
                                                               
                        

PROBLEMS OF STATIONARY FLOW OF ELECTRORHEOLOGICAL
FLUIDS IN A CYLINDRICAL COORDINATE SYSTEM∗

R. H. W. HOPPE†‡ , W. G. LITVINOV‡ , AND T. RAHMAN§

Abstract. We consider the general problem on stationary flow of the electrorheological fluid
with the constitutive equation developed in [R. H. W. Hoppe and W. G. Litvinov, Comm. Pure.
Appl. Anal., 3 (2004), pp. 809–848] in the cylindrical coordinate system. The problem is studied
under mixed boundary conditions wherein velocities are specified on one part of the boundary and
surface forces are given on the other part. The existence of a solution to this problem and the
convergence of Galerkin approximations are established. Then, we consider the occasion where the
flow is axially symmetric and study a problem on an electrorheological clutch. This problem is solved
numerically, and the results of calculations of the electric field and velocities are presented.
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1. Introduction. Electrorheological fluids are smart materials which are con-
centrated suspensions of polarizable particles in a nonconducting dielectric liquid. In
moderately large electric fields, the particles form chains along the field lines, and
these chains then aggregate to form columns [16]. These chainlike and columnar
structures cause dramatic changes in the rheological properties of the suspensions.
The fluids become anisotropic; the apparent viscosity (the resistance to flow) in the
direction orthogonal to the direction of electric field abruptly increases, while the
apparent viscosity in the direction of the electric field changes not so drastically.

The chainlike structures directed along the magnetic field lines are formed in
magnetic suspensions whose behavior is similar to the behavior of electrorheological
suspensions. It was shown experimentally that the apparent viscosity of the flow of
magnetic suspensions in the direction orthogonal to the direction of the magnetic field
is about three times greater than the apparent viscosity of the flow in the direction
of the magnetic field; see [18, p. 85].

The chainlike and columnar structures are destroyed under the action of large
stresses, and then the apparent viscosity of the fluid decreases and the fluid becomes
less anisotropic.

The following constitutive equation of electrorheological fluids was developed in
[8]:

σij(p, u, E) = −pδij + 2ϕ(I(u), |E|, μ(u,E))εij(u), i, j = 1, . . . , n, n = 2 or 3.
(1.1)
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1634 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Here, σij(p, u, E) are the components of the stress tensor which depend on the
pressure p, the velocity vector u = (u1, . . . , un), and the electric field strength
E = (E1, . . . , En); δij are the components of the unit tensor (the Kronecker delta);
and εij(u) are the components of the rate of strain tensor

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
,(1.2)

where xi are Cartesian coordinates of a point x = (x1, . . . , xn).
Moreover, I(u) is the second invariant of the rate-of-strain tensor

I(u) =
n∑

i,j=1

(εij(u))2,(1.3)

and ϕ the viscosity function depending on I(u), |E|, and μ(u,E).
The function μ is introduced into the constitutive equation (1.1) in order to take

into account the anisotropy of the electrorheological fluid under which the viscosity of
the fluid depends on the angle between the vector of the electric field and the vector of
the velocity with respect to the charged electrode (the counter electrode is not charged
usually). The electrode can move relative to the body of an electrorheological device,
and hence we consider that the electrode can move relative to the reference frame
under consideration.

Let ǔ(x, t) = (ǔ1(x, t), ǔ2(x, t), ǔ3(x, t)) be a vector of transfer velocity; ǔ(x, t) is
the velocity of a point of the electrode which coincides with the point x of the frame
at an instant t. It is assumed that ǔ is a known function.

