, for test case selection. Thus, to answer R8, the closed-loop
MBT was able to reveal failures in the SO mechanisms. Further, the failures revealed
were showing the need for BtB testing in this setting, as discussed above. The kinds
of failures are traced back to errors, which are caused by a misunderstanding of the
requirements. Thus, R9 is answered with a clear yes.

6.6.2 Energy Grid—Testing a Disassembled, Continuous Self-Organization
Mechanism

The energy gird case study is introduced in Chapter 2. The implementation and concepts
of SO are the results of a six years DFG funded research program, resulting in three
dissertations [6, 147, 153]. We classi�ed the system and its SO mechanisms as continuous
in Chapter 2.

Within this section, we address the research questions R1-R7 of this chapter. For the
evaluation, we use two di�erent SO algorithms that will be tested in isolation, using the
concepts of decomposition and isolation applied to a system with highly interwoven SO
mechanisms. The requirements for this system, formulated in [6, 147, 153], are used to
build the test system. As the SO algorithms used are already implemented and integrated
into the system, we start with a thorough description of the two SO algorithms under
test [52]. Afterward, the test system is created and described, and we conclude with the
results.

Tested Self-Organization Algorithms

In this section, we present two SO algorithms, a decentralized approach (called SPADA)
and a metaheuristic (called PSOPP). The aim of both algorithms is to partition a set of
agents A = {a1, . . . , an} into pairwise disjoint subsets, i.e., partitions, that together
constitute a partitioning at as minimal costs as possible. Concerning our case study,
each AVPP represents a partition, and the set of all AVPPs corresponds to a partitioning.
Because both algorithms make use of randomized decisions to �nd high-quality solutions
in large search spaces, a testing approach has to deal with vast state spaces.

103

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

A Decentralized Algorithm for Partitioning Multi-Agent Systems SPADA [8], the Set Par-
titioning Algorithm for Distributed Agents, solves the complete set partitioning prob-

lem (CSPP) in a general, decentralized manner. In the CSPP, the goal is to partition a set
A = {a1, . . . , an} into pairwise disjoint subsets, i.e., partitions, that exhibit application-
speci�c properties. Because SPADA allows the de�nition of application-speci�c metrics,
it can be applied to a variety of problems. In case a metric de�nes how well agents
can work together on a common task, the CSPP is equivalent to coalition structure
generation [128]. Since SPADA has been designed to solve the CSPP in general, it can be
applied to these speci�c problems as well. This distinguishes SPADA from other central-
ized and decentralized approaches, which are often specialized to a speci�c problem in
a speci�c domain. In the following, we give a summary of SPADA’s basic functionality
and characteristics. A more detailed description can be found in [8].
In SPADA, the agents use an internal graph-based representation of the current parti-
tioning, called acquaintances graph, to solve the CSPP. All operations the agents apply
to establish a suitable partitioning can, therefore, be mapped to graph operations. The
nodes of the acquaintances’ graph are the agents participating in the reorganization.
Directed edges represent acquaintance relationships between agents. Together the
acquaintances form an overlay network that restricts communication to acquainted
agents, thereby lowering complexity in large systems. To indicate that an agent is
not only acquainted with another but also in the same partition, edges can be marked.
Partitions are thus de�ned by the transitive-re�exive closure of the binary relation
given by the marked edges. Each partition has a designated leader that is responsible
for optimizing its composition according to application-speci�c criteria. An example
of such an acquaintances graph is depicted in Figure 6.7 (more details concerning the
acquaintances’ graph can be found in [8]).

a b c

d e f

Figure 6.7. An exemplary acquaintances graph for a system consisting of six agents (cf. [8]):
Agents are represented as nodes and acquaintances as directed edges, e.g., d is acquainted with b
and f . Marked edges (symbolized as solid arcs) indicate that their tail and head belong to the same
partition. In this example, there are three partitions {a, c, f}, {b, d}, {e} with leaders a, d, e.

Each leader periodically evaluates if it is bene�cial to integrate new agents or to exclude
some of its members (e.g., concerning our case-study, to improve the equal distribution
of unreliable power plants among AVPPs), to improve its partition. The latter can
be bene�cial in case of reorganizations that require to create new partitions, e.g., if
a partition’s or an agent’s properties have changed so that the partition’s formation
criteria no longer favor including the agent. The integration and exclusion of agents are
implemented by modifying the edges in the acquaintances’ graph.
To decide about termination, leaders periodically evaluate application-specific termina-
tion criteria. These are formulated as constraints which can also be monitored at run
time to trigger reorganization. If the termination criteria are met, the leader marks its

104

6.6 Evaluation

partition as terminated. As long as a partition is marked as terminated, its leader does
not change its structure. However, the termination labeling is removed if the partition is
changed from outside, i.e., if one of its members is integrated into another partition. This
characteristic allows SPADA to make selective changes to an existing partitioning, which
is very useful in dynamic environments. It has been shown empirically that SPADA’s
local decisions lead to a partitioning whose quality is within 10% of the optimum [8].
Concerning our case study, each leader instantiates a new AVPP agent as soon as all
partitions terminated. The AVPP then assumes control of all power plants in the partition.
In case of a reorganization, the acquaintances’ graph is created from the existing system
structure.

A Particle Swarm Optimizer for Partitioning Multi-Agent Systems PSOPP [10], theParticle
Swarm Optimizer for the Partitioning Problem, is based on Particle Swarm Optimiza-

tion (PSO) [86], a bio-inspired computational method and metaheuristic for optimization
in large search spaces. In PSO, a number of particles concurrently explore the search
space in search of better candidate solutions by modifying their current positions (at
random or by approaching other candidate solutions) as long as a speci�c termination
criterion is not met. During this process, each particle’s current position represents a
speci�c candidate solution. To be able to improve the quality of candidate solutions in a
target-oriented manner, each particle Πi is aware of its best-found solution Bi and the
best-found solution BNi in its neighborhood Ni. The algorithm’s outcome is the global
best-found solution B.
PSOPP solves a variant of the CSPP in the presence of partitioning constraints that
constrain feasible partitions concerning a minimum smin and a maximum smax size
as well as a minimum nmin and a maximum nmax number of partitions. Therefore,
the test oracle additionally has to check—without interfering with the algorithm, by
evaluating the logged data of the algorithm and not locking it during execution—if the
interim results and the resulting system structure satisfy the partitioning constraints. In
PSOPP, each particle represents a partitioning that satis�es the partitioning constraints.
The central idea is to allow the particles to move around the search space by using the
basic set operations join, split, and exchange to come to a solution. The join operation
creates the union of two partitions. The split operation divides an existing partition into
two non-empty subsets and the exchange operation exchanges elements between two
partitions. Particles can apply these operations at random as well as in a target-oriented
manner. The primary purpose of the former case is to enable the particles to explore the
search space by randomly modifying their represented partitioning, i.e., their position.
The latter case, in contrast, allows particles to exploit existing candidate solutions by
approaching other candidate solutions in promising regions of the search space. Since
PSOPP’s operations are de�ned in a way that their application always maintains solution
correctness, it combs through a search space that only contains correct solutions. This
is advantageous concerning its performance.
Similar to SPADA, PSOPP can be customized to a speci�c application by devising an
appropriate �tness function that assesses the quality of solutions and thus steers the
search for them. Due to these characteristics, PSOPP can be applied to many di�erent

105

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Update Best
Found Solution in

Neighborhood

Apply Move
Operation

Evaluate
Fitness

Determine
Move Operation

Evaluate
Termination

Criterion

Update
Personal Best
Found Solution

 [else]

 [fitness > f(personalBest)]

 [else]

 [isTermination
CriterionMet]

Figure 6.8. Actions performed by particles in each iteration, taken from Anders et al. [10].

applications in which solving the partitioning problem considered in this thesis is
relevant and global knowledge is available.
Having speci�ed valid partitionings by means of nmin , nmax , smin , smax as well as the
particles’ attitude towards exploration and exploitation by �xing some parameters that
in�uence the probability that particles make a random move or approach other candidate
solutions, PSOPP creates a prede�ned number of particles at random or predetermined
positions in the search space (the set of particles does not change at run time). The
latter is suitable when a reorganization of an existing system structure has to take
place: If the current structure does not contradict the partitioning constraints, it can
be used as a starting point for the self-organization process. Mixing prede�ned and
randomly generated initial partitionings allows to hold up diversity. When searching
for an initial system structure, particles are created at random positions. As long as a
speci�c termination criterion is not met, a particle Πi performs the following actions in
each iteration; these are also depicted in Figure 6.8:
1. Evaluate the �tness f(P) of the represented partitioning P .
2. If the particle’s �tness f(P) is higher than the �tness f(Bi) of its best found solu-

tion Bi, set Bi to P . Further, inform all other particles Πj that contain Πi in their
neighborhood Nj about the improvement so that they can update BNj , i.e., the best
found solution in their neighborhood.

3. Update the best found solution BNi in Πi’s neighborhood Ni.
4. Stop if the termination criterion is met.
5. Otherwise, randomly opt for the direction in which to move, i.e., choose whether a

random move or an approach operation should be applied. In case of an approach
operation, also determine the position (i.e., Bi or BNi) that should be approached.

6. Determine the new position P ′ by applying the selected move operation to P .
Once all particles terminated, PSOPP returns the best found solution B. Possible termi-
nation criteria are, e.g., a prede�ned amount of time, a prede�ned number of iterations
(i.e., moves through the search space), a prede�ned threshold for the minimum �tness
value, or a combination of these criteria.

Building the KAOS, System, and Environment Model

The starting point of the development is the main system’s goal of the SuT. The primary
system goal of the energy grid is to maintain a stable grid. This goal is re�ned during

106

6.6 Evaluation

the analysis of the requirements to system goals, like the ones shown in Figure 6.10.
Indeed, this is only one excerpt of the overall goal model for the energy grid but is of
high concern for the SO algorithms described before that are tested in isolation in this
evaluation. The described requirements in Figure 6.10 are concerning the scheduling
and the adjustments to be made by the power plants and the AVPPs in the system
for supplying the energy demanded. The obstacles (marked as red rhombuses) are
challenging these goals and demand for self-organization. The self-organization is
performed by grouping the AVPPs in order to ful�ll these properties. Accordingly, the
OCL constraints in the requirements incorporate this fact. One of the constraints is for
example capturing the maximum scheduling time as follows:
context AVPP maxspan(3,8) schedulingBelowThreshold:

self.schedulingTime < self.maximumSchedulingTime

The maxspan stereotype is an addition to standard OCL, that has been added for modeling
this case study. It takes two arguments as input allowing to de�ne the maximum
number of violations in a timespan. This extension is incorporated into the test oracle
synthesis presented in Chapter 3. The maxspan stereotype is therefore de�ned formally
as follows:

si, si−1 ∈ S; si → si−1 : |φ(si)|nt =


true, if n = 0,
false, if n 6= 0 ∧ t = 0,
(φ(si) ∧ |φ(si−1)|n−1

t−1)

∧(¬φ(si) ∧ |φ(si−1)|nt−1), otherwise

where φ is the inner constraint that is evaluated at state si as the inv stereotype in OCL
and n and t are the maxspan parameters. In each time step φ(scurrent) is evaluated and
the result is saved. The implementation translated to in the test oracle uses a ring bu�er
with a �xed size of n for managing the historical values for evaluation. The introduction
of this parameter is due to the history dependent on the behavior of the SO mechanism
that is to be speci�ed.
The completed CCB is transformed into a test oracle written in Java. However, as in the
production cell case study before the oracle has to be completed by particular concerns
of the SO mechanism. The additional checks are described later in this section.
Indeed, the schedulingBelowThreshold constraint is not the only constraint forming the
CCB, the one shown is a representative element of all constraints, that has been built
during the evaluation. The context of the constraints is de�ned in the domain model that
is shown in Figure 6.9. That model is further used to build the system and environment
model for the MBT setting.

Scaffolding and Implementation of the Test Model

In this evaluation, we used Java for describing the test model. That is possible since
we do not need the extension of S# here for the environment faults. Describing the
system, environment, and (in this case of continuous SO mechanisms) the test model is
possible in di�erent object-oriented languages, as claimed in this chapter. However, we

107

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Figure 6.9. Showing a graphical representation of the system and environment model of the
energy grid case study as an UML class diagram, taken from Anders et al. [9]. The model is
divided into three package, for the sake of readability: the autonomous virtual power plants,
the trusted energy grid, and the trust-enabling middleware. The focus on trust is due to the
conceptual focus of the development of the system on using trust concepts for SO. However,
despite this special case, the principles for designing a system and environment model are still
valid.

108

6.6 Evaluation

Maintain[Suitable AVPP
Structure]

Create structure that supports
timely scheduling solutions

Schedule takes too long to
compute

Hierarchical structure should
be as shallow as possible

Hierarchy level dissolved if
scheduling completes very

quickly

Hierarchy level introduced if
scheduling takes too long

Scheduling times are recorded

Scheduling times stay above
pre-defined threshold

Scheduling times stay below
pre-defined threshold

Two or more new AVPPs
created

Existing children partitioned into
new AVPPs according to

controllability and homogeneous
AVPP size

New AVPPs are children of the
one that started the process

AVPP

Figure 6.10. The shown excerpt of the KAOS model that has been designed for testing the
energy grid’s SO mechanisms. The agents are classes of the model in Figure 6.9. They are
responsible for di�erent requirements, in this case the AVPP is responsible for maintaining an
organization structure to enable scheduling of the power plants. The requirements, which are not
shown here (cf. Chapter 2 in Figure 3.3 for some concerning requirements) are challenging due
to long lasting scheduling, leading to a need for SO. The same applies for the other requirements.
For that reason, the corridor is de�ned (in parts) by the conjunction of the OCL constraints in
the requirements that are speci�ed here.

109

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

need an execution environment that can execute the model. Further, a mechanism for
updating the model by re�ecting the state is required in order to form a run time model.
For testing the energy grid the same execution environment as for the SuT is used, it
is called TEMAS [9]. We opted for TEMAS because it supports a stepwise execution
out of the box, which allows the presented approach to monitor consistent states of the
system at speci�c points in time. The mapping between the system state and the model
state is done by calling the information from the SuT in the model at every step. The
principle is the same as described for the S# model.
As foundation of the system and environment model, we used the domain model of the
AVPP application, shown in Figure 6.9.
The test model describes the e�ect of di�erent environmental conditions, such as weather
conditions, on the power plants. Due to this dependency of weather conditions the power
plants’ predictions of their future output are inaccurate. The inaccuracy is a�ecting the
suitableness of a power plant to an AVPP. This e�ect depends on the concrete type of
agent, i.e., power plant. For this reason, we regarded four di�erent agent types:

1. Solar panels
2. Wind turbines
3. Biogas power plants
4. Hydropower plants

Based on the assumption that the e�ect of changing environmental conditions, such
as the global radiation, the wind speed, the available amount of biogas, or the water
�ow, is characteristic of a speci�c type of power plant, we generated di�erent sets of
agent groups. Further, the power plants’ geographic location was taken into account.
Considering an AVPP’s prediction accuracy as a property resulting from the average
prediction accuracy of its members, the system’s goal was to maintain a structure
of AVPPs that feature a similar prediction accuracy (cf. Chapter 2). As soon as the
dissimilarity of the AVPPs’ prediction accuracy exceeded a certain threshold (as a result
of environmental changes), the power plants triggered a reorganization that should
reestablish the similarity. We parametrized the model as follows:
• number of agents #ag : between 2 and 1000
• agent group size: between 2 and #ag

• number of agent groups: between 1 and
⌊

1
2 ·#ag

⌋
• partition size: 2 ≤ smin ≤ smax ≤ #ag

• number of partitions: 1 ≤ nmin ≤ nmax ≤
⌊

1
2 ·#ag

⌋
• 10 test sequences per test suite
• number of test cases per test sequence: between 50 and 1000
• number of states per EP: between 3 and 25
As SOuTs, we integrated the Java-based implementation of the partitioning algorithms
SPADA and PSOPP. Both implement the IController interface of the test framework,
presented in Chapter 5, that is used by the SO Algorithm Adapter to initiate the SOuT,
request results, and ask the SOuT to adopt the new system structure (cf. Figure 5.2

110

6.6 Evaluation

in Chapter 5). The latter was implemented by sequentially moving the power plants
contained in the calculated partitioning from their current AVPP into the corresponding
new AVPP. Concerning the system structure, this procedure assures that every power
plant is always contained in precisely one AVPP. If the last power plant was removed
from an AVPP, this AVPP was dissolved. The description of the algorithms provided
by Anders et al. [8, 10] as well as their implementation served as the system model. As
explained in Section 6.3, we used this information to identify relevant parameters and
suitable valid ranges for their parametrization. For SPADA and PSOPP, we identi�ed
the following parameters:

• SPADA

◦ number of acquaintances per agent: between 1 and 20

◦ number of agents each leader evaluates for integration into its partition: between 1
and 10

◦ maximum number of agents a leader can integrate into its partition within a single
step: between 1 and 10

• PSOPP

◦ number of particles #P : between 1 and 4

◦ number of particles starting at the current partitioning: between 0 and #P

◦ probabilities crdm , cBi , cB ∈ [0, 1] (with crdm + cBi + cB = 1) to apply a random
move operator, approach the particle’s best found solution Bi, and approach the
global best found solution B, respectively

◦ max. run time in seconds: between 1 and 10

After each reorganization, the test oracle checks if the algorithm’s result complies with
the de�nition of partitionings (i.e., each power plant must be a member of exactly one
AVPP). These checks are performed once the algorithm indicates its termination as well
as after the result has been adopted on the model. Only in case of PSOPP, the test oracle
additionally evaluated the satisfaction of the partitioning constraints since SPADA does
not allow to restrict valid partitionings concerning the size and number of partitions.

Fault Injection for Mutation Analysis of the Test Approach To evaluate the approach
proposed in this thesis, we injected four faults into the SPADA and �ve faults into the
PSOPP implementation. Our injected faults have in common that they do not cause the
algorithm to throw an exception that has to be caught by the test oracle (i.e., smoke
tests), but that their application can result in an invalid reorganization result or invalid
system structure. In a preliminary evaluation that ran for about one week, we tested the
SPADA and PSOPP implementation without injecting any faults. We did not observe
any failures in the course of these tests. So we can be con�dent that the failures the test
oracle reported during our subsequent evaluation can be attributed to a speci�c injected
fault.

111

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

SPADA: Injected Faults. The �rst two types of SPADA faults (cf. SPADA-F1 and SPADA-
F2) manifest in an incorrect transformation of the current system structure into SPADA’s
internal model of a partitioning, i.e., the acquaintances’ graph (cf. Section 6.6.2). This
false mapping results in an invalid reorganization result.

SPADA-F1/SPADA-F2

• Description: When creating the acquaintances’ graph for a new reorganization from the
current system structure, an arbitrary AVPP is not represented in the acquaintances’
graph if the number of AVPPs is above (in case of SPADA-F1) or below (in case of
SPADA-F2) a certain threshold. We set these thresholds to 100 for SPADA-F1 and to 5
for SPADA-F2.

• E�ect: The resulting partitioning does not contain the power plants that have been
members of the “forgotten” AVPP.

The two other types of faults we integrated into SPADA concern a functionality that is
used to transform the result, given in the form of an acquaintances graph, into a set of
sets. This functionality is used to provide the result to the SO Algorithm Adapter and as
a preprocessing step to create the new AVPP structure.

SPADA-F3

• Description: In case the size of a partition exceeds a prede�ned threshold, arbitrary
power plants are deleted from this partition until its size equals this threshold. In our
evaluation, we set this threshold to 100.

• E�ect: Some power plants are not represented in the partitioning.

SPADA-F4

• Description: In case the size of a partition exceeds a prede�ned threshold, this partition
is replaced by a partition that is randomly selected from the partitioning. In our
evaluation, we set this threshold to 100.

• E�ect: Some power plants are not represented in the partitioning, whereas others
occur two or more times.

All SPADA faults can be detected before the underlying system structure is changed.
Given the way the result is transformed into a new system structure (it is ensured that
every power plant is always a member of exactly one AVPP), these faults cannot be
detected by only considering the distributed solution of the SO algorithm. For each type
of injected fault, we are confronted with the problem of error masking.

PSOPP: Injected Faults. Regarding PSOPP, we modi�ed the implementation of the
move operations “random split” (PSOPP-F1), “random join” (PSOPP-F2), “approach
split” (PSOPP-F3), “approach join” (PSOPP-F4), and “approach exchange” (PSOPP-F5) as
described in the following listing.

PSOPP-F1

• Description: If a partitionK is randomly split into two partitionsL andM , an arbitrary
power plant of L is replaced by another arbitrary power plant of M . This fault does

112

6.6 Evaluation

only occur if the size of L and M is below a threshold of t1 or above a threshold of
t2.

• E�ect: Concerning the resulting partitioning, a speci�c power plant is missing, and
another occurs twice.

PSOPP-F2

• Description: If two partitions K and L are merged into a new partition M when
applying the random join operator, eitherK or L is not removed from the partitioning.
This fault does only occur if the size of K and L is below t1 or above t2.

• E�ect: In the resulting partitioning, the power plants of either K or L occur twice as
they are also contained in M .

PSOPP-F3

• Description: If a partition K is split into two partitions L and M , the resulting parti-
tioning does not contain either L or M . This fault does only occur if the size of L
and M is below t1 or above t2.

• E�ect: In the resulting partitioning, the power plants of either partition L or M
are missing.

PSOPP-F4

• Description: If two partitions K and L are merged into a new partition M when
applying the approach to the join operator, one element is removed from M . This
fault does only occur if the size of K and L is below t1 or above t2.

• E�ect: In the resulting partitioning, a single power plant is missing.

PSOPP-F5

• Description: If some power plants are exchanged between two partitions K and L,
one power plant of either K or L occurs in both resulting partitions M and N . This
fault does only occur if the size of M and N is below t1 or above t2.

• E�ect: In the resulting partitioning, one power plants occurs twice.

In our experiments, we used t1 = 2 and t2 = 100 so that the failures do only occur in
certain situations. Note that the application of an injected fault does not necessarily
yield an invalid result because an invalid candidate solution must be rated better than
all other (possibly valid) candidate solutions found by the particles. This characteristic
together with PSOPP’s non-deterministic behavior exacerbates the detection of an
injected fault.
Note that not all wrong results manifest themselves in an invalid system structure.
Consider the following example illustrating error masking: Assume that the power
plants a and b are currently members of the same AVPP. If a reorganization causes an
invalid result that does not contain these two power plants, the test oracle detects a
failure investigating the preliminary result. However, the resulting system structure is
valid in case the minimum size of an AVPP is≤ 2 and the maximum number of AVPPs is

113

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Injected Fault
PSOPP SPADA

F1 F2 F3 F4 F5 F5d F1 F2 F3 F4

#EP States 11.68
(5.39)

15.77
(6.49)

12.30
(5.96)

13.74
(5.75)

15.41
(6.16)

14.25
(6.05)

16.42
(5.71)

14.72
(6.42)

16.62
(6.19)

15.44
(6.31)

#EP Transitions 127.42
(99.20)

222.06
(148.59)

143.31
(124.31)

169.78
(128.68)

210.22
(142.27)

183.28
(130.00)

230.83
(134.75)

197.09
(134.29)

240.56
(141.24)

212.72
(136.51)

%EP State
Coverage

99.51
(2.33)

99.57
(2.08)

99.45
(2.50)

99.42
(2.71)

99.47
(2.35)

99.54
(2.31)

99.66
(1.77)

99.59
(2.15)

99.54
(2.35)

99.60
(1.98)

%EP Transition
Coverage

52.31
(15.80)

45.37
(12.63)

50.57
(14.32)

47.53
(11.97)

44.76
(11.47)

47.57
(14.11)

43.98
(11.34)

47.46
(15.11)

43.52
(11.60)

45.34
(13.23)

Table 6.2. Statistical data concerning the number of EP states, EP transitions, as well as the
coverage of EP states and EP transitions. All values are averages over the 700 generated test
sequences per injected fault type. Values in parentheses denote standard deviations.

not exceeded. This is because a and b remain in their old AVPP if they are not contained
in the provided result.

Discussion of the Test Results To be able to make a clear statement which types of
faults can be found by the presented approach, only one speci�c type was injected
during the execution of a single test sequence. All in all, we injected 10 di�erent types
of faults: SPADA-F1 to SPADA-F4, PSOPP-F1 to PSOPP-F5, and an additional variant
of PSOPP-F5, called PSOPP-F5d, which we will explain in more detail in the course
of this section. For each type, we generated 70 test suites, each containing 10 test
sequences, resulting in 700 test sequences per fault type and a total number of executed
test sequences of 7000. Overall, we generated 3,679,326 test cases, corresponding to an
average of 367,932.60 per fault type. As shown in Table 6.2, this high number of test
cases allowed us to obtain an EP state coverage of more than 99% and an EP transition
coverage ranging between approximately 44% and 52% on average for all fault types.
In the course of the execution of a single test sequence, the presented approach could
register multiple failures.
For this evaluation, we distinguish how the test oracle revealed a failure. In Figure 5.2
in Chapter 5, this is depicted by two di�erent interfaces: one working on the agent, i.e.,
the distributed results, and one on the SO algorithm, i.e., the computed solution, as well
as interim results. The �rst one is the here called black-box view and the latter one the
gray-box view of the oracle. Distinguishing these two views will show the necessity
in this case study to check the interim results for revealing as early as possible a fault.
The gray-box view necessitates extending the automatically generated test oracle by
manual checks based on the algorithmic approach of the SO algorithm. As Table 6.3
shows, the presented approach was able to detect every kind of injected fault and our
evaluation results support our claims made concerning the need for a gray-box view:
(1) All failures detected using the black-box view are also detected using the gray-box
view, and (2) the SPADA faults cannot be detected using the black-box view. The fact that
not all PSOPP faults that were disclosed using the gray-box view were also registered
using the black-box view (between 0.00% and 34.44% on average) also demonstrates the
problem of error masking in SOAS. Except for PSOPP-F4, the percentage of detected
failures using the gray-box view (between 50.00% and 82.31% on average) outmatches

114

6.6 Evaluation

Injected Fault
PSOPP SPADA

F1 F2 F3 F4 F5 F5d F1 F2 F3 F4

#Agents 523.53
(310.53)

529.66
(292.23)

473.29
(269.35)

511.83
(287.62)

491.26
(300.28)

477.64
(294.48)

520.29
(286.29)

509.63
(289.01)

494.90
(297.69)

447.40
(279.09)

#Agent groups 39.80
(67.18)

37.42
(48.83)

20.09
(27.72)

36.05
(64.05)

30.2
(47.79)

32.74
(48.77)

31.86
(57.70)

35.12
(47.42)

31.30
(58.27)

38.85
(45.35)

%Test sequences
without failure

79.97
(40.05)

84.55
(36.17)

91.42
(28.03)

96.28
(18.94)

97.86
(14.49)

70.22
(45.76)

97.13
(16.69)

84.22
(36.48)

85.69
(35.04)

90.13
(29.85)

#Test cases per test
sequence

520.01
(281.50)

523.71
(275.73)

531.53
(273.61)

521.19
(278.14)

517.23
(272.25)

518.54
(270.26)

548.38
(278.18)

535.62
(271.43)

511.46
(277.29)

518.51
(282.27)

%Applied test cases
per test sequence

81.37
(38.39)

85.69
(34.44)

92.74
(25.62)

96.77
(17.11)

98.62
(11.16)

73.90
(42.75)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

#Reorganizations
per test sequence

73.29
(64.40)

77.68
(62.08)

91.87
(59.90)

91.87
(60.24)

90.01
(56.36)

53.35
(61.19)

100.00
(58.20)

87.64
(62.46)

83.60
(60.35)

87.75
(61.30)

#Failures per test
sequence

0.36
(1.89)

0.19
(0.53)

0.13
(0.52)

2.29
(16.03)

0.02
(0.15)

0.54
(1.03)

0.03
(0.17)

0.16
(0.36)

83.49
(60.39)

0.12
(0.35)

#Failures 252 130 91 1603 16 376 20 110 58443 84
%Undetected
failures 44.44 17.69 34.07 97.75 50.00 40.96 0.00 0.00 99.84 9.52

%Detected failures
(gray box) 55.56 82.31 65.93 2.25 50.00 59.04 100.00 100.00 0.16 90.48
%Detected failures
(black box) 53.17 80.00 57.14 2.25 31.25 51.33 0.00 0.00 0.00 0.00
%Test sequences
with failures
detected in gray
box only

4.29
(20.33)

3.70
(18.97)

13.33
(34.28)

0.00
(0.00)

34.44
(45.63)

9.74
(27.63)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

100.00
(0.00)

%Test sequences
with failures
detected in black
box only

0.00
(0.00)

0.93
(9.62)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

Depth of �rst
detected failure

8.56
(22.82)

17.50
(62.33)

7.55
(9.12)

44.04
(109.78)

30.87
(74.51)

24.28
(75.26)

3.85
(0.49)

4.66
(1.64)

9.96
(14.38)

13.20
(16.06)

Depth of �rst
detected failure
(gray box)

8.56
(22.82)

17.63
(62.61)

7.55
(9.12)

44.04
(109.78)

30.87
(74.51)

24.28
(75.26)

3.85
(0.49)

4.66
(1.64)

9.96
(14.38)

13.20
(16.06)

Depth of �rst
detected failure
(black box)

8.77
(23.30)

13.64
(46.08)

6.08
(5.12)

44.04
(109.78)

90.27
(173.32)

22.83
(71.90)

N/A N/A N/A N/A

Table 6.3. Statistical data concerning the number of agents, the number of agent groups, the
number of test cases, the number of reorganizations, as well as the occurrence, detection, and
depth of failures. All undetected failures (see “%Undetected failures per test sequence”) can be
attributed to error masking. “#Failures” and “#Failures per test sequence” refer to the number of
faulty intermediate states the corresponding SO algorithm entered (note that this information is
provided by our fault injection mechanism and not by the oracle that can only check for the
validity of �nal states, i.e., reorganization results). All values are averages over the 700 generated
test sequences per injected fault type. Values in parentheses denote standard deviations.
the percentage of detected failures using the black-box view in all cases (between 31.25%
and 80.00% on average). These observations indicate the need for gray-box interfaces in
the context of testing SO algorithms.

The relatively high number of test sequences in which no failure was detected (between
70.22% and 97.86% on average) highlights the need for directed testing that can deal with
the vast search space more e�ciently. For PSOPP, the di�erent numbers of applied test
cases per test sequence re�ect the di�culty of disclosing a speci�c type of fault using
the black-box view. In the case of SPADA, all test cases were applied since the injected
faults cannot be detected using the black-box view. Another indicator for the di�culty

115

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

of �nding a speci�c fault type is the depth of the �rst detected failure (i.e., the index of
the test case in which the �rst failure was detected). Here, we see signi�cant di�erences
among the di�erent SPADA and PSOPP fault types. This is because the system not
only has to be pushed into a faulty intermediate state, but the reorganization also has
to end in a faulty state that can be detected by the oracle. This challenge becomes
clearer when taking a look at the percentage of undetected failures due to error masking,
which ranges from 17.69% to 97.75% for PSOPP and between 0.00% and 99.84% for
SPADA. Together with the average number of reorganizations per test sequence—that,
except for SPADA-F3, signi�cantly outmatches the average number of failures per test
sequence—these observations illustrate the di�culty of testing SOAS.
We observed that especially PSOPP-F5 had a relatively high number of executed test
sequences without detected failures (97.86% compared to an average of 88.67% over
all other types of fault). We, therefore, decided to use PSOPP-F5 to investigate the
in�uence of directed testing on the presented approach’s ability to disclose a fault. To
study this e�ect, we introduced an additional fault type PSOPP-F5d that is equivalent to
PSOPP-F5 but uses a speci�c system con�guration: To increase the chance of applying
PSOPP’s approach exchange operator (an operation that is usually only applied in
rare cases), we set the allowed number of partitions in PSOPP-F5d to nmin = nmax .
Using this parametrization, PSOPP has no choice but to apply the random exchange
or approach change operator, because the split/join operators increase/decrease the
number of partitions by one. Note that this measure does not increase the code coverage
(PSOPP also applied the approach exchange operator in case of PSOPP-F5), but the
chance that the fault can be disclosed given the algorithm’s non-deterministic behavior:
In approximately the same number of executed test cases, PSOPP-F5d entered a faulty
intermediate state about 23 times more often than PSOPP-F5. The bene�t of directed
testing is further re�ected in an increase of the percentage of a faulty end state in
case of a faulty intermediate state from 50.00% for PSOPP-F5 to 59.04% for PSOPP-F5d.
Consequently, the number of applied test sequences without detected failures dropped
from 97.86% to 70.22%.
Summarizing, although the presented approach was able to �nd every type of injected
fault, the high number of needed test sequences for failure detection demonstrates that
the automatic generation of test suites from EPs and in�uence functions is especially
useful for testing SOAS. This is mainly due to the non-deterministic behavior of SO
algorithms that are not directly addressed in the here executed test case generation
procedure. However, our evaluation results also showed that a combination of model-
based and random generation techniques is e�ectively detecting speci�c types of fault.
In particular, the gray-box interface is an important feature to mitigate the e�ect of
error masking. For a more e�cient generation of the test cases, concepts are presented
in Chapter 7.

Discussion of the Research Questions R1-R4 and R5-R7 We will now discuss the re-
search questions R1-R7, that are answered by having established the described evalua-
tion. With con�dence, R1 is answered with yes, as we showed how the speci�cation
was enabled by the concepts of the CCB and the KAOS methodology. The results are

116

6.6 Evaluation

not only the de�nition of the responsibility of the investigated SO algorithms but also a
test oracle for the requirements for testing. Next, the outcome of a systematic analysis
of the system’s requirements leads also to a system and environment model that is
completed by a test model formulated with EPs. This is forming a solid foundation
for the overall test model and answers R3 positively. R4 is questioning the isolation.
This is of particular interest in this evaluation since we only focused on testing the SO
algorithms and the mechanisms are highly complex and interwoven with the system.
Nevertheless, it was possible to establish the necessary sca�olding, as described in the
approach presented in this thesis. We showed the test results and the results of mutation
analysis, indicating the abilities of the approach to be executed in order to be able to
reveal failures, having an a�rmative answer for R4, R6, and R7.

6.6.3 Load-Balancing Web-Service—Evaluating the Test Approach in a Controlled
Experiment

The Znn.com case study, described in Chapter 2, has been developed in a research
project of the Carnegie Mellon University, resulting in the dissertation of Cheng [37].
It serves the evaluation research question R13, where we are going to investigate how
useable the presented concepts are for test engineers that are not familiar with testing
SO mechanisms. For this purpose, a controlled experiment was carried out: A student,
familiar in the area of software testing, was challenged by �rst developing a simpli�ed
version of the application case of the Znn.com load-balancing web-service, as speci�ed
by Cheng et al. [37, 38]. The implementation was done in C# and the .NET environment.
Then he was asked to test the developed SO mechanism in the Znn.com system, based
on the concepts presented so far in the thesis, using the S# environment.

Next, we will elaborate and discuss the results of this experiment concerning the usability
of the presented approach for MBT of SO mechanisms. The setting of the experiment was
the following: The student was equipped with the documentation and speci�cation of the
Znn.com system written by Cheng et al. [37, 38]. Further, he received the documentation
of the MBT approach for SO mechanisms as described in this chapter. Along with this
description, he was granted access to the software repository of the production cell test
implementation as well as a half-day tutorial on the testing approach. The student was
asked to write a development diary where he documented his development steps and the
experiences, troubles, and questions he had during the development. This development
diary was evaluated and discussed twice a week during the development period of
two months. The following results are the condensed experiences gained from this
experiment.

Development and Implementation of the SO Mechanism

The setup of the implementation provides the following components in an N-tier-client-

server architecture:

• Client: responsible for generating di�erent kinds of requests to the system

• Server: responsible for processing a request of a client

117

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

• Proxy: responsible for scheduling the requests to the servers and also for organiz-
ing the servers’ activity, i.e., the central point for the SO mechanism

For the implementation, the proxy and server components have been developed as a
.NET application, where the servers and the proxy are running on the same machine.
Both the client and the server are simple console applications, where the client can
access the server application. Both run on the same computer and a simulation has been
established, that can send requests and get the requests back with an updated state. The
state of the request was responsible for tracking the process and the timely behavior.
The following states have been introduced to the request for tracking:

• idle

• request processed by the proxy

• request processed by the server

• request with low �delity completed

• request with medium �delity completed

• request with high �delity completed

The decision was �rst to keep the implementation of the fundamental structure as
simple as possible to be able to focus on the SO mechanism. Thus, the processing of
the requests at the server was only a �xed amount of time set at the server when a
request is received. This amount of time can vary in order to simulate di�erent kinds
of servers. The student implemented a slow, medium, and fast server edition to be
con�gured. Each server is set with a cost value that is correlating with the response
time. The con�guration of the system includes a number of di�erent kinds of servers
as well as the total number of servers. The requests at the client are generated with a
�xed or a random frequency. The interval for the random frequency is also con�gurable.
Further, the number of clients is due to a con�guration.

The SO mechanism was developed according to the speci�cation in Cheng [38] with
slight adaptations. The environmental in�uence factors that we considered for the SO
mechanism are the servers and there ability to perform. The servers might fail in total,
the server might not be activated or deactivated, and the server might fail at obeying
the con�gured response time. The SO mechanism is located in the proxy component
and is based on a rule set consisting of the following rules:

• Detect failing servers and replace them adequately.

• Provide consistency of capabilities in the web-service by activating or deactivating
the server according to a demanded �delity (high, medium, low).

• Provide an optimal con�guration according to the costs of a server in the network
by activating or deactivating servers.

Having the con�guration, the �rst experiments showed a similar behavior as described
by Cheng [38]: The SO mechanism is smoothing the peaks of the costs and �delity by
adapting the structure of the system, compared to a solution with no SO mechanism.

118

6.6 Evaluation

Challenges in the Implementation The challenges for the student have been to work
in the case study, the concept of SO mechanisms, and the implementation in .NET. In
di�erent iterations, the system was implemented, starting with conceptual planning
and a step-wise re�nement of the implementation. It was di�cult to �nd the right
abstractions from the actual web-service to an implementation that is focused on a
few SO aspects. Overall, the development took one month, including the conceptual
phase. The support for the student by the documentation of .NET and the speci�cation
of Cheng [38] was enough for a starting point. However, the implementation and
conception of the SO mechanism required seasoned support.

Development and Implementation of the Test Framework

For the implementation of the test framework, the starting point was given by the
approach of describing the requirements in the form of a KAOS model. These models
have been sketched on �ip charts and have been used for discussing the detailed require-
ments for the SOuT. This modeling approach turned out to be very helpful to foster a
discussion about forming the CCB. The primary goal of the system is to provide news
content. The following high-level goals have been derived from that goal:

• The proxy can measure the demand
• The proxy can activate or deactivate servers to serve the demand
• The server provides news content within their abilities
• The overall �delity is medium

The introduction of obstacles enabled the student to identify di�erent needs for adapta-
tion and assign them to the proxy agent. The domain model that has been created was
rather simple, consisting of the clients that are connected to a proxy that is connected
to servers with the properties speci�ed to enable the decisions for adaptation. That
are mainly the availability, the �delity and the state of the request by the client. The
constraints in the requirements concern the following aspects:

• If a server fails it is adequately replaced
• If a server is no longer able to ful�ll the demanded �delity it is replaced, supported

by another server, or stopped.
• If the cost is above a threshold no new server is activated.
• If a cheaper server (or server set) is available it replaces the current one.

The formulation in OCL constraint was not performed by the student since it was
decided to formulate the test oracle directly. That was caused by the rather simple CCB.
Thus, the insight gained was: the process of forming the requirements and generating
the oracle might also be performed manually. That is also extremely helpful, as it is
structuring the overall development process.
After having formed the CCB and having the �rst part of the test oracle, the check was
implemented whether or not there is a valid con�guration. In the given, simpli�ed case
study the algorithm is more straightforward than for instance in the production cell but
was not straightforward to solve for the student at �rst. The solution was to check the

119

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

available resources and compute the demanded resources in the current situation by
abstracting from the concrete server and just stating how many high, low, and medium
servers are needed and compute the cheapest set. That algorithm runs on the model.
The model is an implementation in S# classes for the three classes described before. The
client implements a random generator for requests, as it serves as a test driver. The other
classes are incorporating the web service and demanding information about the current
state. Thus, it was necessary to enhance the implementation by getting an interface to
retrieve the internal state and map it to the model. Further, we needed another interface
for activating the environment faults on the servers, which are activated from the model.
The needed surgery on the SuT’s environment was highly invasive in order to execute
the tests. The e�ort for test automation and enabling it was the most time-consuming
part of the development of the test approach.
For specifying the test model, the student had to describe environment faults. That was
for him somewhat unintuitive. However, the CCB guided him very well in this process.
The entire environment faults are activated afterward randomly in a simulation started
in S#.
The insight by the student was that the understanding of SO for the case study was
much better from the testing perspective as from the development perspective, as it
was more guided. Thus, he was able to reveal failures of misinterpretation from the
implementation at this point.

Challenges in the Implementation Some of the challenges in the implementation of the
test framework have already been mentioned. Formost, the automation and connection
of the SuT’s environment and of the SuT itself was technically demanding and time-
consuming. The design of test cases as failures was counter-intuitively for the student,
causing some initial problems. However, this problem was solved by �rst unfolding the
the constraints of the CCB which support the task of de�ning test cases.

Discussion of the Research Question R13

The question R13 challenges the usability of the approach presented in this chapter.
The usability of the approach is the e�ectiveness, e�ciency with which a test engineer
that is new to testing SO mechanisms can test an SO mechanism. The answer to this
question is supplied by the controlled experiment presented here. Indeed, having only
one participant seems not statistically representative and demands for a more extensive
experiment. However, it is still possible to gain insights on the usability aspects of
the approach and about its strengths and weaknesses. The experiences made and
documented are leading to the following observations: Establishing and implementing a
full test automation, a test case generation, a test cases evaluation, and a test sca�olding
is a challenging and time-consuming task. The observation made in this particular
experiment and the creation of the test frameworks for the other case studies is that the
e�ort is more or less the same as for the development of the tested SO mechanism. The
systematic approach builds upon the KAOS model for deriving the requirements and
the test oracle as well as deriving a �rst system and environment model. This process

120

6.6 Evaluation

turned out to be very helpful. Still, an in-depth understanding of the intention of the
SOuT is needed. The creation of the KAOS model is well documented and supportive for
carving out the intended behavior of the SOuT. However, the particular formulation of
goals and constraints showed to be challenging and demands experience in developing
SOAS. The model supported the necessary discussion and elaboration. Still, there is
much room for interpretation of requirements and goals that are ultimately de�ned by
the CCB. That strengthen the need for the BtB testing concept presented in this chapter.
It has shown to be a valuable tool for aligning the requirements of the SuT.

The implementation of the test framework demands a skilled programmer, as establishing
the sca�old is technically demanding. That e�ort was underestimated at �rst by the
participant.

Describing the test model with environment faults turned out to be more challenging
than expected for the student. That was mainly due to an inconvenient form of de�ning
test cases. However, the conceptual connection with the CCB helped here to form the
test suite.

Overall, it was possible to establish a fully automated and proper test framework for
testing SO mechanisms within the experiment.

6.6.4 Pill Production—Investigating Reusability and Generalizability of the Test
Model in Resource-Flow Systems

On the one hand side, we use for this evaluation the speci�cation of the self-organizing
pill production, as described in Chapter 2 that is an output of a research project of
the University of Nottingham and published by Chaplin et al. [30]. On the other hand,
we use the work by Seebach et al. [145] for the concept and design of resource-�ow-
oriented, self-organizing systems, the Organic Design Pattern (ODP). The latter one is
implemented for the production cell, the case study that has already been tested and
evaluated in detail above. The production cell is just one instance of the meta-model
for resource-�ow systems, as shown in Figure 2.4 in Chapter 2. The case of the pill
production turned out to be another possible instance, which maps on that general
meta-model. Figure 6.11 shows this mapping by an instantiation of the ODP meta-model
for the pill production. The research question to be answered in this evaluation case is
R10: how well does generalization apply in the MBT concept for di�erent SuTs?

For this purpose, the complete test models for the pill production and the production cell
have been developed twice. First, without any generalization, both models have been
developed (by the same developer) complete and independently from the other models
in S#. Second, the ODP meta-model has been implemented in S# and was used for the
second implementation of the pill production and the production cell. The results, in
source lines of codes (SLOC) are shown in Table 6.4. Overall, the e�ort for generating
the ODP meta-model was quite signi�cant, the development of the over 4k SLOC took
over four weeks. However, the development e�ort, shown in SLOC, of the other models,
derived from that meta-model are just around 60% the size as without generalization.
Most of the reduction has been achieved in the system and environment model.

121

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

PillContainer

Station

Role

Observer/Controller

Recipe

Capability

required capabilities

* 1
*

2..* *

*

1

0..1

 * 1

1..*
*

available
capabilities

0..1
*

capabilities
to apply

*

* allocated roles

 applied capabilities

Condition
1 precondition 1

1 postcondition 1

1..*

 0..1 port

*
*

 state

inputs
outputs

Produce

Consume

Process

**

- type : IngredientType
- amount : Integer

<<enum>> IngredientType

BlueParticulate, RedParticulate, YellowParticulate

Figure 6.11. This UML class diagram shows the instantiation of the ODP for the pill production
case study.

ODP Pill Production Robot Cell
SLOC without Generalization 1,131 2,181

SLOC with Generalization 4,101 684 1,600

Table 6.4. The table shows the source lines of code (cleaned by removing blank lines and
comments) of the models for the pill production and the production cell. The �rst line shows
the numbers without generalization, i.e., the models are independently developed. The second
line shows the numbers with the ODP meta-model and the reuse of its concepts in the other
two models.

The abstraction ability of the MBT approach is, in this case, an enabler for generalization
in testing. The e�ort for generating the models, but also for increasing the quality and
the usability of the models by using an established meta-model is bene�cial for testing
SO mechanisms. That is shown by the fact that the size of the model using the ODP
model was less than 60% of the ones used without meta-model. However, for providing
more evidence on this assumption more empirical results are needed, that is due to future
investigations. Nevertheless, the �rst result is auspicious and reveals high potential
in building generalizable test models. One example that shows the potential is a new
version of an SO mechanism that is working in a decentralized fashion, as described by
Anders et al. [7]. The implementation of the SO mechanism can be solved generically
for the resource-�ow systems in the ODP. Testing the implementation is now possible
for the production cell case study as well as for the production cell without additional
e�ort, if it is integrated into the generic part of the model. Thus, it is possible to test
one generic SO mechanism within two di�erent environments without additional code
for the model. The ability to introduce generalization comes with di�erent merits: The
meta-model can be established and form a reliable foundation for further developments
of testing endeavors. The development e�ort is reduced and more guided by relying on
the meta-model.

122

6.6 Evaluation

Host1

graphite

graphite

NameNode

SecondaryNN

ResourceManager

collectd

controller

compute-4

compute-3

compute-2
DataNode

NodeManager

collectd

compute-1

Host2
Windows VM

compute-6

compute-5

Figure 6.12. The deployment con�guration of the Hadoop evaluation. The Hadoop application
is distributed among two hosts that are organized in a docker-swarm. The SOuT is hosted in
the controller, adapting the con�guration of the ResourceManager to the current environmental
conditions. The graphite component is deployed at each compute node for gathering information
from the system. Further, the Windows VM is hosting the test framework.

6.6.5 Apache Hadoop—Testing an Industrial Case Study in Full Integration

Hadoop is one of the most popular and widely-used software platforms for big data
processing and for applying the MapReduce paradigm to a large number of di�erent
applications and workloads. The performance of its application depends on the con�gu-
ration of a bunch of parameters which need to be tuned for a speci�c task or workload.
The YARN (Yet Another Resource Negotiator) resource manager is the component of
Hadoop which is responsible for scheduling and controlling the workload within the
cluster of compute nodes. The parameterization of YARN is decisive for the job per-
formance. The best practice for setting the parameters is a best-e�ort con�guration
that is based on experience or static pro�ling, relying on apriori knowledge about the
job. Zhang et al. [178] developed a self-adaptive component on top of YARN. It is an
implementation of the MAPE architecture (cf. [87]), i.e., a control loop that measures,
analyzes, plans, and executes adaptation of the parameter setting of YARN. The authors
showed that they can speed up the Hadoop instance up to 40% in a volatile environment
compared to the best e�ort solution. We use the implementation of Zhang et al. [179],
available at GitHub [150], which implements the concepts of Zhang et al. [178].

The implementation is deployed in a docker-swarm that uses two desktop computers
equipped with Intel i5-4690 processors with 4 cores, 16 GB RAM, 512GB SSD, and
Ubuntu 16.04 LTS as the operating system. The concrete deployment con�guration can
be seen in Figure 6.12.

123

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

For the sake of simplicity, we only use a subset of the overall requirements that are
extracted from the Hadoop documentation [61] as well as the additional requirements of
the adaptive extension documented in [150, 178, 179]. Since our test approach presented
in this chapter is focused on functional testing, only the functional requirements of the
YARN application are considered. The following functional requirements are used in
the case study and are implemented in an CCB:

• A task will be completed, if it is not canceled
• No workload is allocated to inactive, defected, or disconnected nodes
• Parameters of the con�guration are updated by the adaptation loop if a certain

rule applies
• Defects or disconnections are recognized

The requirements have been translated into the CCB using the approach presented in
Chapter 3.

S# Test Model for Hadoop Test Automation

A �rst step is to build the model in the modeling language S#. The model is used for
the whole test process, i.e., the input generation, test execution, test evaluation, and the
judgment. As the model is an executable run time model, it further incorporates the
test driver.

KAOS Model First, it is necessary to form the KAOS requirements model along with
the constraints in order to derive the test oracle. A key advantage of transforming
these constraints to evaluation functions that are de�ned on the test model is that it
is possible to abstract from distribution here since it is solved by the run time model
that is responsible for supplying a consistent snapshot of the system’s state. Thus, the
constraints are de�ned given a synchronized system. Indeed, the synchronization needs
to be provided by connecting the model with the actual system, as described later on.
Listing 6.8 shows an excerpt of the constraint-based oracle used for the Hadoop case,
that is a result of transforming the CCB to S#. The shown constraint describes, in parts,
the requirement, that the parameters of the con�guration need to be updated and are
causing self-organization. The constraint checks three rules that imply an adaptation of
the system, i.e., a response time outside of the speci�ed slot and an exceedance of the
budget. The constraints are formulated on the basis of the YarnController containing
the necessary information (cf. Figure 6.12).

System and Environment Model The system model describes the components of the
SuT, i.e., the YARN component as a domain model, that already a result of forming
the KAOS model. This model is completed by the environment of the SuT having the
environment model. The model-based testing paradigm pays o� in this large-scale
industrial case study due to its abstraction abilities making the approach scalable. For
this purpose, the model must be focused on the test purpose, that is de�ned by the set
of investigated requirements outlined before.

124

6.6 Evaluation

1 /* ... */
2 AdjustmentNeededConstraints = new List<Func<bool>>
3 {
4 () => YarnController.AvgResponseTime > Model.HighResponseTimeValue ||
5 YarnController.AvgResponseTime < Model.LowResponseTimeValue ||
6 YarnController.TotalServerCosts > Model.MaxBudget * 0.75
7 };
8 /* ... */

Listing 6.8. Partial S# component representing the constraint-based oracle in the Hadoop
case study.

«interface»
IYarnReadableYarnAppContainer

YarnAppAttempt

Client YarnApp

YarnNodeYarnHost

YarnController

1

1..*

1

111..*

1

1 1..*

1

1..*

1

1..*

Figure 6.13. Graphical representation of a simpli�ed version of the domain test model formed
by the classes describing the SuT as well as its environment in the S# test model. YarnHost
represents the basic class for all distributed components in the cluster. The YarnNode executes a
YarnApp allocated by the YarnController. The YarnController is the adaptive part of Hadoop.
The Client is the environment which is not controlled by the SuT. The YarnController is respon-
sible for allocating a client’s task (formulated as YarnApps that have di�erent YarnAppAttempts
stored in the YarnAppContainer) in the SuT.

125

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Figure 6.13 shows the graphical representation of the classes that build the system
and the environment model. In general, the Hadoop system follows a client-server-
architecture which is re�ected in our model: The environment of the SuT is formed by
the client, which is the component which has the most in�uence on the SuT. Besides
the client, the nodes and their connections to the YARN controller are also part of the
environment, i.e., the controlled environment. This di�erentiation is of importance as
the controlled environment is also used by the test oracle since parts of the functional
requirements concern this control task. The other part of the environment, i.e., the
client, is not controlled by the SuT, it is nevertheless interacting with the Hadoop system
and driving the execution of the SuT, i.e., the tasks or requests sent by instances of the
client class.

Test Model The test model serves mostly as a de�nition of the test suite. Hence, the test
suite is described by two kinds of models: one for the controlled part of the environment
of the SuT and one for the dependent environment, i.e., the client. The �rst part of the
test suite is based on a fault-based test case description, the environment fault injection,
as for the production cell. The latter part describes the environment as a probabilistic
test model, able to deliver endless test inputs, the EPs.

Environment Profiles Environment Pro�les are probabilistic models, that describe the
interaction of the environment with the SuT. In the case of Hadoop, the interaction is
focused on the client, that can submit tasks and consequently controls the workload.
Testing the YARN controller demands a workload on the Hadoop system in order to
activate it. The basic idea of the environment pro�les is to generate test inputs that
represent the most likely conditions. It is up to the test engineer to design a good
environment pro�le for the test suite. For forming the EP for the Hadoop case, we
use the most popular three benchmark collections that apply to Hadoop as well as
information for empirical studies on the usage of Hadoop available in the literature [35,
42, 136]. These benchmarks are used for tweaking the parameters of YARN, among other
things. The three benchmark collections are Hadoop MapReduce Examples [61], Intel’s
HiBench [79], and Statistical Workload Injector for MapReduce (SWIM) [34]. These
have been clustered to extract the di�erent possible tasks for Hadoop, resulting in 14
di�erent types of actions that are grouped into four categories:

1. Generators

• Text �les: random text writer (rtw) and TestDFSIO -write (dfs-w)
• Binary �les: randomwriter (rw) and teragen (tgen)

2. Data Processing

• Read: wordcount (wc) and TestDFSIO -read (dfs-r)
• Sort: sort for text data and terasort (tsort) for binary data
• Validate: testmapredsort (tstsort) and teravalidate (tval) for any sorting

application
3. Calculation

126

6.6 Evaluation

• pi: Quasi-Monte Carlo method for calculating π
• pentomino (pent): solving the pentomino problem

4. Simple Interaction sleep and fail

The states shown are the 14 actions categorized above. Thus, a state change implies
stopping one action (or completing it) and starting the next which is corresponding
with the next state. After identifying these states, the transition probabilities have to be
de�ned. In order to �gure out these values, we analyzed the benchmark as well as other
typical applications for Hadoop and the remarks of Zhang et al. [178] in detail. Further,
we used the empirical analysis from the literature [35, 42, 136] to ground our numbers.
The result is the transition matrix shown in Table 6.5 with the transition probabilities
used in the environment pro�le.