We define the function μ as the square of the cosine of the angle between the
vector of the electric field and the vector of the velocity relative to the electrode, i.e.,

μ(u,E) =

(
u− ǔ

|u− ǔ| ,
E

|E|

)2

R3

=
((ui − ǔi)Ei)

2(∑3
i=1(ui − ǔi)2

)(∑3
i=1 E

2
i

) .(1.4)

Here and below, the Einstein convention on summation over a repeated index is
applied, and we denote by (., .)R3 the scalar product in R

3.
If the electrode does not move relative to the reference frame, then ǔ = 0 and the

function μ takes the form

μ(u,E) =

(
u

|u| ,
E

|E|

)2

R3

.(1.5)

In the general case, the function ǔ is defined as follows:

ǔ(x, t) =
◦
u(t) + w(x, t),(1.6)

where
◦
u(t) = (

◦
u1(t),

◦
u2(t),

◦
u3(t)) is a vector of the translation velocity and w(x, t) =

(w1(x, t), w2(x, t), w3(x, t)) is a vector of the rotational velocity.
The function μ(u,E) is an invariant which is independent of the choice of the

reference frame and the motion of the frame with respect to the electrode.
The viscosity function ϕ is identified by approximation of flow curves (see [8])

and it was shown in [8] (see also the appendix) that it can be represented as follows:

ϕ(I(u), |E|, μ(u,E)) = b(|E|, μ(u,E))(λ + I(u))−
1
2 + ψ(I(u), |E|, μ(u,E)),(1.7)

where λ is a small parameter, λ ≥ 0.

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



FLOW OF ELECTRORHEOLOGICAL FLUIDS 1635

The constitutive equation (1.1) with the viscosity function (1.7) allows one to
describe the following main peculiarities of flow of electrorheological fluids:

(a) singular or almost singular viscosity function at zero value of the rate-of-strain
tensor,

(b) an arbitrary nonlinear relationship between the shear rates and the shear
stresses,

(c) an arbitrary dependence of the viscosity on the module of the vector of the
electric field and on the angle between the vectors of the velocity and electric
field (the anisotropy).

With some assumptions natural from a physical point of view, the constitutive equa-
tion (1.1) with the viscosity function (1.7) leads to well-posed mathematical problems
(see sections 4 and 5 below and [8]).

The functions b and ψ in (1.7) can be identified so that a set of flow curves
obtained for different electric fields E is approximated in an arbitrary range of the
shear rates with an arbitrarily high degree of accuracy (for example, by splines).

The Bingham constitutive equation of electrorheological fluids, which is of con-
siderable current use (see, e.g., [4], [16], [22]), gives no way to closely approximate a
set of flow curves, especially at small shear rates (see Figure A-1 in the appendix).
In addition, the Bingham constitutive equation takes no account of the anisotropy of
electrorheological fluids.

We consider Maxwell’s equations in the following form (see, e.g., [10]):

curlE +
1

c

∂B

∂t
= 0, divB = 0,

curlH − 1

c

∂D

∂t
= 0, divD = 0.(1.8)

Here E is the electric field, B the magnetic induction, D the electric displacement, H
the magnetic field, and c the speed of light. One can assume that

D = εE, B = μH,(1.9)

where ε is the dielectric permittivity and μ the magnetic permeability.
Since electrorheological fluids are dielectrics, the magnetic field H can be ne-

glected. Then (1.8), (1.9) give the following relations:

curlE = 0,(1.10)

div(εE) = 0.(1.11)

It follows from (1.10) that there exists a function of potential θ such that

E = − grad θ,(1.12)

and (1.11) implies

div(ε grad θ) = 0 in Ω1.(1.13)

Here Ω1 is the domain of the fluid flow in the Cartesian coordinate system.
The boundary conditions are the following:

θ = Ui(t) on Γi, i = 1, . . . , k,(1.14)

θ = 0 on Γi0,(1.15)

ν · ε grad θ = 0 on Γ\
(

k⋃
i=1

(Γi ∪ Γi0)

)
.(1.16)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1636 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Here Γi and Γi0 are the surfaces of the ith control and null electrodes, respectively,
and it is supposed that Γi, Γi0 are open subsets of the boundary Γ of Ω1.