Environment Fault Injection The second part of the test suite is formulated as envi-
ronment faults. The faults are injected into the controlled environment of the YARN

controller, i.e., the nodes and the connections between nodes, controller, and client.
Listing 6.9 shows the possible speci�cation of two environment faults in S#. The
component shown is a simpli�ed version of the YarnNode class de�nes di�erent attributes
as well as functions of the node. The functions are used to represent the functionality
of the component of the SuT and also for mapping the test model to the actual SuT
for test automation. Since the node is part of the environment of the controller, we
implemented di�erent test cases in the form of environment faults. The activation is at
random, which we extend in the next chapter of this thesis.

1 class YarnNode : Component {
2 YarnController _connectedYarnController;
3 bool _isActive;
4 List<Query> _queries;
5
6 public virtual void Activate() {
7 _isActive = true;
8 }
9

10 public virtual void AddQueries(List<Query> queriesToExecute) {
11 _queries.AddRange(queriesToExecute);
12 }
13
14 [Transient]
15 class ServerCannotActivate : Fault {
16 public override void Activate() { }
17 }
18
19 [Persistent]
20 class CannotExecuteQueries : Fault {
21 public override void AddQueries(List<Query> queriesToExecute) { }
22 }
23 /* ... */
24 }

Listing 6.9. Simpli�ed S# component representing a Hadoop Node.

127

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

d
f
w

r
t
w

t
g

d
f
r

w
c

r
w

s
o

t
s
r

p
i

p
t

t
m
s

t
v
l

s
l

�

d
f
w

0.6
00

0.0
73

0
0.1

45
0

0
0

0
0.0

73
0.0

73
0

0
0.0

18
0.0

18
r
t
w

0.0
36

0.6
00

0
0

0.1
45

0.0
36

0.1
09

0
0.0

36
0

0
0

0.0
19

0.0
19

t
g

0
0.0

36
0.6

00
0

0
0

0
0.2

55
0

0.0
73

0
0

0.0
18

0.0
18

d
f
r

0
0.0

73
0

0.6
00

0
0.0

36
0

0
0.1

45
0.1

09
0

0
0.0

18
0.0

19
w
c

0.0
73

0.1
09

0
0

0.6
00

0
0.0

73
0

0.0
73

0.0
36

0
0

0.0
18

0.0
18

r
w

0
0.0

73
0.0

73
0

0
0.6

00
0

0
0.1

09
0.1

09
0

0
0.0

18
0.0

18
s
o

0
0.0

73
0.0

36
0

0.0
73

0.0
36

0.6
00

0
0.0

73
0

0.0
73

0
0.0

18
0.0

18
t
s
r

0
0

0
0

0
0

0
0.6

00
0.1

09
0.0

73
0

0.1
82

0.0
18

0.0
18

p
i

0.1
45

0.1
09

0
0

0
0

0
0

0.6
00

0.1
09

0
0

0.0
18

0.0
19

p
t

0.1
09

0.1
09

0
0

0
0.0

73
0

0
0.0

73
0.6

00
0

0
0.0

18
0.0

18
t
m
s

0
0.1

45
0

0
0

0.0
73

0
0

0.0
36

0.1
09

0.6
00

0
0.0

18
0.0

19
t
v
l

0.0
73

0.1
09

0
0

0
0

0
0

0.1
09

0.0
73

0
0.6

00
0.0

18
0.0

18
s
l

0.1
67

0.1
67

0.1
67

0
0

0.1
67

0
0

0.1
67

0.1
67

0
0

0
0

�
0.1

67
0.1

67
0.1

67
0

0
0.1

67
0

0
0.1

67
0.1

67
0

0
0

0

Ta
bl
e
6.
5.

Tr
an

sit
io

n
m

at
rix

of
th

e
en

vi
ro

nm
en

ta
lp

ro
�l

e
w

ith
th

e
pr

ob
ab

ili
tie

su
se

d
in

th
e

te
st

au
to

m
at

io
n

of
th

e
H

ad
oo

p
sy

st
em

.

128

6.6 Evaluation

S# Testdriver for Hadoop

In order to fully automate the testing within S#, it is necessary to connect the SuT, here
the Hadoop system, with the executable S# model. The connection is established by
a test driver which is integrated into the S# code, written in C#. Two functionalities
must be provided by the test driver, to enable test execution: (1) controlling the SuT
by enabling the injection of faults in the controlled environment of the SuT and (2)
monitoring the SuT with its controlled environment as well as the clients for the Hadoop
system. Since the SuT and the test system are part of a distributed cluster, a connection
between the test system and the SuT needs to be established. We use a REST -based test
driver to execute the control commands and to gather information from the Hadoop
system for monitoring. In order to keep the test system architecture una�ected from
the concrete test driver implementation, the test driver is encapsulated in a particular
interface. The primary function within the test driver implementation is to translate
and transfer commands for controlling the SuT and to receive and translate monitoring
information. The counterpart in the Hadoop system which is needed is the scripts used
to supply the relevant functionality for controlling and monitoring.

Controlling the SuT The SuT is controlled by the test driver which is injecting faults
into the controlled environment of the SuT, i.e., the activation of environment faults,
and sends tasks to the Hadoop system. The later one can be directly generated at the
test system via its interfaces supplied. The workload is generated by having function
calls to Hadoop for the 14 di�erent classes of actions (cf. Table 6.5). The functions make
use of the workloads supplied by standard benchmarks we used for extracting the states
of our EP. They are called from C# and thus directly executed from the test framework.
Thus, it is, for example, possible to disable a network connection or to disable/shutdown
a particular node of the Hadoop system as a fault activation.

Monitoring the SuT Monitoring is needed in order to update the run time model of S#
after every step. The execution order of the steps is �xed and determined by the test
engineer. In our case, we �rst updated the state of the model and afterward executed
the selected test steps. Executing the steps is in the responsibility of the test driver as
described before. For updating the model, we need to extract that information for the
system as a snapshot. Gathering the information needed makes it necessary �rst to
select which information is of concern. This step is already performed by generating the
test model, here we selected the information needed. The system and the environment
model are instantiated as a run time model. Thus, the information for its attributes has
to be retrieved from the SuT that is available by on the one hand the Hadoop system
itself (making use of the graphite extension, cf. Figure 6.12) and on the other hand the
docker ecosystem. The data is retrieved by command line functions and needs to be
extracted by a parser afterward. This parser is written in C# and maps the information
into the S# model.

129

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

After the test driver is de�ned, the test engineer can abstract from these technical details
and from synchronization by de�ning tests to be automated or the constraint-based
oracle only on the consolidated model.

Case Study for Testing a Distributed, Adaptive Real World Software Systems—Research
Question R12 The experiences made by applying the Hadoop case study is summarized
in the following, re�ecting the abilities of the approach for testing an industrial SOAS,
as challenged by research question R12.

Model-Based Testing of an Adaptive Hadoop System Application Work by Zhang et
al. [178] showed that adaptive systems are not limited to arti�cial research case studies;
they can be applied to a real-world application. In this evaluation, we showed that our
concepts for MBT of SO mechanisms are also applicable for this particular real-world
application: the self-adaptive controller of a Hadoop application. The central concept of
the approach proposed in this thesis is to use run time models; the underlying model-
based paradigm enables to handle the complex systems—here a distributed Hadoop
system—by abstraction. Abstraction makes it easy to integrate the automated oracle,
without worrying about the distribution of the system.

Implementing the Test Scaffold for Distributed Test Environment Indeed, the model-
based paradigm made things easier by abstraction. However, test automation still
somehow needs to cope with the complexity of the system when tests are executed and
evaluated. This is done by the test driver that we integrated into our test system. The
model de�ned which kind of information is needed to be extracted from the SuT and
which information or actions needed to be executed on the SuT. The set of command
line functions we de�ned under the hood of the test automation is still not as generic and
as reusable as we would like it to have. It needs to be customized for each application by
a test engineer. We showed that and how it is possible to do so for a complex real-world
application. In future work, this challenge of connecting a complex system to the testing
ecosystem in a generic way might be worthy of investigation, potentially using learning
techniques.

Mutation Analysis of the Approach For the evaluation of the ability of the approach to
detect failures, the universal mutator tool by Groce et al. [69] has been used to alter the
Java-based implementation of the SO mechanism. The universal mutator can modify
a given code fragment in order to introduce the standard mutant operators known
from the literature. After mutating the code, di�erent versions of the original class are
supplied that are compilable, i.e., survive �rst a smoke test. The results are 43 di�erent
versions of the SOuT. These versions have been hand selected by they aim of choosing
the most diverse mutation settings. The diversity was analyzed statically, also by hand,
by comparing the e�ect of the mutants on the mechanism of the SO algorithm.
One test run took on average 4 hours and executed 290 test cases. The number of
test cases to be executed was set based on the experiences made by previous test runs

130

6.6 Evaluation

since that number leads on average to an execution of a pair-wise combination of the
speci�ed environment faults and a statement coverage of the EPs. However, the random
combination of the test cases leads to 14% of the test runs that are stopped before the 290
test cases are achieved, since no more valid system con�guration was possible for the
SOuT in that case. The number of test cases executed is rather low, compared with the
numbers in the case studies where the SO mechanisms are extracted from the systems.
That is not the case in this evaluation where the SO mechanism operates in its natural
habitat, i.e., in full integration. Nevertheless, it was possible to reveal the di�erent
mutants in the approach proposed in this thesis. That demonstrates the ability to �nd
standard mutation faults in the code. However, there might be unique SO faults, like
the ones shown in the evaluations before, that are not evaluated here. There is a need
for de�ning standard mutation operators for SO mechanisms in future work.

131

6 Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization

Mechanisms

Summary and Outlook. Testing aims at revealing failures from the SuT by executing it with different
inputs. For this purpose, it is necessary for the test engineer to gain an understanding of the intended
behavior of the SuT. Thus, it is necessary to form the requirements for testing and derive a test
suite. This mental model of the test engineer is made explicit in MBT. Model-Based Testing is used
for structuring the testing approach and its activities by allowing for automation of testing activities.
This allows the test engineer to shift her focus on design and analysis of testing rather than on
implementation and execution. For testing complex systems this focus is needed. We showed in
this chapter how the paradigm of MBT is applied for testing SO mechanisms. However, the static
concept of MBT is not able to cope with the dynamic and adaptive behavior of SO mechanisms.
Thus, MBT was extended in this chapter to cover the needs for testing SO mechanisms. The main
presented contributions in this chapter are:

1. The concept of closed-loop MBT has been introduced to be able to feedback the information
of the executed SuT and the executed tests into the model.

2. Model reflections for MBT was presented as a concept for enabling closed-loop MBT in a run
time model.

3. The concept of executable models for testing was proposed, allowing for test scaffolding of
SO mechanisms.

4. A method for modeling continuous SO mechanisms within a probabilistic test model was
introduced. This enables to describe the ever-changing environment of an SO mechanism
and allows for describing abstract test cases that are automatically instantiated by executing
the model.

5. A method for modeling discrete SO mechanisms was introduced. The model extends the
concepts of fault-based testing toward allowing to describe abstract test cases for discrete
SO mechanisms. This concept is integrated into the concept of the executable test model,
allowing for automatic test cases instantiation.

6. Back-to-Back testing was proposed for SO mechanisms. We showed the special need for this
concept in the context of SO mechanisms. The autonomy for the SO mechanisms is designed
by giving the mechanisms space for decisions. That challenges the specification of the test
system and the SuT. Back-to-Back testing enables to provide a tool for testing that special
concern.

7. A thorough evaluation was delivered showing the strength of the proposed concepts. The
evaluation was carried out on five different case studies. The results showed the success of
the proposed MBT concept.

The concept for MBT allows for fully automated testing once the model has been created. The
model-based paradigm shows its strength especially in its abilities for abstraction, making it possible
to handle complex classes of SuTs. Generating actual tests within the model is done by executing
the model. So far, the execution and generation was random, showing already the abilities of the
approach to reveal failures. Within the next chapter, we will elaborate techniques for test case
selection. The test cases are selected in order to reveal failures as fast as possible. This is of high
importance, especially when a test end criterion has to be defined. The test end was set to a more
or less random number. We will elaborate next how this is done more systematically.

132

Summary. The testing of SO mechanisms is demanding on different levels, one
challenge, addressed in this chapter, is to handle the flat-branching state space of
the SuT. Common test case selection techniques are designed for deep-branching
state space, making these techniques less useful for selecting test cases for SO
mechanisms. We will show how to apply the concept of boundary-interior testing
to SO mechanisms and how to use a search-based testing approach for online
test case selection. Further, an approach for more flexible, adaptive test cases is
presented in this chapter, that can react at run time to changes of the SuT. The
evaluation will show how these techniques are able to speed-up failure detection
in the MBT setting presented in the chapter before. The content and contributions
of this chapter are published in [51, 53–55, 133].

7
Test Case Generation for Flat-Branching Test

Problems

7.1 Related Work . 135
7.1.1 Search-Based Test Case Generation 135
7.1.2 Adaptive Test Automation . 136

7.2 Boundaries of Self-Organization Mechanisms: A Boundary-Interior Test
Case Generation Approach . 136
7.2.1 Boundary Interior Test Case Generation for SO Mechanisms via Search-

Based Testing . 138
7.2.2 Heuristic-Based Selection Strategy for Automated Online Test Case

Selection and Reduction . 139
7.3 Adaptive Test Cases to Enable Reasoning During Test Execution 140

7.3.1 Annotating the Purpose a Test Case for Enabling Self-Reflection . . . 141
7.3.2 Outlook: Planning Optimal Rule Instantiations by Optimizing Diversity of

the Test Cases . 143
7.4 Evaluation . 144

7.4.1 Production Cell—Boundary-Interior Test Case Generation 144
7.4.2 Load-Balancing Web-Service—Adaptive Test Case Execution 148

In the previous section, a thorough approach for Model-Based Testing (MBT) of Self-
Organization (SO) mechanisms has been presented. The evaluation results showed
the capability of the approach to address the particular requirements for testing SO
mechanisms. These are described in Chapter 4 as follows:

1. Non-Determinism in the execution of the SO mechanisms, due to the used SO
algorithms (e.g., particle swarm optimizer).

2. Ever-changing environment that is unpredictable due to its complexity that is
determining the action and solution space of the SO mechanism.

3. The Self-Organizing, Adaptive System (SOAS)’s components are interacting in-
tensively.

4. Concurrent execution within the controlled system and, possibly, concurrent SO
mechanisms.

133

7 Test Case Generation for Flat-Branching Test Problems

However, the complexity of the test model, which can use re�ection to adapt to an System
under Test (SuT) changing at run time, and the complexity of the Self-Organization
Mechanism under Test (SOuT), that is adapting itself as well, is leading to many situations
to be investigated by test cases. The state space of the test setting is vast and complicated
to exploit. We have many di�erent con�gurations of the systems, which are possible to
start from and even more di�erent actions and combinations of actions (that depend on
various conditions) to continue. The interesting aspect is, that the state space is, not as
common for testing problems [17, 121], rather �at-branching instead of deep-branching.
Figure 7.1 is illustrating the di�erence between the �at and deep branching state space:
Figure 7.1a shows the state space as it is common in software testing, having one initial
con�guration as a starting point and branching depth (especially for dissolving loops
and returns). For SO mechanisms’ state space there are di�erent con�gurations and
starting points given leading to many di�erent actions afterward. This is resulting in a
�at branching state space, as shown in Figure 7.1b. The structure of the state space of
SO mechanisms is a consequence of the non-determinism in the SO algorithm used for
computing new system con�gurations. However, we showed in the previous chapter,
that it is possible to use the test model for generating test cases for testing by simply
executing it; resulting in random tests. Therefore, the concrete environment faults to be
activated and transitions in the Environment Pro�le (EP) to take are chosen randomly.
Known test selection strategies, e.g., modi�ed decision condition coverage (cf. [121]),
are, as stated before, designed for a rather deep-branching state space, formed by static
propositional statements in the code. For SO mechanisms, having a �at-branched and
hard to predict state space, that can change at run time, these techniques are hard to
apply. One interesting observation is, that branch coverage is for instance achieved in
every recon�guration for the SO mechanism in the energy grid case study. However,
the evaluations in Chapter 6 haven shown, that a single recon�guration is not adequate
for thorough testing. We showed that it is possible to use the coverage on the test model,
e.g., the states of the EP, as an alternative criterion. Nevertheless, the test selection
criteria used in most approaches are focused on standard adequacy criteria and thus not
applicable here.

In this chapter, we introduce two approaches, which can exploit the unique characteris-
tics of the state space of SO mechanisms. These are used for improving the test case
generation compared to the results which have been achieved by random testing.

The boundaries of SO, i.e., the state where barely a new con�guration is possible for
an environment situation, turned out to be error-prone states for SO mechanisms, as
we will elaborate in the evaluation of this section. The following fact explains that:
the Corridor of Correct Behavior (CCB) implicitly de�nes the border, and the concrete
implementation of the SO depends on this and most failures are likely when only less
correct options are given. We will show how techniques of search-based testing are used
for test case generation. The search algorithm is directed toward the borders of the SO
and directly execute the explored state as a test case. We will show how heuristics can
improve a breadth-�rst search, making use of the assumption of the �at-branching state
space. The results are shown in the evaluation with the production cell case study.

134

7.1 Related Work

s1

s2 s3

s4 s5 s6

(a)A deep branching state
space, as common for
testing problems, start-
ing at s1 with one initial
starting point and branch-
ing rather deep than �at.
Note that this tree struc-
ture is demanding for un-
rolling loops and returns,
leading to deep branches.

s1 s2 s3 s4 s5

s6 s7 s8 s9 s10 s11 s12

s19s18s17s16s15s14s13

(b) A �at branching state space is emerging from di�erent initial
starting points, as common for SOuT.

Figure 7.1. The state space is in testing mostly converted into a tree structure for illustration
and for applying test case generation resp. selection strategies as well as for applying adequacy
criteria. The structure of this tree is common to be deep branching (cf. [17, 121]), as shown in
Figure 7.1a. For SO mechanisms, the state space is di�erent: it is more �at branching, as shown
in Figure 7.1b. This is due to the multiple di�erent possible con�gurations of the system to start
from and the decisions to take afterward.

Further, we introduce a concept of adaptive test cases, that is suited for testing adaptive
resp. SO mechanisms. To put it into a nutshell, the test cases are de�ned not in a
deterministic and in�exible way as common for automated test cases, but more in a
�exible way by using the run time information of the model. That enables the de�nition
of the intention of the test case based on run time situation, allowing to execute the test
cases in di�erent possible shapes.

7.1 Related Work

Test case selection and generation is a �eld of intense research, as shown in the survey
of Anand et al. [5]. The techniques introduced in this chapter are building upon the
MBT approach of Chapter 6. We investigate the use of search-based test case generation
for e�ectively generating tests from the model, and we extend the automation abilities
to gain adaptiveness in the test execution. The related work classi�es these two areas.

7.1.1 Search-Based Test Case Generation

Model-based and search-based techniques, among other things, are used to cope with
the challenges of generating the most promising test cases for execution. The concepts
of search-based software testing, as summarized by McMinn [98], are making use of
metaheuristic optimizing search techniques for directed test case generation. The target
function is giving the direction within the search landscape. Miller and Spooner [102]
have described this test concept �rst, making use of optimization techniques for gen-

135

7 Test Case Generation for Flat-Branching Test Problems

erating test inputs maximizing code coverage. The critical parameter of this test case
generation approach is to select the search target and describe the �tness landscape.
The challenges are to encode the testing problem adequately and in a suitable form for
the optimization tools. The encoding is appropriate if the resulting �tness landscape
provides clear guidance, i.e., without plateaus. Di�erent approaches [83, 101, 168] exploit
branch coverage within the control-�ow of a program and discuss various forms of the
�tness landscape. However, they are not adequately describing the problem of SO mech-
anisms, as outlined before. Fraser et al. [62] describe a further approach for search-based
testing using the search mechanism of a model checker. We pick up these thoughts and
implement a breadth-�rst algorithm for our search-based approach. Further, we have
to design new optimization functions that reveal failures in SO mechanisms. To my
knowledge, there is no other online test case selection approach that could be applied
to this class of SuT.

7.1.2 Adaptive Test Automation

The here proposed approach for adaptive test automation extends current test automa-
tion concepts by a notion of adaptiveness (w.r.t. system and context states). Self-aware
test models enable us to design a new kind of automatable test cases that incorporate
situational aspects and the purpose of the test case, but also information about the
correct system state. As can be seen in Polo et al. [124], current approaches primarily
execute test scripts, mostly without any context description, or replay captured scenarios
that have been recorded through manual testing. Those approaches have a signi�cant
capability in fast and e�cient execution, but lack of maintainability and have to be
reworked after changes in the system, and further have to be governed with high e�ort.
Though they strive to optimize e�ectiveness in test execution, this is often at the cost of
reactiveness and adaptiveness in regards to changing contexts or system states. There is,
however, a need for reactive tests—especially when dealing with systems that can change
their internal structure in response to contextual changes for themselves; or in other
words: adaptive systems need adaptive tests. We solve this by using models as run time
re�ection of the current state. The model@runtime community inspires this approach
(cf. Aßmann et al. [12]), even if they are concerned with adapting system strategies
instead of testing. Existing approaches for testing adaptive systems are focused on
test case generation and the usage of the test output to tweak the system performance
(cf. Siqueira et al. [148]). The automation of test suites was previously only done for
dedicated test cases, but not in a general approach as we propose it.

7.2 Boundaries of Self-Organization Mechanisms: A
Boundary-Interior Test Case Generation Approach

A huge state space is a common challenge for software testing [17], but SO mechanisms
add a further dimension. Most approaches in software testing coping with a vast state
space make use of its structure to reduce the number of test cases that need to be
executed. For instance, an in�nite loop in a code fragment means an in�nite state space,
but its rami�cation degree is rather small. A mechanism applied here is boundary-

136

7.2 Boundaries of Self-Organization Mechanisms: A Boundary-Interior Test Case

Generation Approach

interior testing [121] that cuts deep branches at speci�c lengths. Self-Organization
mechanisms, however, are mostly based on heuristics for coping with the ever-changing
environment, making the result non-deterministic. This characteristic leads to a broad
and somewhat �at branching structure of the state space and makes most of the classical
techniques hardly applicable directly. We present an approach called boundary-interior
testing for SO mechanisms that can cope with this �at branching structure. Unlike
standard boundary-interior testing, the approach is not to rely on the deep branching
state space, but on the system structure that is controlled by the SO mechanism. The
approach re�ects the fact that SO mechanisms mostly rely on the structure and the
degrees of freedom that could be used for self-organization. In the production cell (cf.
Chapter 2), the robots and carts, their abilities, and their role allocations de�ne the
structure for the SO mechanism. The di�erent possible role allocations to achieve a
given task de�ne the degree of freedom. This structure is the input, as well as the
output of the SO mechanism. Similar to classical testing approaches, e.g., boundary
value testing, we rely on empirical knowledge concerning the failure distribution. The
boundaries where most failures are revealed are at the boundaries of SO mechanisms
where the structure hardly allows further recon�guration of the controlled system.
This insight answers the most crucial question for test cases prioritization and generation:
What kind of situations should be tested �rst? Since testing cannot even come close
to covering the complete state space of SO mechanisms answering this question is of
utmost importance as we would like to reveal as many failures as possible within the
testing period. The characteristics of the SO mechanism also a�ect the way tests can be
executed within a test harness. Because SO algorithms mostly rely on heuristics and
machine-learning techniques, the environment of the SO mechanism plays a decisive
role: SO mechanisms are not testable by providing simple input values, running tests,
and gaining an output. Instead, a realistic environment setting must be supplied as a
test harness (as already discussed in detail in Chapter 5). To summarize, we are faced
with two questions for test case generation:

1. What kind of situations are the most error-prone and should be tested �rst?
2. How can test setup and test case selection be used to reach these situations fast?

Boundaries of SO Mechanisms within the Corridor Enforcing Infrastructure (CEI) Fig-
ure 7.2 represents di�erent test cases generation and selection strategies to address
these questions. Since we present an online test case generation procedure, test case
generation and selection goes along with each other. All possible test cases (resp. the
complete state space of the program) are represented as dashed lines. The x-axis repre-
sents di�erent con�gurations of a system and the y-axis di�erent test cases. Exhaustive
testing is achived by using a depth-�rst search approach and going through every possi-
ble case, shown on the left side of the �gure. Executing every possible test case is often
undesirable or even impossible. Thus, we test with a focus on situations where we expect
a solution from the SO mechanism. We can cut o� test cases where it is impossible to
reorganize the system, as done in the middle box of Figure 7.2. The line that is drawn
in Figure 7.2 shows the boundary between possible and impossible reorganizations,
the upper part represents all test cases where no reorganization is possible, where it is

137

7 Test Case Generation for Flat-Branching Test Problems

all	possible	test	cases	

Boundary	Interior	w/	
Heuristics	

Boundary	Interior	w/o	
Heuristics	

Depth-First	Approach	

no	test	cases	executed	

Figure 7.2. The three boxes represent di�erent test case generation strategies. The x-axis
of the graphic shows di�erent system states for a particular SOAS, which are formed by the
di�erent possible con�gurations. The line shows the boundaries of the mechanisms for this
SOAS. Test cases are shown as small black lines. We assume the most failures to occur in the
shaded areas around the boundaries.

enough to select a few negative tests. Thus, the answer is to test inside the boundaries
of SO. However, most of the failures (in our evaluations even all failures we revealed)
are not only inside the boundaries. They are close to the boundaries. This insight leads
to the next possible test case reduction, shown in Figure 7.2 at the right: we select test
cases with the highest priority that are very close to the boundaries.
The intuition of the approach is to reach the boundaries by reducing the redundancies
within the system since SO’s abilities build upon redundancies. With many redundancies,
it is harder to reveal a failure since even a random algorithm for SO (which is not correct
in every case) has a higher chance to return the correct result (thus, no failure is revealed
even though there is an error). The chance increases if there are less correct solutions
to choose from, as it is the case at the boundaries.