Therefore, the equations for the functions E and (p, v) are separated. Because of
this, we assume hereafter that the function of electric field E is known.

In the special case that the direction of the velocity relative to the electrode
u(x, t) − ǔ(x, t) at each point (x, t) at which E(x, t) �= 0 is known, the function
(x, t) → μ(u,E)(x, t) becomes well known, and the viscosity functions (1.7) takes the
form

ϕ(I(u), |E|, x, t) = e(|E|, x, t)(λ + I(u))−
1
2 + ψ1(I(u), |E|, x, t),(1.17)

where

e(|E|, x, t) = b(|E|, μ(u,E)(x, t)),

ψ1(I(u), |E|, x, t) = ψ(I(u), |E|, μ(u,E)(x, t)).(1.18)

In many electrorheological devices the fluid flows in domains of which the boundaries
are the surfaces of revolution. Problems on flow of electrorheological fluids in such
domains are convenient to consider in cylindrical coordinates.

In section 2, we present governing equations. In section 3, we formulate a gen-
eral boundary value problem on stationary flow of the electrorheological fluid in the
cylindrical coordinate system and adduce some auxiliary results. Section 4 contains
approximate solutions and existence theorems for the general boundary value problem.
In section 5, we consider a problem on stationary axially symmetric flow. A problem
on an electrorheological clutch is formulated and solved numerically in section 6.

2. Governing equations and assumptions. We consider the system of cylin-
drical coordinates r, α, z. An element of the length dl is defined in cylindrical coor-
dinates as dl = (dr2 + r2 dα2 + dz2)

1
2 . Denote the components of a vector v in the

mobile orthonormal basis er, eα, ez by v1, v2, v3; i.e., v = (v1, v2, v3).

Let u = (u1, u2, u3) be a velocity vector. The components of the rate-of-strain
tensor have the following form in cylindrical coordinates,

ε11(u) =
∂u1

∂r
, ε22(u) =

1

r

∂u2

∂α
+

u1

r
, ε33(u) =

∂u3

∂z
,

ε12(u) = ε21(u) =
1

2

(
1

r

∂u1

∂α
+

∂u2

∂r
− u2

r

)
,

ε23(u) = ε32(u) =
1

2

(
∂u2

∂z
+

1

r

∂u3

∂α

)
,

ε13(u) = ε31(u) =
1

2

(
∂u1

∂z
+

∂u3

∂r

)
,(2.1)

and the second invariant of the rate-of-strain tensor is defined by

I(u) =
3∑

i,j=1

(εij(u))2.(2.2)

We assume the following.

(A0) Ω1 is a bounded domain in R
3 with a Lipschitz continuous boundary Γ.

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



FLOW OF ELECTRORHEOLOGICAL FLUIDS 1637

Let P be the operator of translation from cylindrical coordinates to Cartesian
ones,

P : (r, α, z) → P(r, α, z) = (x1, x2, x3),

x1 = r cosα, x2 = r sinα, x3 = z, r ∈ R+, α ∈ [0, 2π), z ∈ R,(2.3)

where R+ = {y ∈ R, y ≥ 0} and we identify the points (0, α, z) with the point (0, 0, z),
α ∈ [0, 2π). The inverse operator P−1 is defined by

P−1 : P−1(x1, x2, x3) = (r, α, z),

r = (x2
1 + x2

2)
1
2 , α = arctan

x2

x1
, z = x3.(2.4)

Here, we consider that the mapping (x1, x2) → arctan x2

x1
is a multifunction at the

point x1 = x2 = 0, namely, arctan 0
0 = [0, 2π).

Let

Ω = P−1 (Ω1), S = P−1(Γ).(2.5)

We consider a stationary flow problem under the Stokes approximation; i.e., we
ignore inertial forces, which are assumed to be small as compared with the internal
forces caused by the viscous stresses. Then the motion equations take the following
form:

∂p

∂r
− 2

∂

∂r
(ϕε11(u)) − 2

r

∂

∂α
(ϕε12(u)) − 2

∂

∂z
(ϕε13(u)) − 2ϕ

r
(ε11(u) − ε22(u)) = K1

in Ω,(2.6)

1

r

∂p

∂α
− 2

∂

∂r
(ϕε21(u)) − 2

r

∂

∂α
(ϕε22(u)) − 2

∂

∂z
(ϕε23(u)) − 4

r
ϕε12(u) = K2 in Ω,

(2.7)

∂p

∂z
− 2

∂

∂r
(ϕε31(u)) − 2

r

∂

∂α
(ϕε32(u)) − 2

∂

∂z
(ϕε33(u)) − 2

r
ϕε13(u) = K3 in Ω.(2.8)

Here the viscosity function ϕ is defined either by (1.7) or by (1.17), and K1, K2, K3

are the components of the volume force vector K.
The velocity function u meets the incompressibility condition

divc u =
∂u1

∂r
+

1

r

∂u2

∂α
+

∂u3

∂z
+

u1

r
= 0 in Ω.(2.9)

Here and below, we denote by divc the operator of divergence in cylindrical coordi-
nates.

Suppose that S1 and S2 are open subsets of S such that S1 is nonempty, S1∩S2 =
∅, and S1 ∪ S2 = S. We consider mixed boundary conditions, wherein velocities are
specified on S1 and surface forces are given on S2, i.e.,

u = û on S1,(2.10)

[−pδij + 2ϕεij(u)]νj = Fi on S2, i, j = 1, 2, 3.(2.11)

Here, by νj and Fi we denote the components of the unit outward normal to S2

and the components of the vector of surface force with respect to the basis vectors
er, eα, ez.

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1638 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Let

S̃ = {(r, α, z)|r = 0, α ∈ [0, 2π), z ∈ R+}, S0 = Ω ∩ S̃.(2.12)

In particular, S0 can be an empty set. It follows from (2.9) that

u1 = 0 on S0,(2.13)

and therefore ∂u1

∂z = 0 on S0, and since ε13(u) = 0 on S0 (see (2.8)), we obtain

∂u3

∂r
= 0 on S0.(2.14)

It follows also from (2.6), (2.7), and (2.1) that

lim
r→0

(ε11(u) − ε22(u))(r, α, z) = 0,

lim
r→0

(ε12(u))(r, α, z) = 0, u2 = 0 on S0.(2.15)

In the case when the viscosity function is defined by (1.7), we assume the following.
(A1) b : y1, y2 → b(y1, y2) is a function continuous in R+× [0, 1], and, in addition,

0 ≤ b(y1, y2) ≤ a0, (y1, y2) ∈ R+ × [0, 1],(2.16)

where a0 is a positive constant.
(A2) ψ : (y1, y2, y3) → ψ(y1, y2, y3) is a function continuous in R

2
+ × [0, 1], and

for an arbitrarily fixed (y2, y3) ∈ R+ × [0, 1] the partial function ψ(., y2, y3) : y1 →
ψ(y1, y2, y3) is continuously differentiable in R+, and the following inequalities hold:

a2 ≥ ψ(y1, y2, y3) ≥ a1,(2.17)

ψ(y1, y2, y3) + 2
∂ψ

∂y1
(y1, y2, y3)y1 ≥ a3,(2.18) ∣∣∣∣ ∂ψ∂y1

(y1, y2, y3)

∣∣∣∣ y1 ≤ a4,(2.19)

where a1–a4 are positive constants.
In the case that the viscosity function is defined by (1.17), we suppose the follow-

ing.
(A3) for an arbitrary fixed (y2, x, t) ∈ R+ × Ω1 × R+, the partial function

ψ1(., y2, x, t) : y1 → ψ1(y1, y2, x, t) is continuously differentiable in R+, and the fol-
lowing inequalities hold:

a2 ≥ ψ1(y1, y2, x, t) ≥ a1,(2.20)