7.2.1 Boundary Interior Test Case Generation for SO Mechanisms via
Search-Based Testing

For test case generation within one con�guration of the system, we adopt the concepts
of boundary interior testing, where the idea is to select test cases at the boundary of
expected behavior changes. The boundaries of SO mechanisms are states of the system
where only a few solutions for recon�guration are given. Recon�gurations, as we
consider them, are mainly driven by changing environmental conditions that force the
system to reorganize itself. In our test model, we de�ne these changing conditions as
environment faults or environment behavior of the controlled system such as a robot
being unable to apply its tools in the production cell case study.
To �nd the environment faults that bring the system to its boundaries, we use a search
algorithm that implements breadth-�rst search on the fault activations. Similar, the
environment behaviors could also be searched in this fashion, however, as the model
allows in�nite depth we have to restrict it to a certain degree. The standard approach
is to check the fault sets by increasing cardinality. Thus the approach also includes
test cases for inner boundary tests. The concepts of boundary interior testing for SO
mechanism is exempli�ed in Figure 7.2. The left box refers to a naïve approach where test
cases are selected in a depth-�rst attempt, and the boundaries of the SO mechanisms are

138

7.2 Boundaries of Self-Organization Mechanisms: A Boundary-Interior Test Case

Generation Approach

not taken into account. That implies that many negative test cases are executed where
fewer faults are expected to be revealed; in our evaluation, no fault has been detected
by these negative tests. The middle box of Figure 7.2 is representing the search-based
approach for boundary interior testing and covers the interiors and boundaries. The
right box shows an extension where only the boundaries are considered by conducting
the breadth-�rst search algorithm with di�erent heuristics that allow for skipping states.
That is done by selecting component fault sets �rst where more faults of the same kind
are activated, and subsumption relations between component faults are exploited.

7.2.2 Heuristic-Based Selection Strategy for Automated Online Test Case
Selection and Reduction

The proposed breadth-�rst search algorithm is used for searching the boundary of SO
as described. This search strategy is illustrated in Figure 7.3, the search starts with the
smallest set, here a set of environment faults, the empty set. Whenever an environment
fault set is identi�ed to reach the boundary of SO all its supersets are also known to be at
or beyond the boundary and consequently not included into the test suite -– following
the boundary-interior testing concept. When on the other hand an environment fault
set is not at the boundary, i.e., a recon�guration of the system is possible to ful�ll the
system’s goals, its direct supersets are examined in the next round. Consequently, all
subsets of large sets at the boundary are examined. Using heuristics, we can attempt to
identify these fault sets sooner and thus avoid testing their subsets, i.e., executing tests
right around the boundary of SO. Next, we are investigating two heuristics used in the
case of environment faults.

Fault Subsumption Heuristic In many cases, a model has more severe environment
faults that subsume other, less severe ones. In the production cell case study for example
if a robot breaks down completely, it does not matter if any of its tools are faulty as
well — that failure subsumes the other ones. Since the relationship cannot be inferred
automatically without checking all environment fault sets �rst, it must be declared in
the model. The heuristic makes use of that relation by suggesting test cases closer to the
boundary: Given a test case—a set of component faults—that allows for further recon-
�gurations and does not reveal a fault in the implementation, it adds all environment
failures subsumed by the test case. Since only subsumed faults are added, the resulting
test case should still be inside the boundary, but much closer to it.

Minimal Redundancy Heuristic When analyzing the recon�guration limits, there are
two relevant aspects: the robots’ available tools and the possible routes between them
established by the carts. Relevant environment faults (as test cases) are those that imply
a loss of capabilities or limitations to the routes between the robots. An environment
fault set right at the boundary of the reorganization is one that leaves just enough
of the system’s functionality intact to allow for recon�guration. Figure 7.3 shows an
incomplete Hasse Diagram that shows some possible test cases (formed by di�erent
combinations of fault activations, i.e., Robot 0 fails entirely (r0), Robot 1 fails either

139

7 Test Case Generation for Flat-Branching Test Problems

{}

𝑟$% 𝑟&% r0 𝑟&)

𝑟$%,	𝑟&% 𝑟%%,	𝑟&%

r0,	𝑟$%,	𝑟&%,	𝑟&)

r0,	𝑟$%

r0,	𝑟&% r0,	𝑟&) 𝑟&%,	𝑟&)

𝑟$%,	𝑟&%,	𝑟&) r0,	𝑟$%,	𝑟)% r0,	𝑟$%,	𝑟&% r0,	𝑟$%,	𝑟&)

…	

…	

…	

…	

Figure 7.3. This Hasse Diagram demonstrates some of the di�erent combinations of fault
activations.

with the inserting tool (r1
i) or the tighten tool (r1

t), and robot 2 fails with the tighten
tool (r2

t). In the assumed setting, the robot 0 is the only one with a drilling tool and
so necessary for a task that includes drilling. Removing the drilling tool by activating
the fault would lead to a situation where no recon�guration is longer possible, i.e., a
situation outside the boundary. In Figure 7.3, the grey test cases are inside the boundary
and the white ones outside. The proposed heuristic chooses situations as follows: fault
sets are selected in a way that a maximum number of faults are activated so that the
given task could be still ful�lled (for the sake of simplicity, the carts in our case study
are not considered). A corresponding choice would be for example given with the task
drill, insert, and tighten the fault set r1

i , r
1
t , r

2
t : In the resulting situation, robot 0 has to

carry out the drill, insert, and tighten, and there is no other correct solution. Thus, that
fault set is next to the boundary, and all subsets do not have to be tested. Indeed, it could
not be guaranteed that no failures could be revealed by applying tests that are formed
by a subset. However, due to the characteristics of SO mechanisms, it is unlikely.

7.3 Adaptive Test Cases to Enable Reasoning During Test Execution

An insight gained from the search-based test case generation is that the current state of
the system is determining the decision for the next test execution. That is possible, as
the search is executed on the model, that is a run time model re�ecting the current state
of the system. The use of the current state of the system is enabling the test generation
to be directed toward the boundaries of SO. Besides the boundaries of SO there might
be other, more system-speci�c test goals, that a test engineer can de�ne by test cases.
However, to enable these test cases to be automated, it is necessary to de�ne their
intention in the run time context. The described test automation approach enables the
de�nition of the intention of the test case. The main constituent of the test automation
is the adaptive test execution which is based on the self-awareness originated from

140

7.3 Adaptive Test Cases to Enable Reasoning During Test Execution

1 class Server : Component {
2 Proxy _connectedProxy;
3 bool _isServerActive;
4 List<Query> _executingQueries;
5
6 public void Activate() {
7 _isServerActive = true;
8 }
9

10 public void AddQueries(List<Query> queriesToExecute) {
11 _executingQueries.AddRange(queriesToExecute);
12 }
13
14 [Activation("TooFewServers", selectedServer="2")]
15 [Persistent]
16 class CannotExecuteQueries : Fault {
17 public void AddQueries(List<Query> queriesToExecute) { }
18 }
19 /* ... */
20 }

Listing 7.1. Partial S# component representing a server of load-balancing web-service system
Znn.com.

the run time model established in Chapter 6. Context patterns de�ne the test strategy,
i.e., a description of an environment state, that is denoting the intended situation of
the abstract test case. An instantiation strategy further completes the context pattern.
Each abstract test case, which is what should be de�ned by the test engineer in this
approach, e.g., by environment faults or environment behaviors, has to be instantiated
for execution. The instantiation is the provision of data that is needed for the parameters
of a test. Let us consider an example from the load-balancing web-service case study in
Listing 7.1: The test case is described by the environment fault CannotExecuteQueries.
This test case is abstract, as it is left open which servers are a�ected by and activation a
when the test case should be executed. A possible concrete instance of this test case
contains a run time situation and information for the concrete servers to fail. As the
information for the concrete instance needs information from the run time of the test,
this information is de�ned based on the run time model, by a pattern for activation,
here, TooFewServers is a pointer on a boolean function, and an option for the selection
of servers, here set to auto, i.e., letting the test automation make the choice.
In this way, it is possible to de�ne di�erent adaptation rules for the test execution within
the model that trigger which of the anticipated behaviors of the environment to be
simulated and which faults to be activated.

7.3.1 Annotating the Purpose a Test Case for Enabling Self-Reflection

Having feedback from the test execution, as presented in Chapter 6, is enabling to access
the run time information during test execution for test case selection. Thus, the purpose
of the test case can be de�ned for its automation, as proposed in this section. The
de�ned purpose enables an advanced test case selection: the test cases can be suited for
di�erent possible run time situations and are possibly instantiated in di�erent shapes,
depending on the current test situation. The situation awareness is delivered by the

141

7 Test Case Generation for Flat-Branching Test Problems

1 List<Func<bool>> CriterionTooFewServers = new List<Func<bool>>
2 {
3 () => Proxy.ConnectedServers.Count < 3,
4 () => Proxy.ConnectedServers.Count(s => s.IsServerDead) <

Proxy.ConnectedServers.Count
5 };

Listing 7.2. Criterion dependent activation condition for TooFewServers

model re�ection and the run time model concepts, shown in Chapter 6. The adaptation
of the test suite to the situation is enabled by de�ning the test case’s purpose. For
the test case, described as an environment fault, shown in Listing 7.1, the purpose is
named as follows: The test case is designed for a situation with too few servers that are
available in the system. In this situation servers should no longer be able to execute
queries, testing the reaction of the SO mechanism in this extreme situation. A tag here
summarizes the purpose: TooFewServers. This tag needs to be linked with a more
detailed description of the situation, de�ned on the run time model. In this case, in the
S# context, it is implemented by a boolean function that is linked by the naming. Every
activation criterion, which is the name of the criterion tag, has to o�er such a function.
The function is stating whether or not, depending on the current instance of the test
model, the test should be executed. In the current situation, a very simple functional
description is listed in Listing 7.2.

Next, to the criterion, there is an additional criterion, that is necessary for instantiation:
the information for which instance of the test model this test cases should be instantiated
and executed. In Listing 7.1, the selectedServer property is set to 2, whereby the server
is replaced by any other possible class within the test model that is containing test cases.
Here, it is possible to annotate the server count. If for example selectedServer=2 is
set, always two instances are picked at random for instantiation.

For the case, that environment pro�les describe the test suite it is almost the same
approach. We de�ne a criterion for each transition, it is a guard, the guard states
whether or not a transition into another state is allowed, for all outgoing transitions that
are permitted the new probability is computed, so that the sum of all outgoing transitions
(self-transition included) is equal to 1 and the ratio is the same as before. Let us consider a
simple example: A state has three outgoing transitions with the probability 0.5, 0.3, 0.2.
Ff the outgoing transition with the probability 0.5 is not available the updated value is
calculated by 0.3 + (0.5 cot 0.3

0.3+0.2) = 0.6 for the �rst value and 0.2 + (0.5 cot 0.2
0.3+0.2) = 0.4 for

the second.

Thus, it is possible to intervene in the instantiation of the abstract test cases de�nition,
as introduced in Chapter 6. This possible intervention is used for the reasoning in the
test case selection procedure to evaluate the criteria of the test suite. Thus, the test case
selection is directed by the test engineer with support from the test automation. The
incorporated run time information in the test suite enables the automation to adapt to
the SuT.

142

7.3 Adaptive Test Cases to Enable Reasoning During Test Execution

7.3.2 Outlook: Planning Optimal Rule Instantiations by Optimizing Diversity of the
Test Cases

If the criterion for the instantiation is not set to a concrete number, but to auto, a
learning-based approach is in charge of this decision. Depending on the chosen sys-
tem con�guration, a particular ful�lled condition may subsume quite some concrete
implementations and span a vast space of optional steps to execute at speci�c states.
The question, which of them to choose, i.e., which test step to execute if there are many,
resembles the challenge of instantiating logical test cases by concrete ones in traditional
testing. Let us, for instance, consider the criterion which introduces the persistent fault
CannotExecuteQueries in listing 7.1. During the execution of the test, this environment
fault needs to be instantiated for one out of all the servers which are deployed in the
considered con�guration. The demand for an instantiation results in a decision process
at run time.

The Need for a Planning Module

Typically, substantial environmental state spaces prevent us from demanding manual
solutions for resulting decision processes from the test engineer. Thus, we complete
the test automation with a planning module that can automatically solve this job. In
the aforementioned example this module is activated by the keyword auto at activation
TooFewServers. This keyword marks the choice of which server to be a�ected as being
non-deterministic and thus to be decided by the planning module.

Parametrized with some goals, which we assume to be given by the test engineer, the
planning module uses the executable models to search for optimal decisions concern-
ing the instantiations. A worthy goal is a kind of action diversity, which we see as a
counterpart of code coverage criterion in the context of SOAS. This test indicator can
be used to measure the di�erence between the system traces which are expected to be
triggered by a particular rule instantiation. Maximizing the action diversity thus means
to maximize the di�erence of triggered traces.

Learning the Distance Metric

As shown by Reichstaller and Knapp [132], the underlying behavioral distance function
can be learned on-the-�y by simply observing the SuT in the simulation with a so-
called Diversity Optimizing Learner (DOL). It is necessary to de�ne diversity within
the current test model, to enable the DOL. So, the run time test model (of the SuT) is to
de�ne the components and properties that described diversity. A diverse situation in
the load-balancing web-service case study is de�ned by the number of dedicated servers
that are a�ected by an action carried out by the proxy component, i.e., a situation where
activation or deactivation involve only one server is diverse from a situation where four
are concerned if there are six servers in total.

Besides the set of environment faults resp. environment behaviors based test cases that
are supplied by the test engineer a machine learning approach enables to complete resp.

143

7 Test Case Generation for Flat-Branching Test Problems

evolve the test suite by a diversity optimized learner. The evolvement of the test suite is
focused on the environment-based test inputs and can be conducted in two modes:

1. the evolved test cases amend the existing ones by test cases that are resulting in a
very similar test situation of SuT (low diversity) and

2. the evolved test case is very diverse in the resulting test situation compared to
the existing ones (high diversity).

7.4 Evaluation

The evaluation for this chapter is two folded:

First, we are investigating the gains of the boundary interior test case generation
approach where di�erent search-based testing techniques are applied. For this purpose,
the production cell case study is selected. In the previous chapter (Chapter 6), this
case study was used for the evaluation of the MBT approach. The test case generation
techniques in this chapter are based on this approach. The result of random testing is
now compared to the directed, search-based test input generation techniques provided
in this chapter.

Second, we choose the load-balancing web-service. Here, we will show how the concept
of adaptive test cases is applied and what extensions are necessary for the model
developed in Chapter 6. The emphasis on the evaluation is on discussing the new
situations that are investigated by having an adaptive test suite.

7.4.1 Production Cell—Boundary-Interior Test Case Generation

For the evaluation we focus on the following research questions:

RQ 1: Are we able to reveal the same failures using our heuristic-enabled boundary-
interior approach as with an exhaustive testing approach? Which cases can we possibly
miss, and which do we miss in our case study?

RQ 2: How much can we improve the testing performance?

RQ 3: Can the hypothesis that failing test cases are located near the boundary be
validated?

RQ 1: We tested a S# model of the production cell case study. In Chapter 6, we
previously evaluated our MBT approach instantiating the test at random using the
production cell case study. We used an SO mechanism based on the MiniZinc constraint
solver and revealed several failures. For this evaluation, the same faults, as the one
revealed in Chapter 6, were injected into the C#-based implementation producing the
following failures:1

1Note that the phase of the SO mechanism, as described in Chapter 5, where the fault that is causing the
failure is located is annotated with Detection, Computation, and Distribution.

144

7.4 Evaluation

F1: (Computation) Transitive connections between robots, i.e., connections that in-
volve several carts and intermediate robots, were interpreted as direct routes. When
trying to �nd a cart capable of transporting workpieces along these routes, the algorithm
failed to �nd any.

F2: (Computation) The controller considered routes to be unidirectional, but they
were meant to be bidirectional. As a result, the controller overlooked solutions, leading
to incongruities with the test oracle.

F3: This failure, was too speci�c to the MiniZinc-based implementation and was thus
not reproduced.

F4: (Distribution) The system model was misinterpreted regarding the pre- and post-
condition of a role allocation. The condition should describe the capabilities already
applied, but instead contained the remaining capabilities that were not yet applied.

F6: (Computation) The SO algorithm restricted the concatenated length of roles for a
task. This restriction resulted in missed solutions when workpieces had to be transported
between many di�erent robots, necessitating a large number of roles that are transport-
only.

F7: (Detection) The observer was missing a constraint, namely the I/O-Consistency
(cf. [5]). When a cart was deactivated which transported workpieces between robots,
this was not detected. Consequently, robots attempted to work on workpieces that were
not where they were expected to be.

F8: (Distribution) Besides the failures revealed in Chapter 6, an additional pre-existing
failure was discovered. When working with transitive routes, intermediate robots should
be assigned a role meant only to receive a workpiece from one cart, and to pass it on
unmodi�ed to the next cart. These roles were not assigned to the intermediate robots,
which should ful�ll them, but to the last robot receiving the workpiece.
We analyzed seven di�erent system setups, with varying modes of analysis: the depth-
�rst approach, boundary-interior testing with the search-based testing approach pre-
sented in this chapter, and the combined approach using boundary-interior testing and
heuristics. Each failure was analyzed individually. Since we strive to detect implemen-
tation faults in the model, we terminated the analysis of a model as soon as a failure
manifested. The failures discovered during these analyses manifested themselves in
di�erent ways:

• Exceptions: Faults can cause the model to reach an inconsistent state, result-
ing in exceptions. For instance, F1 caused an exception during recon�guration,
because no cart with a matching route was found. Thus, the recon�guration
never completed. F6 also caused exceptions, but during production instead of
recon�guration, because workpieces were missing.

• Con�icts with the test oracle: In some cases, the recon�guration algorithm
might miss solutions and consider the current con�guration problem to be un-
solvable, even though the test oracle considers it solvable. F2 and F5 resulted in

145

7 Test Case Generation for Flat-Branching Test Problems

such cases. Although not present in our evaluation, it is also conceivable that the
controller �nds a solution when the oracle considers the problem unsolvable.

• Incorrect solutions rejected by invariant check: The fault leading to failure
F7 caused the controller to compute an inconsistent con�guration. A subsequent
check of the invariant will detect it and reject the con�guration.

• Not at all: Some faults did not manifest during the evaluation. For instance, F4
resulted in con�gurations that were technically incorrect, but whose �aws did
not a�ect the system nor were they detected by an invariant check.

There are speci�c links between the phases of an SO mechanism, as described in Chap-
ter 5, a�ected by a fault and the way it manifests. Faults in Detection can only prevent
necessary recon�gurations or prompt unnecessary ones. Similarly, faults in Distribu-
tion cannot provoke con�icts with the test oracle since distribution only occurs after
the controller found a solution and checked for incongruences with the oracle. The
most important result when comparing the testing approaches is that in our case study
boundary-interior testing and the heuristic-based approach detected all failures detected
by the depth-�rst approach as well, in all seven models we analyzed.

RQ 2: The largest system model we analyzed is illustrated in Figure 7.4. Table 7.1
shows the number of test cases necessary to detect each fault in this model and the time
required to execute them. The performance results here are two-fold: For failures F2 and
F6, there is no signi�cant improvement. This fact is acceptable, as they require very few
test cases and very little time even with the depth-�rst approach. For the other failures,
however, the speedup when using the combined approach is substantial. The combined
approach also clearly improves upon boundary-interior testing without heuristics. The
number of test cases decreases more than the required time.

RQ 3: The reasoning for applying the heuristics to the test selection problem was the
supposition that the failing test cases would be located close to the boundary. The model
shown in Figure 7.4 was further investigated, to validate this hypothesis. All detected
failures were analyzed individually; using the depth-�rst approach, without stopping
the analysis after the �rst failure was detected. The failing test cases were compared to
the sets found by a complete analysis without any failures. This exhaustive test revealed
that all these 67 failing test cases were located just below the boundary, thus validating
the hypothesis. Since the heuristics were explicitly designed to �nd large sets of failures
to be activated, just below the boundary, this explains the observed performance gains.
We also investigated the question of error masking. For this purpose, we began with the
seven di�erent system con�gurations, each containing all the injected faults. After each
analysis, we removed the detected faults from the models and re-ran the analysis. In
this fashion, we were able to detect all the failures we could detect in isolation: The �rst
analysis detected F2, the second F1 and F6, and the last F5 and F7. F4 of course remained
undetected.
At �rst glance, the results indicate that the proposed approach for test case generation
does not pay o� as expected in most cases. That is mainly an e�ect of the kinds of faults

146

7.4 Evaluation

produce

drill

insert

insert

drill
polish

consume

polish

tighten

tighten

drill

Task:
• produce
• drill
• insert
• tighten
• polish
• consume

Figure 7.4. This diagram illustrates one of the production cell models we analyzed. There are
four robots, each annotated with their available tools. They are connected by three di�erent
carts, whose routes are shown in the respective shades of gray. The production cell processes
workpieces according to the task seen in the upper right corner.

Depth-First Boundary-Interior Heuristics
Failure time #test

cases
time #test

cases
speedup time #test

cases
accuracy speedup

F1 5.2s 353 3.7s 212 138% 2.9s 187 34.00% 176%
F2 1.0s 27 1.0s 27 138% 1.0s 55 3.03% 100%
F5 45.8s 8662 24.8s 1566 185% 16.5s 1067 83.87% 277%
F6 1.0s 27 1.0s 27 100% 1.0s 55 3.03% 100%
F7 5.6s 353 3.7s 212 150% 23.0s 187 34.00% 188%

None 2.9d 134Mio. 29min 111,604 14,126% 7min 26,968 99.39% 58,397%

Table 7.1. The table shows the required number of test cases to detect each failure in the model
shown in Figure 7.4, and the time required to execute them. Note that F3 and F4 are missing
because they were excluded or not detected, respectively, as described. For the heuristic-enabled
approach, the accuracy is shown, i.e., what percentage of the heuristic’s suggested test cases are
below, but next to the boundary of the SOuT. Speedup refers to the required time compared to
the time request by depth-�rst search.

147

7 Test Case Generation for Flat-Branching Test Problems

we detected in the SO mechanisms which can be revealed with quite a lot di�erent
combinations of component faults and thus identi�ed very early on. However, for F5
the potential of the approach especially for a bit more sophisticated faults is shown.
A possible improvement could be achieved by incorporating knowledge from the test
engineer that goes beyond the heuristics shown here. For instance, the test engineer
might de�ne several situations to be tested, that might guide the search better than the
given heuristics.

7.4.2 Load-Balancing Web-Service—Adaptive Test Case Execution

The SuT for this evaluation was implementation as described in Chapter 6. Within
this implementation and MBT approach presented in Chapter 6, we were able to reveal
failures, that have been caused by errors made during the implementation of the case
study. These failures have been made activatable and deactivatable for the evaluation.
The failures that have been detected in the evaluation of MBT are the following (in
brackets the phase of the SO mechanism is denoted):
F1: (Distribution) The wrong server was activated resp. deactivated by the proxy. This
failure was due to wrong indexing.

F2: (Computation) The proxy did not consider server in the “wrong mode”, e.g., a
server which can deliver multimedia but is currently in text mode. The proxy did not
check whether it was able to switch the mode.

F3: (Distribution) There was a delay of the server activation and deactivation, since
the servers waited till the next time step after set to activate, this was due to a wrong
working-o� order.

F4: (Computation) Active servers were not considered as part of the server pool and
thus the decrease was too large.

F5: (Computation) Defect servers were wrongly considered for activation.
For this evaluation, the test model created in Chapter 6 was completed by the criteria
for their activation as well as by the option for instantiation, which was set to 1. The
criteria introduced for the environment faults are summarized as follows:

1. Environment Fault Category: A (or a number of) server(s) within the server
pool are deactivated.
Criterion: A high workload and servers similar in type are currently few.

2. Environment Fault Category: A (or a number of) server(s) within the server
pool cannot switch the content type
Criterion: Every situation where a content switch would ease the task of the
load balancer

3. Environment Fault Category: A (or a number of) server(s) within the server
pool is (are) no longer able to be activated or deactivated
Criterion: Every situation with an increased or decreased load that make acti-
vation resp. deactivation of servers necessary

148

7.4 Evaluation

Depth-First Adaptive Test Cases
Failure time #test cases unintended

termina-
tions

time #test cases unintended
termina-

tion

speedup

F1 5.3s 343 12 6.1s 260 5 175 %
F2 10.6s 743 15 9.6s 531 10 171 %
F3 1.0s 26 2 1.8s 26 0 100 %
F4 1.0s 26 1 1.7s 26 0 100 %
F5 5.8s 371 11 6.2s 271 6 173 %
F6 5min 19,242 604 3.8min 14025 281 172 %

Table 7.2. The table shows the required number of test cases to detect each failure listed, and
the time required to execute them. Furthermore, the unintended terminations, i.e., situations
where no longer a solution was available and the system has to be restarted, are shown. Speedup
refers to the required test cases compared to the test cases request by depth-�rst search.

After amending the test model by the criteria, the test suite was executed. The results
are shown in Table 7.2, compared to the �rst execution in Chapter 6, named as depth-
�rst search (since the test cases were created by going over all possible test cases in
a depth-�rst approach). All of the failures that have been revealed in a test setting
without the extension for adaptive automation are detected using the adaptive test
execution. The �rst di�erence which is shown results in a lower rate of unintended
terminations. An unintended termination is when the boundaries of the SO mechanism
are overstepped, i.e., a test case that causes a situation where no SO is possible. The
second variation is shown in the number of test cases that was needed to reveal the
failures, which was lower in the case of adaptive test cases. However, the time for
execution was long, caused by the overhead reasoning and the questioning the behavior
distance. Furthermore, a new failure was revealed in this evaluation: F6 is caused by
a missing refresh of the current server status before activating servers. This failure
was also detected after letting the depth-�rst con�guration run for a longer time then
evaluated before. However, this shows the bene�t and the need for test case selection
for SO mechanisms: The test end criterion is often time-based. Thus, it is necessary to
detect as many failures in the shortest possible time.
Besides being more e�ective, the here evaluated approach for annotating the purpose of
a test case presents a good way of incorporating knowledge of a test engineer into the
test suite.

149

7 Test Case Generation for Flat-Branching Test Problems

Summary and Outlook. In the previous chapter, we have shown how MBT is applied to SO
mechanisms. Different characteristics, mainly derived by the ability of the SO mechanisms to make
decisions at run time, have made new concepts necessary. The MBT framework was evaluated
according to its abilities to reveal failures in different SOuT and proved its abilities. However, the
flat-branching state space of the SO mechanisms, resulting from its abilities to adapt at run time,
made the testing endeavor time-consuming. Time-consuming concerning the time for revealing a
failure. That is problematic especially without having defined a test end criterion besides a time
limit. Depth-first search and random testing drove the test selection in the previous chapter. In this
chapter, we took up the challenge to systematize the test selection. The key contributions of this
chapter are:

1. Defining error-prone areas in the state space of SO mechanisms: the boundaries of SO.

2. Developing a search-based testing approach for test case selection based on the boundaries
of SO

3. Making test suites adaptive by introducing the purpose for the test cases.

The evaluation showed that the new concepts could speed up the revealing of different failures in
the case studies of this thesis up to factor 500. Besides being more effective, the insides presented
in this chapter offer a test end criterion for SO mechanisms: covering the boundaries of SO. The
evaluation showed that most of the failures had been revealed here.