ψ1(y1, y2, x, t) + 2
∂ψ1

∂y1
(y1, y2, x, t)y1 ≥ a3,(2.21) ∣∣∣∣∂ψ1

∂y1
(y1, y2, x, t)

∣∣∣∣ y1 ≤ a4.(2.22)

As for the function e, we assume

e ∈ L∞(R+ × Ω1 × R+), 0 ≤ e(y, x, t) ≤ a0, y ∈ R+, x ∈ Ω1, t ∈ R+.
(2.23)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



FLOW OF ELECTRORHEOLOGICAL FLUIDS 1639

At λ = 0 the viscosity function ϕ defined by (1.7) is singular at I(u) = 0, ϕ(0, |E|,
μ(u,E)) = ∞, and flow problems for such viscosity function reduce to the solution of
variational inequalities.

The equation (1.7) with a small positive λ defines a fluid with a finite but possibly
large viscosity at I(u) = 0. From a physical point of view a fluid with bounded
viscosity is more reasonable than the fluid with singular unbounded viscosity (all
is bounded in actuality). It is shown in [8] that the solutions of the problems with
bounded viscosities converge to the solution of the problem with the singular viscosity
as λ tends to zero. Because of this, we assume that

λ > 0 in (1.7) and (1.17).(2.24)

Let us dwell on the physical sense of the inequalities (2.16)–(2.23). The inequal-
ities (2.16) and (2.17) indicate that the viscosity is bounded from below and from
above by positive constants. The inequality (2.18) implies that for fixed values of |E|
and μ(u,E) the derivative of the function I(u) → G(u) is positive, where G(u) is the
second invariant of the stress deviator

G(u) =
n∑

i,j=1

(σij(p, u, E) + pδij)
2 = 4[ϕ(I(u), |E|, μ(u,E))]2I(u).

This means that in case of simple shear flow the shear stress increases with increasing
shear rate. (2.19) is a restriction on ∂ϕ

∂y1
for large values of y1.

The inequalities (2.20)–(2.23) are analogous to the inequalities (2.16)–(2.19).
All inequalities (2.16)–(2.23) are natural from a physical point of view.
The viscosity function is identified by approximation of a set of flow curves which

are obtained experimentally by viscometric testing for different electric fields. The
inequalities (2.16)–(2.23) are consistent with the shapes of the flow curves and enable
one to approximate a set of flow curves over a wide range of shear rates with a high
degree of accuracy (see the appendix below and [3], [8], [19]).

3. Generalized solution of the problem. We define the following sets:

J0 =

{
v|v = (v1, v2, v3) ∈ C∞(Ω)3, v1

∣∣
S0

= 0, v2

∣∣
S0

= 0,

∂vk

∂αk

∣∣∣
α=0

=
∂vk

∂αk

∣∣∣
α=2π

, k = 0, 1, 2, . . .

}
,(3.1)

J = {v|v ∈ J0, v
∣∣
S1

= 0},(3.2)

J1 = {v|v ∈ J, divc v = 0}.(3.3)

Let H and H1 be the closures of J and J1 with respect to the norm

||v||H =

(∫
Ω

I(v)r dr dα dz

) 1
2

,(3.4)

and let H0 be the closures of J0 relative to the norm

||v||H0 =

(
||v||2H +

∫
S1

|v|2 ds
) 1

2

.(3.5)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1640 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Let also Y be the space of scalar functions which are square integrable in Ω with
respect to the measure r dr dα dz. The norm in Y is defined by

||h||Y =

(∫
Ω

h2 r dr dα dz

) 1
2

.(3.6)