150

Summary. The techniques for MBT enable beside functional testing also to
investigate non-functional properties of SO mechanisms. In this chapter, we show
how the performance of SO mechanisms is tested in experimental evaluation.
For this purpose, we will systematically derive the requirements for testing the
performance of SO mechanisms. These are implemented in the MBT approach
presented in the previous chapter, by adapting and extending the concepts. We
will explore and derive a metric for quantifying the performance of SO mechanisms.
This metric is integrated into the MBT approach, enabling automated performance
testing. The abilities are demonstrated by evaluating the concepts on the energy
grid and the production cell case study. The content and contributions of this
chapter are published in [50, 56]. 8

Performance Testing for Self-Organization
Mechanisms

8.1 Related Work . 152
8.1.1 Metrics for Adaptation Mechanisms 153
8.1.2 Metrics for SO Mechanisms 159

8.2 Requirements for Performance Metrics for SO Mechanisms 159
8.3 A Distributed Performance Metric for SO Systems 160

8.3.1 Time Performance of SO Mechanisms 160
8.3.2 Quality Performance of SO Mechanisms 161

8.4 Performance Evaluation Framework 162
8.4.1 Generating Unbiased Evaluation Runs 163
8.4.2 Modeling the Environment for Evaluating the Performance of SO Mecha-

nisms . 164
8.4.3 Integrating the Evaluation Sequence Selection in the Evaluation Frame-

work . 165
8.5 Evaluation . 166

8.5.1 Production Cell . 166
8.5.2 Energy Grid . 170

The performance of software describes its capabilities in its execution. These capabilities
might be determined either by a theoretical analysis or by an experimental evaluation.
In general, two measures are of interest: the solution quality and the time taken to
achieve the solution [97]. Whereas theoretical analysis is based on abstraction, theorems,
and proofs to �nd an asymptotic bound on the dominant operation under a worst-
case or average-case mode, experimental evaluation relies on execution, logging, and
measuring according to a set of metrics. The knowledge gained from the performance
analysis, theoretical as well as experimental, is used for engineering e�cient and e�ective
software. The gain for the engineers highly depends on the quality of the analysis. The
quality of performance analysis consists of the accuracy of the results according to the
evaluated software. That is the accuracy of selecting the asymptotic boundaries for worst-
case or average-case analysis in the theoretical analysis and the accuracy of the metrics
describing the software as well as the adequacy of the evaluation conditions for the

151

8 Performance Testing for Self-Organization Mechanisms

experimental analysis. However, achieving a high quality for the analysis is a challenging
task [97]. Theoretical as well as experimental analysis are foremost challenged when
the system under evaluation is indeterministic, highly parallel, interactive, or highly
dependent on unforeseeable run time conditions. All these aspects are characteristics of
Self-Organizing, Adaptive Systems (SOASs). A SOAS uses its abilities to recon�gure
and restructure itself at run time to cope with an ever-changing environment. Self-
Organization (SO) mechanisms are used to ful�ll this recon�guration and restructuring
task. An important aspect that is exploited by most of the SO mechanisms is that mostly
that process can be carried out locally, i.e., in a small part of the overall system. This
aspect makes the SO mechanisms scalable and e�ective which has a signi�cant impact
on the overall system performance. However, it is far from obvious how to design
and implement the best performing SO mechanism for a particular system, because
SO mechanisms have to operate under ever-changing environmental conditions that
are partially unpredictable at design time. This fact demands a powerful performance
analysis to support this task. Here, we face the challenge by focusing on an experimental
analysis, following van Dyke Parunak & Brueckner [119], who argue that there is a
need of empirical evaluation of SO mechanisms because the concepts of theoretical
analysis are stretched to their limits given that the majority of SOASs are formally
undecidable.

8.1 Related Work

We provide an overview of performance metrics for SO mechanisms and evaluate their
abilities within the energy grid case study. Several metrics are identi�ed for adaptation
(resp. self-adaptation) mechanisms in the literature. And only very few that are focused
on SO, as we describe it in Chapter 4.
To put it simply, the performance of an algorithm describes how well or poorly it works.
Self-Organization mechanisms operate on the structure or organization of the system.
Consequently, their performance is de�ned by how well they structure or organize
the system. In the literature, di�erent metrics are de�ned that concretize “how well”
algorithms work by identifying several �ne-grained performance criteria.
The summary of the state of the art, which is provided next, aims at identifying and dis-
cussing di�erent performance metrics concerning their applicability to SO mechanisms.
We base our discussion on empirical data we obtained during an evaluation of PSOPP’s
performance utilizing these metrics. The PSOPP algorithm is part of an SO mechanism
from the energy grid case study, described in Chapter 2. To apply and evaluate the met-
rics introduced next, we use the same testbed as the framework described in Section 8.4.
It is structured into three main components that encompass the generation of evaluation
suites, the execution of the evaluation suites, and the observation as well as evaluation
of the SO mechanism that is plugged into the evaluation system via an interface.
In our evaluation setting “PSOPP HP”, PSOPP’s goal was to create a homogeneous
partitioning in each separate subsystem. A homogeneous partitioning is a partitioning in
which each partition, i.e., agent group, has a similar average state value. This partitioning
is accomplished by minimizing the standard deviation of the average state values by

152

8.1 Related Work

creating new or dissolving existing partitions and exchanging agents between them.
Such a structure has shown to be rather robust against changing states compared
to heterogeneous partitions as they are formed in the evaluation setting “PSOPP k-
means”.
This testbed is used to assess the capabilities of the metrics discussed next. For compari-
son, we executed all 100 generated evaluation suites, each comprising ten evaluation
sequences, in three di�erent settings:

• In the setting “noSO HP”, PSOPP was disabled.
• In the setting “PSOPP HP”, PSOPP established partitionings according to the

homogeneous partitioning objective described above.
• In the setting “PSOPP k-means”, PSOPP established heterogeneous partitionings

according to the well-known k-means objective function.
All evaluation sequences represented 300 time steps and had been performed in a
distributed cluster of 12 computers with an Intel Core-i5 CPU and 4GB RAM for about
a week. We performed each setting on a prede�ned system structure consisting of 1, 2,
and 5 separate subsystems.

8.1.1 Metrics for Adaptation Mechanisms

There are several metrics for adaptation (resp. self-adaptation) mechanisms in the
literature. As is the case with classical algorithms, they can be clustered into time-

oriented metrics and solution-quality-oriented metrics. The research survey of Villegas et
al. [165] as well as the criteria for the evaluation of self-* systems of Kaddoum et al. [84]1

are time-oriented metrics that re�ect the relationship between time for adaptation and
working time. The performance metrics of Becker et al. [15], Tarnu and Tiemann [156],
and Reinecke et al. [135] address the solution quality of the adaptation mechanism.

Investigated Metrics

Overall, we selected those metrics that apply to SO algorithms, which represent some
special form of adaptation. We discuss if the metrics are suitable for measuring the
performance of SO mechanisms by our evaluation results.

Time-oriented Metrics Kaddoum et al. [84] extend classical performance metrics to
metrics for self-adaptive systems by distinguishing nominal and self-* situations and
focusing on their relation. One example is the WAT metric that is de�ned as follows:

(8.1) WAT :=
working time

adaptivity time

The codomain of the WAT is [0,∞], where the performance of the adaptation algorithm
is said to increase with the value of WAT . The intuition of WAT is that adaptation

1Parts of the criteria for the assessment of adaptive systems have been applied by Cámara et al. [27].

153

8 Performance Testing for Self-Organization Mechanisms

is responsible for keeping the controlled system working with as little disruption as
possible by an adaptation mechanism. Further metrics introduced in [84] are also de�ned
as the ratio between adaptation and working time but focus on service-oriented systems,
e.g., the response time of a service.
The metrics proposed by Villegas et al. [165] also focus on service-oriented adaptive
systems. Proposed information of interest is, for example, monetary execution costs
or the reliability of a service according to task completion. Villegas et al. de�ned the
availability (A) resp. unavailability (U) metrics as follows:

(8.2) A :=
MTTF

MTTF + MTTR

(8.3) U :=
MTTR

MTTF + MTTR

MTTR is the mean time to recover and MTTF is the mean time to fail with a codomain
of A and U of [0, 1].2 A large value of A and a small value of U is desired to attest to
an algorithm’s good performance. The metrics are based on the concepts of reliability
engineering (cf. [93]) and de�ne the performance of an adaptation mechanism over the
reliability it yields for the controlled system.

Solution-quality-oriented Metrics

Taranu and Tiemann [156] use a cost function to evaluate the solution quality of an adap-
tation algorithm in the context of network scenarios. The function maps a performance
value to di�erent situations. Each situation may consist of sub-situations with individual
costs. Costs are, for example, de�ned by the generated network tra�c, where as little
tra�c as possible is desired. With regard to a speci�c situation sit , their performance
metric is de�ned on the basis of the measured costs Csubsit and the maximum costs
Cmax of the sub-situations subsit :

(8.4) perf (sit) := 1−
∑

subsit∈sit Csubsit∑
subsit∈sit Cmax

The metric perf (sit) yields a normalized3 cost value—resp. a solution quality for a
situation sit—on the basis of the costs of di�erent sub-situations, e.g., di�erent time
steps. The resulting performance is within the codomain of [0, 1]. The best performance
is 1.
Becker et al. [15] derive performance metrics from requirements by measuring the time
the requirements are ful�lled and, above that, how well they are met. This approach is
grounded on requirements speci�ed as RELAXed requirement (cf. [36]) and a function
that maps the satisfaction resp. dissatisfaction with the requirement within a given time

2Note that A+ U = 1.
3In this thesis, the term normalization is used in the sense of adjusting values measured on di�erent scales

to a notionally common scale of [0, 1].

154

8.1 Related Work

interval to a numeric value. Let us consider an example where the requirement RF is
de�ned as follows:

“The system SHALL keep the rental fee AS CLOSE AS POSSIBLE to 0.”

The function ∆(φRF , [i, j)) evaluates the dissatisfaction of the requirement RF in the
time interval [i, j), e.g., if there is no rental fee, the value is 0. The corresponding
performance metric for a requirement RF is de�ned as follows:

(8.5) mRF :=

{
0 if ∆(φRF , [i, j)) ≥ RFmax

1− ∆(φRF ,[i,j))
RFmax

else

RFmax is the rental fee threshold. For mRF , the codomain is [0, 1] with the optimal
performance being 1 since the requirement RF is completely ful�lled. The metric is
quite similar to Equation (8.4) apart from the property that RFmax bounds the solution
quality.

Reinecke et al. [135] propose to measure the performance according to the sum of
bene�ts obtained by the decisions made of the adaptation mechanism. To this end, they
use three di�erent sets to remember the time steps i ∈ {1, 2, 3, . . . , N} in which the
payo� pi decreased, did not change, or increased from one time step to another:

D	 := {i = 2, 3, . . . , N | pi−1 > pi}
D� := {i = 2, 3, . . . , N | pi−1 = pi}
D⊕ := {i = 2, 3, . . . , N | pi−1 < pi}

You can think of these sets as sets of negative, neutral, and positive decisions. The
performance metric over these decisions is de�ned by the following formula that re�ects
the total bene�t of adaptation:

(8.6) Ad :=

∑
i∈D⊕

∆i +
∑

i∈D�
pi

N − 1

∆i de�nes the bene�t of a decision as ∆i := pi+pi−1

2 and pi is the bene�t in a time step
i. Both the function ∆i and the exclusion of the set D	 smooths the payo� function
of the system over the considered time. Since the payo� is within [0, 1], the maximum
payo� is 1. Ad is normalized by dividing by N − 1.

Discussion of the Abilities of Performance Metrics

All metrics have been used to analyze the PSOPP algorithm in di�erent settings. These
settings are clustered into the number of separate subsystems. Figure 8.1 shows two
separate subsystems s1 and s2, each systems is equipped with one instance of the PSOPP
SO mechanisms forming the Autonomous Virtual Power Plant (AVPP) groups gn The
results of our evaluation are summarized in Table 8.1. In the following, we discuss their
signi�cance for SO mechanisms.

155

8 Performance Testing for Self-Organization Mechanisms

s1 s2

g1 g2 g3 g4 g5

Figure 8.1. The graph shows a possible hierarchy formed by the PSOPP SO mechanism in the
energy grid case study. Within this hierarchy, it is possible that just a subgraph, e.g., the right
gray part of the graph, is part of a reorganization. The impact on the working time of the entire
system is much smaller if the gray subgraph is reorganized than in case of a reorganization of
the left white part.

Time-oriented Metrics

The metrics WAT, A, and U (see Equations (8.1) to (8.3)) rely on the ratio between
working time and adaptivity time resp. the mean time to fail and the mean time to
recover. All three focus on the impact of the adaptation on the working system and
re�ect the stability as well as the robustness of the organizations established by the
SO mechanism. The results of Table 8.1 indicate that PSOPP HP is able to achieve
more robust partitionings than PSOPP k-means. This result re�ects our intuition that
heterogeneous partitions, as obtained by homogeneous partitioning, are more robust
than homogeneous partitions favored by the k-means �tness function (cf. [10]).

Unfortunately, the locality of SO algorithms is neglected by the three metrics. Thus, a
recon�guration in a small part of the system is rated as an adaptation period of the entire
system as is for a recon�guration within a huge part of the system. Although the results
in Table 8.1 show that the average number of agents participating in a recon�guration
decreases with an increasing number of subsystems, the whole system is rated “in
recon�guration”. This e�ect contradicts the reality, which is shown in the number of
reorganized separated subsystems per reorganization. Ergo, it is, for instance, hard to
reason (based on the metrics) whether PSOPP HP performs better in a system with 2 or
5 separate subsystems: While WAT states that 2 separate subsystems are better, the A

and U metrics prefer 5 separate subsystems.

A drawback of considering only time-oriented metrics is that they do not re�ect how
well the system performs within an organizational structure. Considering only the
time-oriented metrics, it is possible that an SO mechanism that causes the system to
work ine�ciently is rated very good concerning time if it generates a robust structure.
Such a metric is not su�cient to rate the performance of an SO mechanism with all its
responsibilities. Therefore, we claim that there is a need for combining time-oriented
metrics with solution-quality-oriented metrics to rate the overall performance of an SO
mechanism. This claim is also indicated in the evaluation results of PSOPP k-means since
the high number of reorganizations results in a very high payo� concerning solution
quality. An open question is how to aggregate the results of di�erent metrics, e.g., is an

156

8.1 Related Work

Setting noSO HP PSOPP HP PSOPP k-means
#Separate

Subsystems
1 2 5 1 2 5 1 2 5

WAT — — — 6.92
(1.35)

3.24
(0.90)

0.97
(0.22)

0.02
(0.01)

0.01
(0.01)

0.01
(0.01)

Working Time [s] — — — 29.78
(37.29)

29.69
(92.45)

29.27
(0.21)

15.85
(1.69)

11.57
(3.84)

7.77
(4.84)

Adaptivity Time [s] — — — 4.59
(1.39)

9.93
(2.89)

31.57
(6.62)

623.411
(76.31)

907.80
(151.51)

1,617.07
(394.80)

A — — — 0.77
(0.02)

0.66
(0.02)

0.44
(0.03)

0.02
(0.01)

0.01
(0.01)

0.01
(0.01)

U — — — 0.22
(0.02)

0.33
(0.02)

0.55
(0.03)

0.97
(0.01)

0.98
(0.01)

0.99
(0.02)

MTTR [s] — — — 3.97
(0.19)

5.41
(1.08)

5.43
(1.29)

4.43
(0.09)

5.03
(0.67)

7.32
(0.85)

MTTF [s] — — — 14.13
(1.82)

10.83
(3.18)

4.51
(1.75)

0.11
(0.04)

0.07
(0.05)

0.04
(0.04)

perf (sit) 0.52
(0.09)

0.52
(0.07)

0.96
(0.01)

0.96
(0.01)

0.96
(0.01)

0.57
(0.07)

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

Ad 0.14
(0.03)

0.14
(0.02)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.14
(0.03)

0.37
(0.09)

0.14
(0.03)

0.04
(0.01)

#Reorganized
Separate Subsystems — — — 1.15

(0.37)
2.98

(0.91)
10.21
(2.16)

140.47
(16.93)

245.00
(42.52)

497.63
(123.17)

#Reorganized
Separate Subsystems

per Reorg.

— — — 1.00
(0.00)

1.49
(0.50)

1.64
(1.42)

1.00
(0.00)

1.33
(0.47)

2.24
(1.19)

#Reorganized
Agents per Reorg. — — — 1000.00

(0.00)
646.78
(385.14)

283.87
(318.04)

1000.00
(0.00)

714.74
(305.04)

479.35
(284.08)

Table 8.1. Evaluation results for the three settings “noSO HP”, “PSOPP HP”, and “PSOPP
k-means” with di�erent numbers of separate subsystems. All values are averages over 1000
evaluation sequences; values in parenthesis denote standard deviations.

organizational structure’s robustness better than one that enables the system to work
e�ciently?

Solution-quality-oriented Metrics

To rate the performance of an SO algorithm, the optimality of its solution plays a
crucial role. In the sense of SO, the optimality depends on the quality of the selected
organizational structure from the set of all possible structures concerning a given �tness
function.
Let us consider the metrics in Equations (8.4) and (8.5) �rst since both are quite similar
in how they measure the normalized �tness of the SO mechanism over time. Note,
however, that Equation (8.5) bounds the optimum byRFmax. Because of their similarity,
we only evaluated the perf (sit) metric.
Challenges that arise during the evaluation of SO mechanisms with the metrics de�ned
in Equations (8.4) and (8.5) are mainly caused by the locality of the SO mechanisms.
This characteristic is a signi�cant di�erence to the adaptation mechanism considered by
Becker et al. [15] as well as Taranu and Tiemann [156] who regard a central approach of
only one adaptation mechanism within the entire system. In case of multiple subsystems,
as is the fact with our evaluation scenarios, the metrics could be applied to the separate
subsystems, but it is not obvious how to calculate the performance for the overall system.

157

8 Performance Testing for Self-Organization Mechanisms

1 2 3 4 5 6

0.2

0.4

0.6

0.8

time steps

so
lu

tio
n

qu
al

ity

SO Mechanism 1
SO Mechanism 2

Figure 8.2. The �gure shows the payo� of two di�erent series of �tness values (SO Mechanism
1 and SO Mechanism 2) for six time steps. If we apply the metric Ad de�ned in Equation (8.6) to
both series, we get Ad1 = 0.2 and Ad2 = 0.1625, which is not reasonable since the payo� of
the dashed series is at every time step clearly above the one of the solid series.

We used the average value of the perf (sit) metric applied to each separate subsystem
as an approximation of the quality of the entire system. However, it is unclear whether
this approach re�ects the performance adequately. Depending on the intended purpose
of the performance measurement, this average value might be weakly informative, e.g.,
one might want to have the worst rating of all subsystems in case of a risk-averse
evaluation.

As shown in Table 8.1, the perf (sit) metric obtains high values in the settings PSOPP HP
and PSOPP k-means, indicating that PSOPP performs well in choosing organizational
structures. Furthermore, it is possible to compare the performance of an organizational
structure without SO (see no-SO HP in Table 8.1), i.e., no restructuring or reorganization
of the system at run time, with a system with SO: The results indicate that SO with the
PSOPP algorithm is worthwhile since the �tness value of the system is almost twice as
high compared to a system without SO (note that PSOPP’s quality was rated using the
objective function of homogeneous partitioning in case of no-SO HP as well as PSOPP
HP).

The Ad metric in Equation (8.6) intends to smooth the development of the �tness
value used by perf (sit). Alas, the metric shows some adverse side e�ects that are
illustrated in Figure 8.2 where a series of �tness values that is worse than another is
rated better. Due to this unwanted e�ect of the metric, it is hard to use the value for
performance evaluation. This is also re�ected in the evaluation results of Table 8.1,
where the performance of noSO HP is rated ten times better than PSOPP HP, which is
quite incomprehensible considering that Ad only tries to smooth the development of
the �tness value that is used by perf (sit).

158

8.2 Requirements for Performance Metrics for SO Mechanisms

8.1.2 Metrics for SO Mechanisms

Hitherto, there has not been any work focusing on the design of general metrics for
measuring the performance of SO mechanisms. The work of Kaddoum et al. [84] lists
metrics under the umbrella of self-* systems and consequently includes self-organization,
but the shown metrics, as well as the paper and pencil evaluation, are only considering
self-adaptive systems. That is why we introduced their metrics already in the previous
section as metrics for self-adaptation mechanisms. Nevertheless, the implementation
and design of SO mechanisms has brought along specialized evaluations of the developed
algorithms during the recent years (cf. [3, 10, 122]).

Discussion

The development of SO mechanisms includes several specialized evaluations of the
performance of the di�erent SO mechanisms, but only in the context of the newly intro-
duced mechanisms (cf. [3, 10, 122]). In general, the evaluation results are used to show
the strengths and limitations of the SO mechanisms in a speci�c setting. Sometimes, the
results are also used to optimize the parametrization of the developed mechanisms. Nev-
ertheless, to my knowledge, no general approach addresses systematic and comparable
performance evaluations.

8.2 Requirements for Performance Metrics for SO Mechanisms

To realize such an approach for the evaluation of the performance of SO mechanisms, we
derive requirements from the results discussed in the previous section and experiences
gained during the evaluations of our developed SO mechanisms. The requirements
are split into requirements for the metrics themselves and their implementation in a
framework for SO mechanism evaluation.
We claim that the following requirements are the most important to be met by metrics
to assess the performance of SO mechanisms concerning time and solution quality:
Req. 1 The locality of SO mechanisms has to be taken into account and the aspects
of time and solution quality have to be evaluated within the existing (over run time
changing) subsystems that are di�erently a�ected by the SO mechanisms, e.g., one
subsystem can be reorganized while another keeps on working. Furthermore, it is
important to be able to assess the performance of the entire system based on the
performance of the subsystems.

Req. 2 Since SO mechanisms have control over the system’s structure, their perfor-
mance strongly in�uences those of the entire system. So the overhead of a reorganization
can be worthwhile if it su�ciently improves the behavior of the controlled system. Con-
sequently, a metric has to take the bene�t of the reorganization into account.

Req. 3 The interpretation of a value provided by a metric strongly depends on the
current state of the system. In self-organizing systems, the possible values for the
solution quality can change over time. For instance, a solution quality of 0.7 would be
optimal if possible values were de�ned by the interval [0, 0.7] but quite bad if they stem

159

8 Performance Testing for Self-Organization Mechanisms

from the range [0, 200]; the same applies to the parameter time. Consequently, there
is a need for dynamic boundaries for the evaluation—a requirement resulting from the
ever-changing environment of SO mechanisms.
To achieve a systematic approach, we claim that there is a need for a framework for
performance evaluation that has to satisfy at least the following requirements:
Req. 4 The overall process has to be supported by a framework for performance evalua-

tion that is able to systematically evaluate SO mechanisms. The framework’s components
should support the generation of evaluation runs to perform, the simulation itself, and
the application of performance metrics.

Req. 5 To achieve signi�cant results, the evaluation must comprise simulation runs

that induce an environmental behavior re�ecting probable conditions under which the

SO mechanisms have to operate.

8.3 A Distributed Performance Metric for SO Systems

We use the requirements from the previous section to form a metric that can cope with
decentralized SO mechanisms, is de�ned locally, respects the bene�t of a recon�guration,
and handles dynamic boundaries. The performance of a system is composed of two
parts: time performance and quality performance. Thus the performance p of a system
sys is de�ned by the following metric:

(8.7) p(sys) = wt · tp(sys) + wq · qp(sys),

where wt + wq = 1 has to be ful�lled. The factors wt and wq enable to weight the
importance of the time performance tp(sys) and the quality performance qp(sys). The
co-domain of the metric is [0, 1], where a higher value means a better performance of the
SO mechanism. This is due to the fact that a bigger value of tp(sys) (cf. Equation (8.10))
means a better ratio of working time compared to reorganization time and a bigger
value of qp(sys) (cf. Equation (8.13)) means a better quality achieved compared to
the optimal quality. The system sys consists of agents (resp. components) a ∈ sys
which are controlled by the SO mechanism that is analyzed in r ∈ R evaluation runs
accomplished.

8.3.1 Time Performance of SO Mechanisms

Evaluating the time performance tp(sys) requires a clear de�nition of what the time
performance of an SO mechanism is. For classical analysis of time performance the
answer is: how long must I wait for my output to appear? [97] Applying that approach to
SO mechanisms is not su�cient since we have to deal with two aspects (1) SO algorithms
are mostly anytime algorithms that are terminated after a speci�c time and (2) the quality
of the new con�guration concerning the time to a next recon�guration is essential.
The goal of the SO mechanism is to supply a con�guration for the controlled system
that enables it to perform best under ever-changing conditions. The time between the
recon�gurations is of interest, too. Since during SO, the controlled system is not able to
reach a good performance due to a lousy system structure, or it has even to be stopped in

160

8.3 A Distributed Performance Metric for SO Systems

a safe mode. This e�ect is an implicit form of the time performance of SO mechanisms.
Consequently, we are not only interested in the time to a solution, we are interested in
its time impact, i.e., the time used for SO compared to the time where the system runs
without disturbances. Due to the characteristics of SO mechanisms, there is no single
point where the time could be measured because SO mechanisms solve problems in a
distributed fashion. Thus, the calculation is for instance achieved by building a coalition
of components that are capable of solving the problem without the rest of the system.
This is the case in the production cell case study where a group of robots can �nd a new
con�guration if a capability, e.g., a drill, is broken. The measurement is consequently
no central a�air. The time of recon�guration, i.e., the time involved in �nding a new
system con�guration needs to be measured for each agent a ∈ sys as follows:

(8.8) tp(a, r) = 1−
∑

s∈r recon�gurationTime(r, a, s)

duration(r)
,

where the time performance is measured by calculating the ratio of the time needed
for recon�guration for a single agent a in a run r consisting of steps s, given by
recon�gurationTime(r, a, s) in the unit time, to the duration of the run r where the
measurement has taken place, supplied by duration(r) in the same unit of time. This
calculation of the performance is di�erent in two ways from evaluating traditional
mechanisms or algorithms, like in [97]: the measurement is a time ratio and is measured
locally. The metric value of Equation (8.8) is prorated with the resulting values of all
agents a ∈ sys to gain the time performance of the system by computing the average
of all values:

(8.9) tp(r, sys) = avgsysa tp(a, r)

The concrete average function in�uences the result and has to be chosen with care.
The same average function is applied to compute the time performance of the system
tp(sys) by prorating the results of all evaluation runs r ∈ R as follows:

(8.10) tp(sys) = avgRr tp(r, sys)

The codomain of tp(sys) as well as tp(r, sys) and tp(a, r) is [0, 1], and a value close to
1 indicates a better achieved time performance.

8.3.2 Quality Performance of SO Mechanisms

The quality performance qp(sys) determines how good the particular solutions of
an SO mechanism have been. However, judging the quality of a solution is highly
dependent on the particular SO mechanism as well as the system and its environment.
This dependency is because the quality is measured according to the in�uence of the
SO mechanism on the controlled system. The SO mechanism in the production cell case
study controls which robot and which cart has to carry out which task. It consequently
in�uences the ability of the system to produce workpieces and e�ects the overall output
resp. throughput. The quality of the SO mechanism is determined by the throughput,
the number of processing actions, that the system can apply within an evaluation run.

161

8 Performance Testing for Self-Organization Mechanisms

Figure 8.3. The UML component diagram shows the essential components of the evaluation
framework, consisting of two main components.

This value can be measured locally for each robot, that is processing a workpiece, and
then aggregated for the entire system. The SO mechanism in the energy grid case study
clusters resp. anti-clusters the power plants into virtual power plants. The optimality of
this decision could be measured by the mix-value of the virtual power plants. This value
is regio-central, it is determined in the region of every AVPP and has to be aggregated
(central) to the overall quality value. The solution quality is evaluated by measuring the
domain-dependent quality function quality(r, a) for an evaluation run r of each agent
a ∈ sys. As the measured value is dependent upon the context it is normalized by the
value which is the best possible one:

(8.11) qp(r, a) =
quality(r, a)

qualitymax(r, a)

To prorate qp(r, a) for all a ∈ sys the average is built according to

(8.12) qp(r, sys) = avgsysa qp(r, a)

The codomain of qp(r, a) as well as qp(r, sys) is [0, 1], and a value close to 1 indicates
a better achieved quality, since 1 would imply that the maximum performance has
been reached. To form the proration for qp(sys), di�erent average functions might be
appropriate, as described for the time performance before. Thus, qp(sys) is de�ned as
follows:

(8.13) qp(sys) = avgRr qp(r, sys)

8.4 Performance Evaluation Framework

To measure and evaluate the performance of an SO mechanism, it is of utmost importance
to establish a testbed where the performance of the mechanism can be analyzed in a
systematic, comprehensible, and representative fashion. For the implementation of a
framework, we rely on the requirements derived.
We base our evaluation framework shown in Figure 8.3 on the testing framework,
introduced in Chapter 5, that has been used for functional testing. Basically, it consists of

162

8.4 Performance Evaluation Framework

an Evaluation Suite Generator, an Execution, and a Monitoring and Evaluation

component. The model-based approach is used in all fragments, which is enabled by
having executable as well as changeable models. The overall model consists of a static
and a dynamic part. The static part is used for enabling automated execution as well
as automated evaluation. The dynamic part is used for generating evaluation suites.
Based on a model of the con�guration the evaluation suite generator derives di�erent
possible system con�gurations for evaluation. The evaluation system is afterward
started by initializing the static model that uses Agents to set up the environment of
the SO mechanism that is plugged into the evaluation framework. The evaluation runs
are generated and executed in the same step (we follow an online testing approach for
the evaluation of the performance that enables an arbitrary length of evaluation runs).
Each phase of the SO mechanism is monitored and evaluated due to the implemented
performance metric. The overall evaluation is mainly driven by environmental changes,
i.e., changes in the controlled environment of the investigated SO mechanism. In the
production cell scenario, such a change might be a faulty robot or drill that causes
the SO mechanism to recon�gure the production cell. For the energy grid scenario,
a change can be a �uctuation in the production of a power plant due to a changing
weather condition of the solar plant leading to a di�erence in the ful�llment degree of
the previously calculated schedule that in turn causes the SO mechanism to recon�gure
the AVPP.

8.4.1 Generating Unbiased Evaluation Runs

To supply signi�cant results (ful�lling Req. 5), the evaluation runs need to be comprehen-
sible and representative. To illustrate this challenge of signi�cation, let’s consider the
following example in the production cell scenario: There is only one robot actively using
a drill; if the environmental change is to damage the drill, that causes a recon�guration.
However, if the time performance is computed based on the time passed since the last
recon�guration, the environmental action has a direct in�uence on the performance
result of the investigated SO mechanisms. The correlation is unintended since the
evaluation should not in�uence the outcome, the system under evaluation should be the
only in�uence factor. However, it is not possible to completely diminish this in�uencing
factor within a simulation. To achieve the best results, there are two solutions: (1) to
evaluate the system with every possible combination of environmental conditions or
(2) to select the most representative combination of environmental conditions which
represent the reality best. Due to the complexity of the environment, it is not possible
to follow option (1).
There is a necessity to select a representative combination of environmental conditions,
i.e., take samples for all possible combinations. The result from that sample is a set of
evaluation runs. For these evaluation runs we compute a metric, based on Equation (8.7).
If this metric value is equal to the metric value for option (1), it is called unbiased. An
unbiased metric value with a low number of samples is called e�cient [113]. Sampling
could be performed in di�erent manners with di�erent e�ects. There is the possibility to
select random samples from the abstract environment states. Random sampling implies
that each possible environmental change has the same probability of being chosen at any

163

8 Performance Testing for Self-Organization Mechanisms

stage during the sampling process to become part of the evaluation run. However, that
does not fully re�ect the reality of the environment that is modeled and from which the
states are sampled. This fuzziness is the case for the production cell as well as the energy
grid scenario: The failure rates of the production tools, on the one site, and the weather
conditions for the power plants, on the other side, are nonuniform in their occurrences
if real-world processes are observed. There are probability distributions that describe
the failure rates, that are well investigated in the �eld of reliability engineering [107],
namely mean-time-to-failure rates as well as mean-time-to-repair rates.

8.4.2 Modeling the Environment for Evaluating the Performance of SO
Mechanisms

The here presented approach uses a model representation of the environment, where
we abstract from concrete states to classes of states. We use a Markov chain model
describing how likely it is that a sequence of states occurs or that a state occurs after a
particular state, similar to our model explained in Chapter 6, where we formed so-called
Environment Pro�les (EPs). Here the model is a transition system formed by a pair
(S,→) where S is a set of states and→ is a set of transitions from one state to another
(i.e., a subset of S×S). That allows to only sample feasible state sequences. Further, the
transition system is supplemented by a label∧ forming a labeled transition system by the
tuple (S,∧,→) where the label annotates the transition probability, forming a Markov
chain. That means there are not just the weather conditions rainy, sunny, and cloudy,
but there is also the information whether it is possible to have rainy weather after sunny
weather and how probable it is. However, for a su�ciently large number of samples,
the random sampling process would still form a comprehensive and representative test
sequence. Because the distribution (the statistical variance) of the metric values to the
actual value (the value which would be evaluated for all possible situations) is decreasing
with the number of samples that would form a fair metric value. That is also known as
the law of large numbers. Alas, it is unknown how big large is or should be, and it forms
a rather ine�cient method. To become more e�cient we use the described models, that
promise to be a more e�cient approach to gain a comprehensive and representative test
sequence with the same sample size (cf. [97]). The class of SO mechanism distinguishes
the models.

Model for Discrete SO Mechanisms For an SO mechanism with a discrete input space,
we apply failure models, from the reliability theory, used for a fault injection approach,
as described for the test model in Chapter 6. The faults are injected into the controlled
environment of the SO mechanism. That delivers samples as a set of faults (also an empty
set is possible) that should be injected, and the latter provides a set of environmental
changes.

Model for Continuous SO Mechanisms For an SO mechanism with a continuous input
space, we apply the approach of EPs. The resulting evaluation runs are used as repre-

164

8.4 Performance Evaluation Framework

sentative combinations of environmental conditions which represent the reality best
and address Req. 5.

8.4.3 Integrating the Evaluation Sequence Selection in the Evaluation Framework

In the evaluation framework (cf. Figure 8.3) these models are used to feed the Environment
Simulator by generating Eval Runs in the Evaluation Suite Generator. That is done
by using S# to execute models, in a way that depending on the mechanism under analysis
the corresponding model is executed. The execution has a direct in�uence on the Agents
controlled by the mechanism under evaluation. This online evaluation run generating
process allows for endless execution runs.

Computing the Length of an Evaluation Run To select the number of all evaluation steps
in all runs to be executed, we use the following formula that allows selection of the
length by de�ning the acceptable estimation error ∆µ [113]: Therefore we use the
length of the con�dence interval by Equation (8.14)

(8.14) 2z
σ√
n

that should be less or equal to the acceptable estimation error (cf. Equation (8.15)).

(8.15) ∆µ ≥ z σ√
n

By solving Equation (8.15) for n we gain the minimal length of the sequences needed in
Equation (8.16).

(8.16) n ≥ z2 σ2

(∆µ)2
,

where n is the number of all evaluation steps in all runs, z is the standard normal
distribution (SND) value (taken from an SND table) of the expected distribution, and
σ2 is the standard deviation (SD) to be estimated by taking n evaluation runs. For our
evaluation the acceptable estimation error might be ±1% with a con�dence interval
of 95%. The con�dence interval states the probability that the expected metric value
p(sys) is within a given symmetric interval of [p(sys)− b; p(sys) + b] where b is called
the con�dence border. The actual selection of the value

b := zσp(sys) ≡ z
σ√
n

is de�ned by the expected SD and z as the corresponding value of the SND that is
expected. Indeed, the number n is the actual number we would like to know and
is determined by Equation (8.16) given the con�dence interval and the acceptable
estimation error. However, the value σ2 is unknown, since it is the also unknown SD to
be estimated by the evaluation runs. Thus, we have to use a rather gross estimate of
σ2. In order to play it safe, σ2 should be set to 0.25, leading to a rather to big estimate
for the value n [113]. So, we select σ2 = 0.25 and have the following equation to be

165

8 Performance Testing for Self-Organization Mechanisms

solved having given z = 1.96 by taking the value from the SND table and the con�dence
interval of 0.95:

n ≥ z2 σ2

(∆µ)2
= 1.962 0.25

0.012
= 9604

8.5 Evaluation

We used two di�erent self-organizing systems for evaluating the accomplishments of
our metric described in Section 8.3 and the evaluation framework speci�ed in Section 8.4.
Within this evaluation we answer the following research questions:

RQ 1: Is it possible to determine di�erences in the SO mechanisms’ performance
during the assessment of the performance of the entire SOAS?

RQ 2: SO mechanisms have a signi�cant impact on the overall performance of the
controlled system. Is it possible to quantify this impact reasonably for SO mechanisms?

RQ 3: SO systems are faced with an ever-changing environment; their performance
depends on the current run time setting of the system. Are these dynamic performance
boundaries re�ected in the performance evaluation in a way to provide a comprehensive
analysis?

RQ 4: The simulation environment might in�uence the outcome. Is the evaluation
framework able to establish conditions for continuous and discrete SO mechanisms that
can produce comparable results in di�erent settings?

These research questions are derived from a set of requirements for metrics and per-
formance evaluation of SO mechanisms, that have been introduced in Section 8.2. We
selected the case studies as they represent the two di�erent input spaces of SO mech-
anisms, described in Chapter 2. Thus, we can demonstrate the two di�erent possible
instance of the evaluation framework. To investigate the metric in depth for each case
study, we used several di�erent SO mechanisms.

8.5.1 Production Cell

In the production cell case study, we compare a central SO mechanism working with
global knowledge with a coalition-formation mechanism with local knowledge only. The
centralized mechanism always stops the entire system when a con�guration de�ciency
is detected. It removes the current con�guration entirely, computes a new con�guration
and distributes it. The localized mechanism, on the other hand, forms a coalition of
agents, starting with the agent that detected the problem. It recruits more and more
neighboring agents until the agents in the coalition can solve the problem at hand
among themselves. Only the con�gurations of those agents within the coalition that
must necessarily change their roles is updated. Both mechanisms employ the same
algorithm to �nd a solution within their set of available agents. They di�er in the
selection of those agents as well as in the method of distribution for the computed
solution.

166

8.5 Evaluation

Evaluation Setting

We evaluate both mechanisms within three di�erent setups of the production cell case
study: �rstly, a setup with few agents (6 robots, 4 carts), and high redundancy with
regards to available capabilities (each robot has ≈ 66.7% of the existing capabilities),
we refer to this setup as FA/HR below; secondly, a setup with more agents (10 robots, 4
carts), and low redundancy (40%) referred to as MA/LR; and lastly one with more agents
(10 robots, 4 carts), and high redundancy (70%), MA/HR. Each model is simulated with
both algorithms in several simulation runs. Within each run, environment faults are
activated and deactivated randomly according to their respective MTTF and MTTR. For
greater comparability, we simulate the systems with the same random seeds, i.e., expose
both algorithms to the same environmental conditions.

The numbers of the evaluation are shown in Table 8.2. As the shown data is aggregated
over 100 runs with 1000 steps each, the displayed numbers are showing the average
value. As outlined in Section 8.4, the concrete choose of the average function is up to the
test engineer. One way of choosing is to get more insights into the data. The data is, for
this purpose, �rst tested on a normal distribution. The Shapiro-Wilk test, performed on
the data, showed a p-value of< 0.05 which is indicating a nonparametric data set for the
measurements. For nonparametric data, it is hard to select an excellent �tting average
function. For the given data set the arithmetic mean was evaluated as well as the median.
The arithmetic mean is selected in the case when additions of the values are meaningful,
while the median is more focused on clustering the data in two equal sized data heaps.
That makes the arithmetic more prone to outliers compared to the mean value. Thus,
the expectation would be, that the values di�er, as we have no normal distribution.
However, both values are almost equal for all the data. Leading to the assumption that
the data is tightly clustered, which is the case. The data as we process it in the metrics
is well suited to addition, used as an average function. Thus, the following data plots
the arithmetic average value as the chosen average function. Indeed, it is of further
interest to investigate the dispersion of the data. This investigation gives more insights
into the state of the data provided. A measure for dispersion is the range of data given.
However, for the arithmetic mean the standard deviation (SD) is the average of choice.
Indeed, the SD is prone to a normal distribution. However, the data is tightly clustered
around the mean. Thus, we opt for the SD in the statistics, delivering the best insight
on the dispersion of the given data set. For the further results, the di�erent outcomes
of the various con�gurations and the di�erent settings have been tested according to
the independence of the results. The Mann-Whitney-Wilcoxon test has been performed
at the given data set to show the independence because no distribution was assumed.
The Mann-Whitney-Wilcoxon test resulted in a p-value of < 0.05. Thus, the following
discussion of the value is grounded on the given independence.

Discussion of the Evaluation Results

RQ 1: The results of our evaluation as shown in Table 8.2 clearly indicate that the
centralized mechanism yields greater quality, i.e., allows for greater throughput. This
result is surprising, as one would expect the locality of the coalition-formation mecha-

167

8 Performance Testing for Self-Organization Mechanisms

Mechanism Centralized Coalition-Formation
Model FA/HR MA/LR MA/HR FA/HR MA/LR MA/HR
tp(sys) 0.9728

(3e−3)
0.8579
(4e−4)

0.8596
(1e−2)

0.9963
(6e−4)

1.0000
(3e−5)

1.0000
(2e−6)

qp(sys) 0.5909
(0.03)

0.9432
(0.06)

0.7022
(0.04)

0.4987
(0.03)

0.7560
(0.04)

0.5779
(0.04)

p(sys)
wt = 0.5, wq = 0.5

0.7819 0.9005 0.7809 0.7475 0.8780 0.7889

p(sys)
wt = 0.1, wq = 0.9

0.6291 0.9347 0.7180 0.5484 0.7804 0.6200

p(sys)
wt = 0.9, wq = 0.1

0.9347 0.8664 0.8439 0.9466 0.9756 0.9577

#Modi�ed Roles per
Reconf.

7.85
(2.65)

16.67
(6.67)

13.73
(5.06)

8.41
(3.83)

11.74
(11.17)

10.71
(7.51)

#Reconf. / # Involved
Agents per Reconf.

0.45
(0.12)

0.52
(0.13)

0.46
(0.12)

0.88
(0.16)

0.74
(0.19)

0.76
(0.20)

#Steps between
Agent Reconf.

6.87
(6.91)

1.99
(2.41)

3.10
(3.41)

12.84
(21.53)

3.83
(5.10)

6.04
(9.49)

Table 8.2. Evaluation results for the two SO mechanisms “Centralized”, and “Coalition-
Formation” with di�erent production cell setups. All values are averages over 100 evaluation
runs with 1000 steps each; values in parenthesis denote SDs.

nism to yield better results since it allows some parts of the system to be recon�gured
while other parts keep working. However, this e�ect was not pronounced enough in
our case study to overcome the negative aspects: the coalition has only a subset of the
centralized mechanism’s knowledge, and it will always prefer a localized solution, lead-
ing to little division of labor. On the other hand, we can see that the coalition-formation
mechanism has better time performance, i.e., the relationship between working time
and recon�guration time for individual agents is better. This result shows the bene�t of
not involving every agent in every recon�guration. The coalition-formation is much
more e�cient in this respect, for the smallest model almost twice as e�cient as the
centralized mechanism. As a result, agents can perform more production steps between
two subsequent recon�gurations. In reality, the e�ect on performance would be even
more pronounced because physically stopping production costs more time than it does
in our simulation. Similarly, changing role allocations would correspond to physical
tool changes, also requiring great amounts of time. For larger models, the coalition
mechanism outperforms the centralized mechanism in this respect as well. We measured
the time performance locally for each agent, computed the performance for the complete
evaluation run, and approximate results for the entire system through a series of runs.
The quality is measured similar, since the number of processing steps applied by agents
within a run, this information is gathered locally for each agent and then aggregated.
Hence, to answer RQ 1, two di�erent mechanisms are comparable despite their di�erent
views on the overall system (local and central). The metrics deliver a clear indication of
the advantages of the di�erent mechanisms.

RQ 2: The solution quality can be weighted higher or lower to consider the SO
mechanism’s in�uence on the system performance. This enables us to control the
in�uence of the quality parameter with the time parameter. The quality is best measured

168

8.5 Evaluation

in the MA/LR setting, that indicates, that the quality is depended on the actual setting as
well. Nevertheless, it is still possible to quantify a recent di�erence between the quality
of the centralized and the coalition setting. That undermines an e�ect, that is assumed
for decentralized mechanisms: it is often stuck to local optima. This e�ect is reasonably
quanti�ed here.

RQ 3: Our metric can also account for the dynamic performance boundaries of SO
(RQ 3). Remember that the quality ratings equal the system’s actual productivity, mea-
sured by production actions, e.g., drill, compared to the maximal possible productivity.
For the maximal possible quality as referenced in Equation (8.12), we executed a sys-
tem run for each setup without any environment faults. For the FA/HR setting of 484
production actions was achieved, 336 production actions for the MA/LR setting, and
343 production actions for the MA/HR setting. One step can encompass at most one
production action, hence this value abstracts from the actual time required. Thus, a
larger system with low redundancies is prone to be less productive due to long transits.
Here, the same initial system con�guration is used for calculating the maximum quality
as well as for starting the evaluation. That initial con�guration encompasses, amongst
other things, the initial role allocation (i.e., which robot and which cart is applying which
capability) of the system. However, when the system encounters a faulty environment,
the maximal throughput in ideal conditions may in many cases be unreachable even with
the best SO mechanism, which explains the relatively low scores for both algorithms.
Further, high time performance ratings can be achieved by both algorithms: even though
a faulty environment leads to more time spent on recon�gurations, it in�uences the
total simulation time, in the same manner, thus limiting its in�uence on the quotient.
By assigning a lower weight to the quality ratings, we can account for this imbalance
to some extent. Similarly, there exists a certain disconnect between the time required
for processing steps in our simulations and reality, the former being much lower. This
disconnect does not exist for recon�guration times, and therefore it a�ects the time
performance as de�ned in Equation (8.8). However, it does so equally for both compared
mechanisms.
Hence, while the absolute values in the simulation di�er from the realization of a
real hardware application scenario the metric has to be taken with a grain of salt for
the quantitative comparison, the relation between the two mechanisms remains still
the same and thus still allows for fair qualitative comparison. To give a complete
picture, we also included the number of discrete steps the system makes between two
recon�gurations involving the same agent, on average.

RQ 4: Lastly, we consider the evaluation system’s in�uence on our results in RQ 4.
The SD for time performance and quality in our evaluation results is low, less than 0.01
for time performance, and less than 0.06 for the quality rating. We can thus assume
the results are unbiased. The high SDs for per-recon�guration results (the last three
rows) is expected: the number of necessary recon�guration changes and the frequency
of recon�gurations depends on the respectively occurring environment faults, whose
frequency and impact vary greatly.

169

8 Performance Testing for Self-Organization Mechanisms

8.5.2 Energy Grid

For the evaluation within the self-organized creation of virtual power plants in a smart
grid we used an SO mechanism called PSOPP [10] (Particle Swarm Optimizer for the
Partitioning Problem). The PSOPP is a particle swarm optimizer that partitions a set of
agents representing a (sub)system into pairwise disjoint and non-empty groups. These
groups constitute the (sub)system’s con�gurational structure. Feasible organizational
structures can be described by so-called partitioning constraints that restrict the number
and the size of these groups. PSOPP is an anytime algorithm and a metaheuristic that
optimizes the groups’ composition concerning an objective function. In our evaluation,
PSOPP is used to optimize the groups’ composition in each so-called separate AVPPs of
a hierarchically structured system.

Evaluation Setting

We executed 100 generated evaluation runs, each comprising 300 evaluation steps leading
to a size of the evaluation run that is bigger than the smallest usable size calculated
using Equation (8.16). To investigate two di�erent SO mechanisms we instantiated
the PSOPP algorithm with two di�erent settings: (1) In the setting PSOPP HP, PSOPP
established partitionings according to an homogeneous partitioning objective function
de�ned in [10]. (2) In the setting PSOPP k-means, PSOPP established heterogeneous
partitionings according to the well-known k-means objective function. All evaluation
runs have been performed in a distributed cluster of 12 computers with an Intel Core-i5
CPU and 4GB RAM for about a week. We performed each setting on a prede�ned system
structure consisting of 1, 2, and 5 separate subsystems and 1000 controlled power plants
within the system. This structure is called regio-central since we each subsystem is
centrally organized.
The results of our evaluation are summarized in Table 8.3. Having a closer look at
Table 8.3 the performance metric p(sys) (cf. Equation (8.7)) is shown for all instances
with three di�erent con�gurations according to their weights, a balanced weighting, a
favor for quality, and a favor for the time. The data is computed by using the arithmetic
mean value with the according to SD from 100 di�erent evaluation runs. The selection
of the average function here followed the same approach as described in the setting of
the production cell. The investigated data are also not normal distributed, but tightly
clustered, making the mean value a good �t for describing the data. The normal distribu-
tion was tested, and the p-value resulted in < 0.05. Further, the independence between
the values to compare was tested by the Mann-Whitney-Wilcoxon test with a resulting
p-value< 0.05. Overall we have observed very slight variants of the performance over
the runs and observed no big outliers.

Discussion of the Evaluation Results

RQ 1: A �rst observation is the fact that the decrease of agents involved in the recon-
�guration has a rather low impact on the tp(sys) value in both types of SO mechanisms.
That e�ect is also shown in the number of reorganizations performed in the di�erent
setting compared with the involved number of agents in a reorganization. The more

170

8.5 Evaluation

Setting PSOPP HP PSOPP k-means
#Separate

Subsystems
1 2 5 1 2 5

tp(sys) 0.87
(0.11)

0.86
(0.27)

0.90
(0.02)

0.02
(0.002)

0.02
(0.004)

0.02
(0.007)

qp(sys) 0.96
(0.02)

0.96
(0.01)

0.96
(0.01)

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

p(sys)
wt = 0.5, wq = 0.5

0.92
(0.07)

0.91
(0.15)

0.94
(0.02)

0.51
(0.03)

0.51
(0.05)

0.51
(0.09)

p(sys)
wt = 0.1, wq = 0.9

0.95
(0.04)

0.95
(0.05)

0.95
(0.01)

0.89
(0.03)

0.89
(0.06)

0.89
(0.10)

p(sys)
wt = 0.9, wq = 0.1

0.88
(0.04)

0.87
(0.19)

0.91
(0.02)

0.12
(0.02)

0.12
(0.03)

0.12
(0.06)

#Reorganized
Separate Subsystems

1.05
(0.32)

2.88
(0.88)

11.01
(1.98)

141.57
(17.93)

244.11
(43.11)

501.36
(113.11)

#Recon�gured
Agents per Reconf.

1000.00
(0.00)

696.78
(400.14)

252.47
(288.34)

1000.00
(0.00)

734.74
(335.52)

499.51
(284.18)

Table 8.3. Evaluation results for the two settings “PSOPP HP” and “PSOPP k-means” with
di�erent numbers of AVPPs. All values are averages over evaluation runs with 300 steps; values
in parenthesis denote SD.

separate subsystems, the fewer agents are on average involved in a reorganization, but
also the more reorganizations are necessary for keeping up the goals of the Corridor of
Correct Behavior (CCB). This e�ect seems to be an e�ect of the regio-central knowledge
that is lower than the central knowledge and thus leads to a higher need for recon�gu-
rations. This e�ect is re�ected in the metric, by having almost the same value despite a
changing subsystem size. All these local e�ects are handled in the metric.

Same for qp(sys), all values have been gathered locally. The value for the quality
function for PSOPP HP setting is stating how similar the AVPPs are in their composition.
Thus, the goal it the minimization of the SD of the average state values of the power
plants in each AVPPs. For the k-means setting, the similarity of the average state is
the measure of quality for each AVPP. For qp(sys), in the HP and the k-means setting,
similar e�ects are shown as for the time performance: the increasing number of separate
subsystems has no impact on the quality of the system. Measuring the performance local
is consequently able to judge over the global system without neglecting the structure of
the system and the SO mechanisms.

RQ 2: Having p(sys) for the two di�erent SO mechanisms in the scenario we can
observe that the homogeneous partitioning is in favor. That re�ects the fact that
homogeneous partitioning is more robust than k-means, as described by Anders et
al. [10]. However, the robustness has a slight price in quality, that is overall more
optimal with k-means (see the qp(sys) values). Nevertheless, that comes with a high
price of a very poor tp(sys) result. To achieve a better rating for PSOPP k-means
a possible allocation of the weights is wt = 0.03, wq = 0.97. However, it is not
recommended to choose such a strong favor for one part of p(sys) since it ignores
one of the two crucial performance factors. Thus, to answer RQ 2 the bene�t can be
considered, and even more the in�uence can be steered individually.

171

8 Performance Testing for Self-Organization Mechanisms

RQ 3: The answer to RQ 3 is shown in the fact that we observed �uctuations through-
out the evaluation runs within the maximum. That is di�erent from the production
cell case study, where the maximum for the quality performance was computed for a
run, not for a step. In this case study, the maximum value is dynamically calculated at
each step for a single subsystem, since the value is depended on the current state of
the controlled power plants in a subsystem. That is highly necessary to normalize the
di�erent achievements in the various system steps.

RQ 4: RQ 4 questions whether the results are adequate regarding the conditions under
which they were measured. This question is hard to answer with the resulting data
since we have no gold standard to compare with. However, our argumentation of
Equation (8.12) indicates that we have an accuracy of at least 0.95 for the measurements.
The inaccuracy of 0.05 is within the variation of the p(sys) value according to the
SD and consequently negligible. Thus, we have established an adequate evaluation
framework.

Summary and Outlook. In this chapter we showed how the Model-Based Testing (MBT) approach
of this thesis is enabling to judge over the capabilities of SO mechanisms in its execution, i.e., to
assess the performance of SO mechanisms. Testing the performance of SO mechanisms is a
systematic, experimental evaluation of the performance. We started by carving out the requirements
for this endeavor. The characteristics of the SO mechanism determine these. Concerning the
dimensions of performance, time and solution quality, SO mechanism differ: The time is split in the
time the SO mechanism is consuming for reorganization, but also the time the solution is stable
afterward. The interplay between the SO mechanisms and their environment and the controlled
system are of importance. We showed how to incorporate the properties of the SO mechanism into
a metric. The important aspect here was to gather the information locally at each component of
the system that is controlled by the SO mechanisms and within the SO mechanisms themselves.
The interplay of SO mechanism and its controlled environment is also challenging for testing the
performance under the right conditions. These conditions have been defined by a situation that is
unbiased to the result of the evaluation. We discussed these aspects and presented a concept for
modeling the environment in a probabilistic way to achieve results that are statistically independent
and thus comparable for continuous and discrete SO mechanisms. The evaluation shows how to
use these achievements for testing the performance on different SO mechanisms in the energy grid
and the production cell case study.

172

9
Conclusion and Outlook

The aim of this thesis was to provide an approach for testing SO mechanisms in an
MBT approach. The previous chapters have shown a thorough approach providing
automated testing of SO mechanisms. The following summarizes the contributions
of the approach as well as the evaluation results that demonstrate the approach’s
capabilities and applicability to SO mechanisms. By providing the MBT approach for SO
mechanisms in this thesis, new research challenges, and future directions have opened
that are discussed at the end of this chapter.

9.1 Summary of Research Contributions and Evaluation Results

The provisioning of an MBT approach for SO mechanisms has been achieved by six major
contributions that form this thesis. Each contribution has been thoroughly evaluated by
the applications of the proposed concepts to �ve di�erent case studies, which have been
introduced in this thesis. The case studies have been chosen from di�erent research
communities and institutions to show the generality of the proposed approach.

Establishing a Notion of Failure for Self-Organization Mechanisms

A failure is the deviation of the observed behavior from the expected behavior in a
de�ned situation. This de�ned situation is in this thesis a test case that provides an
input to the Self-Organization Mechanism under Test (SOuT). However, the expected
behavior of an SO mechanism is not entirely de�ned: We do know the correct situations
for a SOAS, but we do not know the correct transitions into these situations or states.
The correct situations are de�ned via the CCB, which constraints unintended situations.
These unintended situations, however, are (as shown in the Restore Invariant Approach
(RIA) [70, 109, 110]) restorable by the SO mechanism. Thus, a violation of the correct
behavior is not directly a failure, in contrast to a common failure de�nition (cf. [108]).
For software testing, i.e., for revealing failures by executing the software, a concrete
de�nition of a failure is needed. This de�nition is provided in this thesis as follows: The
CCB de�nes the intended behavior. The SO mechanism needs to detect every violation,
compute a new system con�guration for the system (if there is one available) and needs
to distribute this con�guration. If the SO mechanism does not show this behavior, a
failure occurs. This contribution is the fundament for the overall achievement of this
thesis: MBT for SO mechanisms. We have shown in di�erent case studies, that it is
possible to specify an CCB and use for revealing failures. The revealed failures have
shown to be an unintended behavior of the SO mechanism, caused by an error.

173

9 Conclusion and Outlook

Establishing Testability for Self-Organization Mechanism

Having a failure de�nition is the �rst, crucial step toward testing software. The next step
is to be able to observe the behavior of the tested system and to control it. These two
aspects are needed for executing test cases. First, by observing the System under Test
(SuT) to perceive its current state to reveal a failure. Second, by controlling the system to
establish the test conditions needed and providing the input as speci�ed in the test case.
Both properties are summarized as testability. Testability for SO mechanism has been
achieved in this thesis with the proposed architectural pattern of the Corridor Enforcing
Infrastructure (CEI). The CEI meets the challenges of making SO mechanisms testable.
That challenges are since SO mechanisms are highly interwoven with the controlled
system and its environment. By applying the CEI pattern, the SO mechanisms are
controllable by having de�ned phases of SO (in a feedback-loop-oriented process) and
de�ned interfaces. These interfaces are also allowing for observability. It is possible to
use the CEI for making SO mechanism testable that implement a feedback-loop-oriented
SO mechanism and not explicitly the CEI. Most of the engineered SO mechanisms follow
this approach [22].
We have been able to show for each of the �ve case studies (where only two of them
explicitly implemented the CEI) that the CEI enabled us to test the SO mechanisms. The
CEI pattern has been applied to the generation of the test sca�old for every case study
and enabled us to observe and control the SO mechanism.

Enabling to isolate and integrate Self-Organization mechanisms for systematic
testing

The CEI further allows for isolation and integration of SO mechanisms. This decomposi-
tion and composition of an SuT has proven in theory [169] as well as praxis [17, 121] as
the most e�ective and e�cient method for revealing failures. Testing SO mechanisms is
no exception, as shown in the evaluation made in this thesis. Isolation and later integra-
tion of the components of the SO mechanisms follow the divide and conquer principle of
testing and is needed to cope with the challenges that arise from testing SO mechanisms,
foremost, coping with error masking and handling the vast, �at branching state space.
The presented concepts for isolation and later composition of the SO mechanisms set
the stage for di�erent test techniques to act at di�erent test stages. The contribution is
set into a test architecture, o�ering a complete test sca�old for SO mechanisms. This
test architecture has been implemented for testing each of the �ve used case studies in
this thesis and proved its success. In this test architecture, staged testing is enabled for
SO mechanisms. Here, the environment of the SO mechanism is the decisive integration
factor. This way of integration is newly developed for testing SO mechanisms.

Establishing a closed-loop Model-Based Testing approach suited for testing
Self-Organization mechanisms

The realization of the test architecture was done in an MBT approach, that is designed
and suited for SO mechanisms. The characteristics of SO mechanisms make it necessary
to cope with the adaptive behavior at run time. For this purpose, this thesis o�ers

174

9.1 Summary of Research Contributions and Evaluation Results

an extension of the known MBT approach by implementing feedback and using the
so-called run time models to re�ect the state of the SuT and its environment back into
the test model. That enriched test model enabled us to use the test model as a complete
test sca�old for an SO mechanism. Further, the models incorporate the ability to derive
test cases during execution and apply them directly on the SOuT. The result of a test case
is present in the model, due to the closed-loop, and thus the test oracle is working on the
test model. The MBT approach proposed in this thesis o�ers complete test automation
for SO mechanisms. It o�ers the ability to either use a fault-based or a probabilistic
model for the two kinds of SO mechanism: the continuous and the discrete one. As
the task of engineering the complete test model is complex and demanding (e.g., the
used source code of the test model of the production cell case study encompasses over
5,000 SLOC), an Back-to-Back (BtB) testing approach was developed. The BtB testing
approach is based on the idea of co-development and is enabled by the sca�olding
abilities of the MBT approach for a very early development stage. The result of BtB is a
set of tested requirements for the development as well as for testing. The evaluation
proved this approach as very useful. Overall, each of the �ve case studies has been
thoroughly tested in the MBT approach. We were able to reveal failures in the di�erent
setting. The failures showed a particular pattern: most of them were located at the
boundaries of SO, i.e., the point in the state space where rarely a recon�guration is
possible, due to the lack of redundancy.

Establishing a search-based test case generation approach for efficient testing of
Self-Organization mechanisms

The observation of the particular characteristics of the failures observed in the evalu-
ation was exploited. The thesis established the term of boundary-interior-testing for
SO mechanisms for specifying this characteristic. Boundary-interior-testing for SO
mechanisms is a vital test requirement developed in this thesis that is suited for SO
mechanisms. A search-based test case generation approach was presented, that gener-
ates test cases that are directed towards these boundaries. The search-based approach
was suited for this search problem using a breadth-�rst search method combined with
speci�c heuristics. As shown in the evaluation, the contribution enabled to reveal the
same kind of failures up to 500 times faster than an approach without a directed test
case generation.

Extending the Model-Based Testing approach for testing the performance of
Self-Organization mechanisms

The MBT approach for testing is able to cope with functional testing, but also o�ers
the ability to test non-functional aspects. In this thesis, an approach for measuring
and evaluating the performance of SO mechanisms was presented. For this purpose,
a de�nition of performance for SO mechanism was derived in the foundation of the
CCB. Thus, the time performance is focused on how long the SO mechanism enables
the SOAS to stay inside the corridor and how long the SO mechanism takes time outside
the corridor to recon�gure the system. This performance measure is di�erent from

175

9 Conclusion and Outlook

the performance of standard algorithms that are just focused on the time for �nding
a solution. Besides the time performance, also a notion of quality performance of SO
mechanisms was given in the thesis. In order to determine the performance of an SO
mechanism the MBT approach was extended by concepts that allow for measuring
the performance under unbiased conditions. The evaluation enabled to judge over the
performance of the investigated systems, and we were able to show di�erent e�ects
of performance of an SO mechanism. Thus it is possible to answer the following: at
what size of the system does a decentralized SO mechanism outperform a central one?
Is heterogeneous clustering of organizational units better than homogenous?

9.2 Open Research Challenges and Future Directions

This thesis provides an approach for testing SO mechanisms in an MBT approach. It
laid the ground for research of systematic quality assurance of SOAS. In this section, we
summarize open research challenges and outline a few directions for future research.

Fault Localization for Self-Organization Mechanisms

During the evaluation of the approach presented in this thesis di�erent failures have
been revealed. However, having the information of the deviation between the actual and
the intended behavior is not su�cient for removing the error leading to the particular
failure. For this purpose, the failure has to be tracked down to the fault, causing the
failure, that is due to the error made by a programmer. That knowledge is needed
for removing the fault and preventing the failure. As shown by Wong et al. [167], a
variety of approaches is available in the literature that addresses this problem of fault
localization. However, the application of fault localization to SO mechanisms is far from
obvious. As shown in this thesis, SO mechanisms are highly addicted to their underlying
state space, their environment. That aspect needs to be respected in fault localization.
The given concepts need to be investigated on their abilities to include that aspect and
need to be extended. The resulting approach of fault localization for SO mechanism will
ease the development of reliable SO mechanisms.

Mutation Operators for Self-Organization Mechanisms

Mutation operators are patterns for source code modi�cations with the aim of intro-
ducing faults. The faults are consequently known and are used for the evaluation of
a test approach. In this thesis mutants where extracted from software repositories to
evaluate the proposed testing approach. Further, common mutation operators were
applied to introduce faults in the code of the SOuTs. Thus, it was able to demonstrate
the ability of the approach. However, this customized solution makes it hard to compare
the ability of testing approaches for SO mechanisms. Standard mutation operators will
enable this comprehensibility for future testing approaches that are also suited for SO
mechanisms. Consequently, it is necessary to in-depth investigate the characteristics
of SO mechanisms with the aim of �nding adequate mutation operators, suited for SO
mechanisms. In [134], we already started this investigation which needs to be extended
and standardized for the evaluation of the testing approach for SO mechanisms.

176

9.2 Open Research Challenges and Future Directions

A Testbed for Self-Organizing, Adaptive Systems

Having a suited approach for testing SO mechanisms is the �rst step for thorough
quality assurance of SOAS. The SO mechanisms are a curial part of a SOAS, as discussed
throughout the thesis. Based on the results it is now possible to extend the SuT and
incorporate further parts of the SOAS into testing. For this purpose, a testbed will be
needed that can sca�old the SuT. One particular concern here is the distribution of
the deployed SOAS. Thus, challenges of synchronization for the evaluation need to be
extended, and concepts for controlling the distributed system needs to be made. The
�rst challenge is to create a consistent snapshot of a distributed system, to provide
observability. This issue is in parts already addressed in this thesis, but the assumptions
made, need to be validated and reconsidered for a complete integration test of a SOAS.
Merayo et al. [99] provide an approach for this research direction, where a passive
testing concept is developed and integrated with a monitor environment that is focused
on communication. This paper might be a promising starting point for the observation
of a distributed SOAS. The problem of controllability is neglected by Merayo et al. [99],
as they focus on passive testing. Controlling the system to execute test cases in a de�ned
manner (the steps are executed in a de�ned order) is demanding since most of the test
driver used for controlling the SuT vitiate the results by interfering the SuT. These
challenges need to be addressed for testing integrated SOAS.

Extending the Concepts of Testing Self-Organization Mechanisms to Machine
Learning

An SO mechanism can autonomously make decisions and adapt itself as well as the
controlled system at run time. This characteristic leads to underspeci�cation of the
SuT, addressed in this thesis. Machine learning mechanisms are also in some sort
underspeci�ed, as they are speci�ed resp. trained by examples. The examples are
included in a training and validation set and used for learning. Thus, SO mechanisms and
machine learning mechanisms have in common that they are underspeci�ed. Machine
Learning mechanisms are commonly validated before they are released, this is similar
to testing. However, only an accuracy value is provided, a low one indicates a lousy
learning result and a high one a good learning result. Failures in the implementation or
the learning procedure are not addressed. Further, failure is not de�ned at all, only if
the system falls into an exception or similar. With the rapid speed, machine learning
mechanisms are spreading in nowadays software, a more thorough process for testing is
needed. As similar concepts and similar challenges arise as for testing SO mechanisms,
the contributions of this thesis might be a good starting point toward a quality assurance
for machine learning.

177

Bibliography

[1] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/de-de/marketplace/ibm-
ilog-cplex, 2018. Accessed: 2018-06-08.

[2] A. Abdurazik and J. O�utt. Using Coupling-Based Weights for the Class Integration and
Test Order Problem. The Computer Journal, 52(5):557–570, 2009.

[3] M. Al-Zinati and R. Wenkstern. A Self-Organizing Virtual Environment for Agent-Based
Simulations. In Proc. fo the 14

th
Int. Conf. on Autonomous Agents and Multiagent Systems,

pages 1031–1039. Int. Foundation for Autonomous Agents and Multiagent Systems, 2015.

[4] R. T. Alexander, J. M. Bieman, S. Ghosh, and B. Ji. Mutation of Java Objects. In Proc. of the

13
th
Int. Symp. on Software Reliability Engineering, pages 341–351. IEEE, 2002.

[5] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, and P. McMinn. An Orchestrated Survey of Methodologies for Automated
Software Test Case Generation. Journal on Systems and Software, 86(8):1978–2001, 2013.

[6] G. Anders. Self-Organized Robust Optimization in Open Technical Systems: Self-

Organization and Computational Trust for Scalable and Robust Resource Allocation under

Uncertainty . PhD thesis, University of Augsburg, 2017.

[7] G. Anders, H. Seebach, F. Nafz, J.-P. Steghöfer, and W. Reif. Decentralized Recon�guration
for Self-Organizing Resource-Flow Systems Based on Local Knowledge. In Proc. of the 8

th

IEEE Conf. Wsh.s Engineering of Autonomic and Autonomous Systems, pages 20–31. IEEE,
2011.

[8] G. Anders, F. Siefert, J.-P. Steghöfer, and W. Reif. A Decentralized Multi-agent Algorithm
for the Set Partitioning Problem. In I. Rahwan, W. Wobcke, S. Sen, and T. Sugawara,
editors, Proc. of the 15th Int. Conf. on Principles and Practice of Multi-Agent Systems, volume
7455 of LNCS, pages 107–121. Springer, 2012.

[9] G. Anders, F. Siefert, N. Msadek, R. Kiefhaber, O. Kosak, W. Reif, and T. Ungerer. TEMAS
– A Trust-Enabling Multi-Agent System for Open Environments. Technical report, Uni-
versity of Augsburg, 2013.

[10] G. Anders, F. Siefert, and W. Reif. A Particle Swarm Optimizer for Solving the Set
Partitioning Problem in the Presence of Partitioning Constraints. In Proc. of the 7

th
Int.

Conf. on Agents and Arti�cial Intelligence. SciTePress, 2015.

[11] W. R. Ashby. Principles of the Self-Organizing Dynamic System. The Journal of General
Psychology, 37(2):125–128, 1947.

[12] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp. A Reference Architecture and
Roadmap for Models@run.time Systems. In N. Bencomo, R. France, B. H. C. Cheng, and
U. Aßmann, editors, Models@run.time: Foundations, Applications, and Roadmaps, pages
1–18. Springer, 2014.

[13] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle Problem in Software
Testing: A Survey. IEEE Trans. on Software Engineering, 41(5):507–525, 2015.

[14] T. Bauer and R. Eschbach. Enabling Statistical Testing for Component-Based Systems.
In K.-P. Fähnrich and B. Franczyk, editors, GI Jahrestagung, volume 176 of LNI, pages
357–362. GI, 2010.

179

https://www.ibm.com/de-de/marketplace/ibm-ilog-cplex
https://www.ibm.com/de-de/marketplace/ibm-ilog-cplex

[15] M. Becker, M. Luckey, and S. Becker. Performance Analysis of Self-Adaptive Systems for
Requirements Validation at Design-Time. In Proc. of the 9

th
ACM SigSoft Int. Conf. Quality

of Software Architectures. ACM, 2013.

[16] F. Belli, A. Hollmann, and S. Padberg. Communication Sequence Graphs for Mutation-
Oriented Integration Testing. In Proc. of the 3

rd
IEEE Int. Conf. on Secure Software Integration

and Reliability Improvement, pages 387–392, 2009.

[17] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley,
2000.

[18] R. V. Binder, B. Legeard, and A. Kramer. Model-based Testing: Where Does It Stand?
Communications of the ACM, 58(2):52–56, 2015.

[19] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation Operators for Concurrent Java (J2SE
5.0). In Proc. of the 2

nd
Wsh. on Mutation Analysis. IEEE Computer Society, 2006.

[20] L. C. Briand, Y. Labiche, and Y. Wang. An Investigation of Graph-Based Class Integration
Test Order Strategies. IEEE Trans. on Software Engineering, 29(7):594–607, 2003.

[21] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and A. Pretschner, editors. Model-Based Testing

of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, 2005. Springer.

[22] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller,
M. Pezzè, and M. Shaw. Engineering Self-Adaptive Systems through Feedback Loops.
In B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, editors, Software
Engineering for Self-Adaptive Systems, pages 48–70. Springer, 2009.

[23] F. Buschmann, K. Henney, and D. Schimdt. Pattern-Oriented Software Architecture: On

Patterns and Pattern Language, volume 5. Wiley, 2007.

[24] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically Gen-
erating Inputs of Death. In Proc. of the 13

th
ACM Conf. on Computer and Communications

Security, pages 322–335. ACM, 2006.

[25] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive Software Needs
Quantitative Veri�cation at Runtime. Communication of the ACM, 55(9):69–77, 2012.

[26] J. Cámara and R. de Lemos. Evaluation of Resilience in Self-adaptive Systems using
Probabilistic Model-checking. In Proc. of the 7

th
Int. Symp. Software Engineering for

Adaptive and Self-Managing Systems, pages 53–62, 2012.

[27] J. Cámara, P. Correia, R. de Lemos, and M. Vieira. Empirical Resilience Evaluation of an
Architecture-based Self-adaptive Software System. In Proc. of the 10

th
Int. ACM Sigsoft

Conf. on Quality of Software Architectures, pages 63–72. ACM, 2014.

[28] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, E. Bonabeau, and G. Theraula.
Self-organization in Biological Systems, volume 7. Princeton University Press, 2003.

[29] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems, Second Edition.
Springer, 2008.

[30] J. Chaplin, O. Bakker, L. de Silva, D. Sanderson, E. Kelly, B. Logan, and S. Ratchev. Evolvable
Assembly Systems: A Distributed Architecture for Intelligent Manufacturing. 48(3):
2065 – 2070, 2015. Proc. of the 15th IFAC Symp. on Information Control Problems in
Manufacturing.

[31] K. Chen, J. Powers, S. Guo, and F. Tian. CRESP: Towards Optimal Resource Provisioning
for MapReduce Computing in Public Clouds. IEEE Trans. on Parallel and Distributed

Systems, 25(6):1403–1412, 2014.

180

[32] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic Testing: A New Approach for Gen-
erating Next Test Cases. Technical report, Technical Report HKUST-CS98-01, Department
of Computer Science, Hong Kong University of Science and Technology, 1998.

[33] T. Y. Chen, J. Feng, and T. Tse. Metamorphic Testing of Programs on Partial Di�erential
Equations: A Case Study. In Proc. of the 26

th
Annual Int. Computer Software and Applications

Conference, pages 327–333. IEEE, 2002.

[34] Y. Chen, A. Ganapathi, R. Gri�th, and R. Katz. The Case for Evaluating MapReduce
Performance Using Workload Suites. In IEEE 19

th
Int. Symp. on Modelling, Analysis, and

Simulation of Computer and Telecommunication Systems, pages 390–399, 2011.

[35] Y. Chen, S. Alspaugh, and R. Katz. Interactive Analytical Processing in Big Data Systems:
A Cross-industry Study of MapReduce Workloads. Proc. of the 38th Int. Conf. on Very Large
Data Bases, 5(12):1802–1813, 2012.

[36] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A Goal-Based Modeling Approach
to Develop Requirements of an Adaptive System with Environmental Uncertainty. In
A. Schürr and B. Selic, editors, Model Driven Engineering Languages and Systems, volume
5795 of LNCS, pages 468–483. Springer, 2009.

[37] S.-W. Cheng. Rainbow: Cost-E�ective Software Architecture-Based Self-Adaptation. PhD
thesis, Carnegie Mellon University, 2008.

[38] S.-W. Cheng, D. Garlan, and B. R. Schmerl. Evaluating the E�ectiveness of the Rainbow
Self-Adaptive System. In Proc. of the 5

th
Wsh. on Software Engineering for Adaptive and

Self-Managing Systems, pages 132–141. IEEE Computer Society, 2009.

[39] M. Cohn. Succeeding with Agile: Software Development using Scrum. Pearson, 2010.

[40] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. M. Göschka, A. Gorla, V. Grassi,
P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola,
J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith,
J. P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke. Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap. In R. de Lemos, H. Giese, H. A. Müller, and
M. Shaw, editors, Software Engineering for Self-Adaptive Systems II, pages 1–32. Springer,
2013.

[41] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clusters. In
Proc. of the 6

th
Int. Symp. on Operating System Design and Implementation, pages 137–150,

2004.

[42] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clusters.
Communications of the ACM, 51(1):107–113, 2008.

[43] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection: Help for the
Practicing Programmer. IEEE Computer, 11(4):34–41, 1978.

[44] B. Demuth and C. Wilke. Model and Object Veri�cation by Using Dresden OCL. In Proc.

of the Russian-German Wsh. Innovation Information Technologies: Theory and Practice,
pages 81–90, 2009.

[45] B. Eberhardinger. Test Case Generation for Self-Organising Algorithms. In Organic

Computing: Doctoral Dissertation Colloquium, volume 7. Kassel University Press, 2015.

181

[46] B. Eberhardinger. Testing Self-Organizing, Adaptive Systems (Best Paper Award). In Proc.

of the 9
th
IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems Workshops, pages

140–145. IEEE, 2015.

[47] B. Eberhardinger, J.-P. Steghöfer, F. Nafz, and W. Reif. Model-driven Synthesis of Moni-
toring Infrastructure for Reliable Adaptive Multi-Agent Systems. In Proc. of the 24

th
IEEE

Int. Symp. on Software Reliability Engineering, pages 21–30. IEEE, 2013.

[48] B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif. Towards Testing Self-Organizing,
Adaptive Systems. In Proc. of the 26

th
IFIP Int. Conf. on Testing Software and Systems, pages

180–185. Springer, 2014.

[49] B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, and W. Reif. A Framework for Testing
Self-Organisation Algorithms. GI Softwaretechniktrends, 35(1), 2015.

[50] B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, and W. Reif. A Research Overview
and Evaluation of Performance Metrics for Self-Organization Algorithms. In Proc. of the

9
th
IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems Workshops, pages 122–127.

IEEE, 2015.

[51] B. Eberhardinger, A. Habermaier, H. Seebach, and W. Reif. Back-to-Back Testing of
Self-Organization Mechanisms. In Proc. of the 27

th
IFIP Int. Conf. on Testing Software and

Systems, pages 18–35. Springer, 2016.

[52] B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, A. Knapp, and W. Reif. An Approach
for Isolated Testing of Self-Organization Algorithms. In R. de Lemos, D. Garlan, C. Ghezzi,
and H. Giese, editors, Software Engineering for Self-Adaptive Systems III: Assurances, volume
9640 of LNCS. Springer, 2017.

[53] B. Eberhardinger, A. Habermaier, and W. Reif. Toward Adaptive, Self-Aware Test Au-
tomation. In Proc. of the 12

th
IEEE/ACM Int. Wsh. on Automation of Software Testing, pages

34–37. IEEE Press, 2017.

[54] B. Eberhardinger, H. Seebach, D. Klumpp, and W. Reif. Test Case Selection Strategy for
Self-Organization Mechanisms. In M. Winter, A. Spillner, and A. Pietschker, editors, Test,
Analyse und Veri�kation von Software – gestern, heute, morgen. dpunkt Verlag, 2017.

[55] B. Eberhardinger, H. Seebach, A. Reichstaller, A. Knapp, and W. Reif. Adaptive Tests for
Adaptive Systems: The Need for New Concepts in Testing for Future Software Systems.
Softwaretechnik-Trends, 38(1), 2017.

[56] B. Eberhardinger, H. Ponsar, D. Klumpp, and W. Reif. Measuring and Evaluating the
Performance of Self-Organization Mechanisms within Collective Adaptive Systems. In
Proc. of the 8

th
Int. Symp. on Leveraging Applications of Formal Methods, LNCS. Springer,

2018.

[57] B. Eberhardinger, H. Ponsar, G. Siegert, and W. Reif. Case Study: Adaptive Test Automation
for Testing an Adaptive Hadoop Resource Manager. In Proc. of the 18

th
IEEE Int. Conf. on

Software Quality, Reliability and Security Companion, pages 513–518, 2018.

[58] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-adaptive Software System
Monitoring for Performance Anomaly Localization. In Proc. of the 8

th
ACM Int. Conf. on

Autonomic Computing, pages 197–200. ACM, 2011.

[59] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem. Runtime Veri�cation of
Component-Based Systems. In G. Barthe et al., editors, Proc. of the 9th Int. Conf. Software
Engineering and Formal Methods, volume 7041 of LNCS, pages 204–220. Springer, 2011.

182

[60] A. Filieri, C. Ghezzi, and G. Tamburrelli. A Formal Approach to Adaptive Software:
Continuous Assurance of Non-functional Requirements. Formal Aspects of Computing, 24
(2):163–186, 2012.

[61] A. S. Foundation. Apache Hadoop 2.9.1—Documentation. https://hadoop.apache.org/
docs/current/, Jul 2018. Accessed: 2018-07-09.

[62] G. Fraser, F. Wotawa, and P. E. Ammann. Testing with Model Checkers: A Survey. In
Software Testing, Veri�cation and Reliability, volume 19, pages 215–261. Wiley, 2009.

[63] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng. Towards Run-time Testing of Dynamic
Adaptive Systems. In Proc. of the 8

th
Int. Symp. Software Engineering for Adaptive and

Self-Managing Systems, pages 169–174. IEEE, 2013.

[64] E. M. Fredericks, B. DeVries, and B. H. C. Cheng. Towards Run-time Adaptation of Test
Cases for Self-adaptive Systems in the Face of Uncertainty. In Proc. of the 9

th
Int. Symp. on

Software Engineering for Adaptive and Self-Managing Systems, pages 17–26. ACM, 2014.

[65] R. S. Freedman. Testability of Software Components. IEEE Trans. Software Engineering, 17
(6):553–564, 1991.

[66] E. Gamma, D. Riehle, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

[67] A. Goodloe and L. Pike. Monitoring Distributed Real-Time Systems: A Survey and Future
Directions. Technical Report NASA/CR-2010-216724, NASA Langley Research Center,
July 2010.

[68] H. Götz, M. Winter, C. Brandes, and T. Roßner. Basiswissen Modellbasierter Test.
dpunkt.verlag, 2016.

[69] A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang. An Extensible, Regular-Expression-
Based Tool for Multi-Language Mutant Generation. In Proc. of the 40

th
Int. Conf. on

Software Engineering). IEEE/ACM, 2018.

[70] M. Güdemann, F. Ortmeier, and W. Reif. Formal Modeling and Veri�cation of Systems
with Self-x Properties. In Proc. of the 3

rd
Int. Conf. on Autonomic and Trusted Computing,

pages 38–47. IEEE, 2006.

[71] A. Habermaier. Design Time and Run Time Formal Safety Analysis using Executable Models.
PhD thesis, University of Augsburg, 2016.

[72] A. Habermaier, B. Eberhardinger, H. Seebach, J. Leupolz, and W. Reif. Runtime Model-
Based Safety Analysis of Self-Organizing Systems with S#. In Proc. of the 9

th
IEEE Int.

Conf. on Self-Adaptive and Self-Organizing Systems Workshops, pages 128–133. IEEE, 2015.

[73] A. Haddadi and K. Sundermeyer. Belief-Desire-Intention Agent Architectures. Foundations
of Distributed Arti�cial Intelligence, pages 169–185, 1996.

[74] J. Hänsel, T. Vogel, and H. Giese. A Testing Scheme for Self-Adaptive Software Systems
with Architectural Runtime Models. In IEEE Int. Conf. on Self-Adaptive and Self-Organizing

Systems Workshops, pages 134–139. IEEE, 2015.

[75] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Star�sh: A
Self-Tuning System for Big Data Analytics. In Proc. of the 5

th
Int. Conf. on Innovative Data

Systems Research, volume 11, pages 261–272, 2011.

[76] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12(10):576–580, 1969.

183

https://hadoop.apache.org/docs/current/
https://hadoop.apache.org/docs/current/

[77] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990,
Dec. 1990.

[78] Institute of Electrical and Electronics Engineers. IEEE Guide to Software Requirements

Speci�cations. IEEE, 1984.

[79] Intel. GitHub: Intel HiBench. https://github.com/intel-hadoop/HiBench, Jul 2018.
Accessed: 2018-07-09.

[80] E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optimization for MapReduce Programs.
Proc. of the 37

th
Int. Conf. on Very Large Data Bases, 4(6):385–396, 2011.

[81] D. Jin, P. O. Meredith, C. Lee, and G. Roşu. JavaMOP: E�cient Parametric Runtime
Monitoring Framework. In Proc. of the 34

th
Int. Conf. on Software Engineering, pages

1427–1430. IEEE, 2012.

[82] Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments – A Survey.
IEEE Trans. on Evolutionary Computation, 9(3):303–317, 2005.

[83] B. F. Jones, H. Sthamer, and D. E. Eyres. Automatic Structural Testing Using Genetic
Algorithms. Software Engineering Journal, 11(5):299–306, 1996.

[84] E. Kaddoum, C. Raibulet, J. Georgé, G. Picard, and M. P. Gleizes. Criteria for the Evaluation
of Self-* Systems. In Proc. of the 3

rd
Wsh. on Software Engineering for Adaptive and Self-

Managing Systems, pages 29–38. ACM, 2010.

[85] I. Kant. Kritik der Urteilskraft. 2nd edition, 1793.

[86] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proc. of the IEEE Int. Conf.

on Neural Networks, volume 4, pages 1942 –1948, 1995.

[87] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Computer, 36
(1):41–50, 2003.

[88] D. Klumpp, A. Habermaier, B. Eberhardinger, and H. Seebach. Optimising Runtime Safety
Analysis E�ciency for Self-Organising Systems. In Proc. of the 1

st
IEEE Int. Wsh. on

Foundations and Applications of Self* Systems, pages 120–125. IEEE, 2016.

[89] C. G. Lee and S. C. Park. Survey on the Virtual Commissioning of Manufacturing Systems.
Journal on Computational Design and Engineering, 1(3):213–222, 2014.

[90] M. Leucker and C. Schallhart. A Brief Account of Runtime Veri�cation. The Journal of
Logic and Algebraic Programming, 78(5):293–303, 2009.

[91] J. Leupolz. Probabilistic Safety Analysis of Executable Models. PhD thesis, University of
Augsburg, 2018.

[92] M. Luckey, C. Thanos, C. Gerth, and G. Engels. Multi-Staged Quality Assurance for
Self-Adaptive Systems. In Proc. of the 6

th
Int. Conf. Self-Adaptive and Self-Organizing

Systems Wsh., pages 111–118, 2012.

[93] M. R. Lyu. Handbook of Software Reliability Engineering, volume 222. IEEE Computer
Society, 1996.

[94] Y.-S. Ma, J. O�utt, and Y. R. Kwon. MuJava: An Automated Class Mutation System:
Research Articles. Softw. Test. Verif. Reliab., 15(2):97–133, 2005.

[95] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer,
1992.

[96] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Systems: Safety. Springer, 1995.

184

https://github.com/intel-hadoop/HiBench

[97] C. McGeoch. A Guide to Experimental Algorithmics. Cambridge University Press, 2012.

[98] P. McMinn. Search-Based Software Testing: Past, Present and Future. In Proc. of the 4
th

IEEE Int. Conf. on Software Testing, Veri�cation and Validation Workshops, pages 153–163,
2011.

[99] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive Testing with Asynchronous Com-
munications and Timestamps. Journal on Distributed Computing, 31(5):327–342, 2018.

[100] B. Meyer. Ei�el: A Language and Environment for Software Engineering. Journal on

Systems and Software, 8(3):199–246, 1988.

[101] J. Miller, M. Reformat, and H. Zhang. Automatic Test Data Generation Using Genetic
Algorithm and Program Dependence Graphs. Information and Software Technology, 48(7):
586–605, 2006.

[102] W. Miller and D. L. Spooner. Automatic Generation of Floating-Point Test Data. IEEE
Trans. on Software Engineering, SE-2(3):223–226, 1976.

[103] H. D. Mills. The Management of Software Engineering: Part I: Principles of Software
Engineering. IBM Syst. Journal, 19(4):414–420, Dec. 1980.

[104] L. Monostori, B. C. Csáji, B. Kádár, A. Pfei�er, E. I. Zudor, Z. Kemény, and M. Szathmári.
Towards Adaptive and Digital Manufacturing. Annual Reviews in Control, 34(1):118–128,
2010.

[105] M. Morandini, L. Penserini, and A. Perini. Modelling Self-Adaptivity: A Goal-Oriented
Approach. In Proc. of the 2

nd
IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems,

pages 469–470. IEEE, 2008.

[106] L. J. Morell. A Theory of Fault-Based Testing. IEEE Trans. on Software Engineering, 16(8):
844–857, 1990.

[107] J. D. Musa. A Theory of Software Reliability and its Application. IEEE Trans. on Software

Engineering, (3):312–327, 1975.

[108] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. Wiley, 3rd edition,
2011.

[109] F. Nafz. Verhaltensgarantien in selbst-organisierenden Systemen. PhD thesis, University of
Augsburg, 2012.

[110] F. Nafz, H. Seebach, J. Steghöfer, G. Anders, and W. Reif. Constraining Self-Organisation
Through Corridors of Correct Behaviour: The Restore Invariant Approach. In Organic

Computing - A Paradigm Shift for Complex Systems, pages 79–93. 2011.

[111] K. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory and Practice.
Wiley, 2011.

[112] J. J. Naresky. Reliability De�nitions. IEEE Trans. on Reliability, R-19(4):198–200, 1970.

[113] J. Neyman. Outline of a Theory of Statistical Estimation Based on the Classical Theory of
Probability. Philosophical Transactions of the Royal Society London A, 236(767):333–380,
1937.

[114] C. D. Nguyen. Testing Techniques for Software Agents. PhD thesis, Università di Trento,
2009.

[115] C. D. Nguyen, A. Perini, and P. Tonella. Goal-Oriented Testing for MASs. Int. Journal of
Agent-Oriented Software Engineering, 4(1):79–109, 2009.

185

[116] C. D. Nguyen, A. Marchetto, and P. Tonella. Automated Oracles: An Empirical Study
on Cost and E�ectiveness. In B. Meyer, L. Baresi, and M. Mezini, editors, Proc. of the 9th
Joint Meet. Europ. Software Engineering Conf. and ACM SIGSOFT Symp. on Foundations of

Software Engineering, pages 136–146. ACM, 2013.

[117] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Speci�cation, 2005. URL http://www.omg.org/spec/QVT/1.0/PDF. Accessed:
2018-07-09.

[118] L. Padgham, J. Thangarajah, Z. Zhang, and T. Miller. Model-based Test Oracle Generation
for Automated Unit Testing of Agent Systems. IEEE Trans. on Software Engineering, 39(9):
1230–1244, 2013.

[119] H. V. D. Parunak and S. A. Brueckner. Software Engineering for Self-organizing Systems.
In Proc. of the 12

th
Int. Wsh. on Agent-Oriented Software Engineering, pages 1–22, 2011.

[120] Personalized Medicine Coalition. The Case for Personalized Medicine. 4th edition, 2014.

[121] M. Pezzè and M. Young. Software Testing and Analysis: Process, Principles and Techniques.
Wiley, 2008.

[122] J. Pitt, D. Busquets, and S. Macbeth. Distributive Justice for Self-organised Common-pool
Resource Management. ACM Trans. on Autonomous and Adaptive Systems, 9(3):14, 2014.

[123] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In Multi-

Agent Programming: Languages, Platforms and Applications, pages 149–174. Springer,
2005.

[124] M. Polo, P. Reales, M. Piattini, and C. Ebert. Test Automation. IEEE Software, 30(1):84–89,
2013.

[125] M. Popovic and J. Kovacevic. A Statistical Approach to Model-Based Robustness Testing.
In Proc. of the 14

th
IEEE Conf. and Wsh. on Engineering of Computer-Based Systems, pages

485–494, 2007.

[126] A. Pretschner and J. Philipps. Methodological Issues in Model-Based Testing. In Broy
et al. [21], pages 281–291.

[127] G. Püschel, S. Götz, C. Wilke, C. Piechnick, and U. Aßmann. Testing Self-Adaptive Software:
Requirement Analysis and Solution Scheme. Int. Journal on Advances in Software, 7:88–100,
2014.

[128] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci. An Anytime Algorithm
for Optimal Coalition Structure Generation. Journal of Arti�cial Intelligence Research, 34:
521–567, 2009.

[129] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R. Jennings. Putting the “Smarts” into
the Smart Grid: A Grand Challenge for Arti�cial Intelligence. Communications of the

ACM, 55(4):86–97, 2012.

[130] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester. Automatically Exploring
How Uncertainty Impacts Behavior of Dynamically Adaptive Systems. In P. Alexander
et al., editors, Proc. of the 26th IEEE/ACM Int. Conf. Automated Software Engineering, pages
568–571. IEEE, 2011.

[131] R. Ramler and K. Wolfmaier. Economic Perspectives in Test Automation: Balancing
Automated and Manual Testing with Opportunity Cost. In Proc. of the 1

st
Int. Wsh. on

Automation of Software Test, pages 85–91. ACM, 2006.

186

http://www.omg.org/spec/QVT/1.0/PDF

[132] A. Reichstaller and A. Knapp. Transferring Context-Dependent Test Inputs. In IEEE Int.

Conf. on Software Quality, Reliability and Security, pages 65–72, 2017.

[133] A. Reichstaller, B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif. Applying Deep Learn-
ing For Imitating Adaptive Agent Behavior in Statistical Software Testing. Softwaretechnik-
Trends, 38(1), 2017.

[134] A. Reichstaller, B. Eberhardinger, H. Ponsar, A. Knapp, and W. Reif. Test Suite Reduction
for Self-organizing Systems: A Mutation-based Approach. In Proc. of the 13

th
Int. Wsh. on

Automation of Software Test, pages 64–70. ACM, 2018.

[135] P. Reinecke, K. Wolter, and A. Van Moorsel. Evaluating the adaptivity of computing
systems. Performance Evaluation, 67(8):676–693, 2010.

[136] K. Ren, Y. Kwon, M. Balazinska, and B. Howe. Hadoop’s Adolescence: An Analysis of
Hadoop Usage in Scienti�c Workloads. Proc. of the 39th Int. Conf. on Very Large Data Bases,
6(10):853–864, 2013.

[137] RespectIT. Objectiver Homepage, May 2018. URL http://www.objectiver.com/index.

php?id=4. Accessed: 2018-05-09.

[138] G. Roşu. Formal Methods in System Design: A Monitor Synthesis Algorithm for Past LTL.
Technical report, University of Illinois at Urbana-Champaign, 2007.

[139] G. Roşu, F. Chen, and T. Ball. Synthesizing Monitors for Safety Properties – This Time
With Calls and Returns. In Proc. of the 8

th
Workshop on Runtime Veri�cation, volume 5289

of LNCS, pages 51–68. Springer, 2008.

[140] L. Sabatucci, V. Seidita, and M. Cossentino. The Four Types of Self-adaptive Systems: A
Meta-Model. In G. De Pietro, L. Gallo, R. J. Howlett, and L. C. Jain, editors, Intelligent
Interactive Multimedia Systems and Services, pages 440–450. Springer, 2018.

[141] H. Samih, H. Le Guen, R. Bogusch, M. Acher, and B. Baudry. An Approach to Derive
Usage Models Variants for Model-Based Testing. In M. Merayo and E. de Oca, editors,
Proc. of the 26

th
IFIP WG 6.1 Int. Conf. Testing Software and Systems, volume 8763 of LNCS,

pages 80–96. Springer, 2014.

[142] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl. Usage-Based Online
Testing for Proactive Adaptation of Service-Based Applications. In Proc. of the 35

th
IEEE

Computer Software and Applications Conf., pages 582–587, 2011.

[143] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter. Adaptivity and Self-
organization in Organic Computing Systems. ACM Trans. on Autonomous Adaptive

Systems, 5(3):10:1–10:32, 2010.

[144] H. Seebach. Konstruktion selbst-organisierender Softwaresysteme. PhD thesis, University
of Augsburg, 2011.

[145] H. Seebach, F. Nafz, J. Steghöfer, and W. Reif. How to Design and Implement Self-
organising Resource-Flow Systems. In Organic Computing – A Paradigm Shift for Complex

Systems, pages 145–161. Birkhäuser, 2011.

[146] G. D. M. Serugendo, N. Foukia, S. Hassas, A. Karageorgos, S. K. Mostéfaoui, O. F. Rana,
M. Ulieru, P. Valckenaers, and C. Van Aart. Self-Organisation: Paradigms and Applications.
In Proc. of the 1

st
Int. Wsh. on Engineering Self-Organising Applications, pages 1–19. Springer,

2003.

[147] F. Siefert. Selbst-organisiertes, trust-bewusstes Supply Demand Management in Smart Grids.
PhD thesis, University of Augsburg, 2017.

187

http://www.objectiver.com/index.php?id=4
http://www.objectiver.com/index.php?id=4

[148] B. R. Siqueira, F. C. Ferrari, M. A. Serikawa, R. Menotti, and V. V. de Camargo. Characteri-
sation of Challenges for Testing of Adaptive Systems. In Proc. of the 1

st
Brazilian Symp.

on Systematic and Automated Software Testing, pages 11:1–11:10. ACM, 2016.

[149] C. Smidts, C. Mutha, M. Rodríguez, and M. J. Gerber. Software Testing with an Operational
Pro�le: OP De�nition. ACM Computing Surveys, 46(3):39:1–39:39, 2014.

[150] Spirals-Team. GitHub: Spirals-Team Hadoop. https://github.com/Spirals-Team/

hadoop-benchmark, Jul 2018. Accessed: 2018-07-09.

[151] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[152] J. Steghöfer, G. Anders, F. Siefert, and W. Reif. A System of Systems Approach to the
Evolutionary Transformation of Power Management Systems. In 43. Jahrestagung der

Gesellschaft für Informatik e.V., pages 1500–1515, 2013.

[153] J.-P. Steghöfer. Large-Scale Open Self-Organising Systems: Managing Complexity with

Hierarchies, Monitoring, Adaptation, and Principled Design. PhD thesis, University of
Augsburg, 2014.

[154] J.-P. Steghöfer, B. Eberhardinger, F. Nafz, and W. Reif. Synthesis of Observers for Auto-
nomic Evolutionary Systems from Requirements Models. In Proc. of the 13

rd
IFIP/IEEE Int.

Symp. on Integrated Network Management, pages 1405–1408. IEEE, 2013.

[155] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. K. Iyer. NFTAPE: A Framework for
Assessing Dependability in Distributed Systems with Lightweight Fault Injectors. In Proc.

of the IEEE Int. Computer Performance and Dependability Symp., pages 91–100. IEEE, 2000.

[156] S. Taranu and J. Tiemann. On Assessing Self-Adaptive Systems. In Proc. of the 8
th
Int.

Conf. Pervasive Computing and Communications Wsh., pages 214–219. IEEE, 2010.

[157] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

[158] F. Thillen, R. Mordinyi, and S. Bi�. Isolated Testing of Software Components in Distributed
Software Systems. In D. Winkler, S. Bi�, and J. Bergsmann, editors, Software Quality.
Model-Based Approaches for Advanced Software and Systems Engineering, volume 166 of
LNBIP, pages 170–184. Springer, 2014.

[159] S. Tomforde, J. Haehner, H. Seebach, W. Reif, B. Sick, A. Wacker, and I. Scholtes. Engi-
neering and mastering interwoven systems. In Proc. of the 2

nd
Wsh. on Architecture of

Computing Systems, pages 1–8, 2014.

[160] T. Toroi. Testing Component-Based Systems – Towards Conformance Testing and Better

Interoperability. PhD thesis, University of Eastern Finland, 2009.

[161] M. Trapp and D. Schneider. Safety Assurance of Open Adaptive Systems – A Survey.
In N. Bencomo, R. France, B. H. C. Cheng, and U. Aßmann, editors, Models@run.time:

Foundations, Applications, and Roadmaps, pages 279–318. Springer, 2014.

[162] M. Utting and B. Legeard. Practical Model-Based Testing – A Tools Approach. Morgan
Kaufmann, 2007.

[163] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing Approaches.
Software Testing, Veri�cation & Reliability, 22(5):297–312, 2012.

[164] A. Van Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy. The KAOS project: Knowl-
edge Acquisition in Automated Speci�cation of Software. In Proc. of the AAAI Spring

Symp. Series, pages 59–62, 1991.

188

https://github.com/Spirals-Team/hadoop-benchmark
https://github.com/Spirals-Team/hadoop-benchmark

[165] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casallas. A Framework for
Evaluating Quality-driven Self-adaptive Software Systems. In Proc. of the 6

th
Int. Symp.

Software Engineering for Adaptive and Self-managing Systems, pages 80–89. ACM, 2011.
[166] M. A. Vouk. Back-to-back Testing. Journal on Information Software Technology, 32(1):

34–45, 1990.
[167] W. W. Eric, G. Ruizhi, L. Yihao, R. Abreu, and F. Wotawa. A Survey on Software Fault

Localization. IEEE Trans. on Software Engineering, 42(8):707–740, 2016.
[168] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary Test Environment for Automatic

Structural Testing. Information and Software Technology, 43(14):841–854, 2001.
[169] E. J. Weyuker. The Evaluation of Program-based Software Test Data Adequacy Criteria.

Communications of the ACM, 31(6):668–675, 1988.
[170] E. J. Weyuker and T. J. Ostrand. Theories of Program Testing and the Application of

Revealing Subdomains. IEEE Trans. on Software Engineering, (3):236–246, 1980.
[171] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel. RELAX: A Language

to Address Uncertainty in Self-adaptive Systems Requirement. Requirements Engieering,
15(2):177–196, 2010.

[172] M. Winter. Optimale Integrationsreihenfolgen. In Software Engineering 2013: Fachtagung

des GI-Fachbereichs Softwaretechnik, pages 259–270. 2013.
[173] F. Wotawa. Adaptive Autonomous Systems – From the System’s Architecture to Testing.

In R. Hähnle and et al., editors, Leveraging Applications of Formal Methods, Veri�cation,

and Validation, CCIS, pages 76–90. Springer, 2012.
[174] F. Wotawa. Testing self-adaptive systems using fault injection and combinatorial testing.

In Proc. of the IEEE Int. Conf. on Software Quality, Reliability and Security Companion,
pages 305–310, 2016.

[175] J. Wu, L. Yang, and X. Luo. Jata: A Language for Distributed Component Testing. In Proc.

of the 15
th
Asia-Paci�c Software Engineering Conf., pages 145–152, 2008.

[176] Y. Yao and Y. Wang. A Framework for Testing Distributed Software Components. In Proc.

of the IEEE Conf. on Electrical and Computer Engineering, pages 1566–1569. IEEE, 2005.
[177] R. Yeh, editor. Toward a Theory of Testing: Data Selection Criteria, volume 2, 1977. Prentice-

Hall.
[178] B. Zhang, F. Křikava, R. Rouvoy, and L. Seinturier. Self-Balancing Job Parallelism and

Throughput in Hadoop. In Proc. of the 16
th
IFIP WG 6.1 Int. Conf. on Distributed Applications

and Interoperable Systems, volume 9687 of LNCS, pages 129–143. Springer, 2016.
[179] B. Zhang, F. Křikava, R. Rouvoy, and L. Seinturier. Hadoop-benchmark: Rapid Prototyping

and Evaluation of Self-adaptive Behaviors in Hadoop Clusters. In Proc. of the 12
th
Int.

Symp. on Software Engineering for Adaptive and Self-Managing Systems, pages 175–181.
IEEE, 2017.

[180] Z. Zhang, J. Thangarajah, and L. Padgham. Model Based Testing for Agent Systems. In
Decker et al., editors, Proc. of the 8th Int. Conf. on Autonomous Agents and Multiagent

Systems, pages 1333–1334. IFAAMAS, 2009.

189

	Contents
	Overview and Motivation
	Key Challenges in Testing Self-Organization Mechanisms
	Model-Based Testing for Self-Organization Mechanisms
	Main Contributions and Thesis Outline

	Case Studies
	Case Studies with Continuous Self-Organization Mechanisms
	Decentralized Power Management
	Self-Adaptive Apache Hadoop Manager

	Case Studies with Discrete Self-Organization Mechanisms
	Self-Organization Production Cell
	Self-Organized Personalized Medicine Pill Production System
	Self-Adaptive Webservice System: ZNN.com

	Specification of Functional Behavior of Self-Organization Mechanisms and Derivation of an Automated Test Oracle
	Related Work
	Specification of soas
	Deriving Automated Test Oracles
	Runtime Verification

	The Corridor of Correct Behavior—Specification of Self-Organizing Behavior
	The Restore Invariant Approach—Descirbing the Corridor of Correct Behavior
	Application of the ria to Software Testing

	Goal-oriented Modeling of Functional Behavior with KAOS
	The KAOS Methodology
	RELAX Goals for Introducing so as Adaptation

	Deriving the Test Oracle from the KAOS Model
	Process for Generating an Automated Test Oracle
	Implementation of Transforming Requirement and Constraints to a Monitor Model
	Implementation of the Transformation for the Monitor Model to an Oracle

	A Testable Architecture for Implementing Self-Organization Mechanisms
	Related Work
	The Corridor Enforcing Infrastructure: An Architectural Pattern for Self-Organizing, Adaptive Systems
	Failure Definition and Categorization of Self-Organization Mechanisms
	Weaker Notion of Correctness for Self-Organization Mechanisms: Definition of Failure
	Boundaries of Self-Organization: Tolerable and Intolerable Environmental Faults

	Prerequisites and Benefits for Testing Based on the Corridor Enforcing Infrastructure
	Gain for Testing Based on the Corridor Enforcing Infrastructure
	Realizations of the Concepts of the Corridor Enforcing Infrastructure: Application Cases

	Isolating and Integrating Self-Organization Mechanisms for Testing
	Related Work
	Disassemble and Isolate Self-Organization Mechanisms
	Reassemble Self-Organization Mechanisms
	Test Architecture for Isolated Testing of Self-Organization Mechanisms

	Closed-Loop Model-Based Testing for Continuous and Discrete Self-Organization Mechanisms
	Related Work
	Run Time and Design Time Approaches for Testing Adaptive Systems
	Model-Based Testing
	Back-to-Back Testing

	Closing the Loop of Model-Based Testing
	Feedback in Model-Based Testing
	Concept of Run Time Models
	Model Reflection for Reflecting Changes in the System under Test

	Probabilistic Models for a Continuous Self-Organization Mechanism
	System Model
	Environment and Test Model

	Fault-based Testing Models for Discrete Self-Organization Mechanisms
	The System Model for Discrete Self-Organization Mechanism
	The Environment and Test Model for Discrete Self-Organization Mechanisms
	Designing Test Models with Environment Faults

	Back-to-Back Testing of Test Model and Implementation
	Using Executable Run Time Models for Back-to-Back Testing
	The Special Case of Back-to-Back Testing Self-Organization Mechanisms

	Evaluation
	Production Cell—Testing an Integrated, Discrete Self-Organization Mechanisms in a Back-to-Back Test Setting
	Energy Grid—Testing a Disassembled, Continuous Self-Organization Mechanism
	Load-Balancing Web-Service—Evaluating the Test Approach in a Controlled Experiment
	Pill Production—Investigating Reusability and Generalizability of the Test Model in Resource-Flow Systems
	Apache Hadoop—Testing an Industrial Case Study in Full Integration

	Test Case Generation for Flat-Branching Test Problems
	Related Work
	Search-Based Test Case Generation
	Adaptive Test Automation

	Boundaries of Self-Organization Mechanisms: A Boundary-Interior Test Case Generation Approach
	Boundary Interior Test Case Generation for so Mechanisms via Search-Based Testing
	Heuristic-Based Selection Strategy for Automated Online Test Case Selection and Reduction

	Adaptive Test Cases to Enable Reasoning During Test Execution
	Annotating the Purpose a Test Case for Enabling Self-Reflection
	Outlook: Planning Optimal Rule Instantiations by Optimizing Diversity of the Test Cases

	Evaluation
	Production Cell—Boundary-Interior Test Case Generation
	Load-Balancing Web-Service—Adaptive Test Case Execution

	Performance Testing for Self-Organization Mechanisms
	Related Work
	Metrics for Adaptation Mechanisms
	Metrics for so Mechanisms

	Requirements for Performance Metrics for so Mechanisms
	A Distributed Performance Metric for so Systems
	Time Performance of so Mechanisms
	Quality Performance of so Mechanisms

	Performance Evaluation Framework
	Generating Unbiased Evaluation Runs
	Modeling the Environment for Evaluating the Performance of so Mechanisms
	Integrating the Evaluation Sequence Selection in the Evaluation Framework

	Evaluation
	Production Cell
	Energy Grid

	Conclusion and Outlook
	Summary of Research Contributions and Evaluation Results
	Open Research Challenges and Future Directions

	Bibliography
	Symbols