We define the operator G that maps H0 into a set of vector valued functions deter-
mined in Ω1 as follows:

v = (v1, v2, v3) ∈ H0, G(v) = {G(v)i}3
i=1,

G(v)1 = (v1 cosα− v2 sinα) ◦ P−1,

G(v)2 = (v1 sinα + v2 cosα) ◦ P−1, G(v)3 = v3 ◦ P−1.(3.7)

We assign also the following norm in H0:

||v||1 = ||G(v)||H1(Ω1)3 ,(3.8)

where || � ||H1(Ω1)3 is the norm of the product of three Sobolev spaces H1(Ω1).
Lemma 3.1. Suppose that the condition (A0) is satisfied. Then the expressions

(3.4) and (3.8) define equivalent norms in H, and the expressions (3.5) and (3.8) are
equivalent norms in H0. The operator G is an isomorphism of H0 onto H1(Ω1)

3, and
the following equality holds:

||h||Y = ||h ◦ P−1||L2(Ω1).(3.9)

Proof. The equivalence of the norms (3.4) and (3.8) in H, and the norms (3.5)
and (3.8) in H0, follows from the fact that I(v) is the invariant, i.e.,

3∑
i,j=1

[(εij(v))(r, α, z)]
2 =

3∑
i,j=1

[(εij(G(v)))(P(r, α, z))]2,(3.10)

and from the Korn inequality.
Therefore, G(H0) ⊂ H1(Ω1)

3. Let g = (g1, g2, g3) ∈ H1(Ω1)
3. We have(

∂

∂r
(gi ◦ P)

)
(r, α, z) =

∂gi
∂x1

(P(r, α, z)) cosα +
∂gi
∂x2

(P(r, α, z)) sinα,(
∂

∂α
(gi ◦ P)

)
(r, α, z) = − ∂gi

∂x1
(P(r, α, z))r sinα +

∂gi
∂x2

(P(r, α, z))r cosα,(
∂

∂z
(gi ◦ P)

)
(r, α, z) =

∂gi
∂x3

(P(r, α, z)), i = 1, 2, 3.(3.11)

We define a vector-function v = (v1, v2, v3) as follows:

v1 = (g1 ◦ P) cosα + (g2 ◦ P) sinα,

v2 = (g2 ◦ P) cosα− (g1 ◦ P) sinα, v3 = g ◦ P.(3.12)

It follows from (3.7), (3.11), and (3.12) that v = G−1g ∈ H0, where G−1 is the
inverse of G. Therefore, G(H0) = H1(Ω1)

3.
The equalities (3.11) imply G−1 ∈ L(H1(Ω1)

3, H0), and by the Banach theorem
on closed range the operator G is an isomorphism of H0 onto H1(Ω1)

3.
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Everywhere below, we use the following notations: if H is a normed space, we
denote by H∗ the dual of H and by (f, h) the duality between H∗ and H, where
f ∈ H∗, h ∈ H. In particular, if f ∈ Y or f ∈ Y n, n = 2 or 3, then (f, h) is the scalar
product in Y or in Y n, respectively. That is, we identify the spaces Y and Y n with
their dual spaces Y ∗ and (Y n)∗, respectively.

The sign ⇀ denotes weak convergence in a Banach space.
We suppose that û belongs to the space of traces on S1 of the functions from H0,

i.e., û ◦ P−1 ∈ H
1
2 (P(S1)). Then, there exists a function ũ such that

ũ ∈ H0, ũ
∣∣
S1

= û, divc ũ = 0.(3.13)

We assume also that

K = (K1,K2,K3) ∈ Y 3, F ◦ P−1 = (F1, F2, F3) ◦ P−1 ∈ L2(P(S2))
3.(3.14)

We define operators L : H → H∗ and B ∈ L(H,Y ∗) as follows:

(L(v), h) = 2

∫
Ω

ϕεij(ũ + v)εij(h)r dr dα dz, v, h ∈ H,(3.15)

(Bv,w) =

∫
Ω

(divc v)wr dr dα dz, v ∈ H, w ∈ Y.(3.16)

In (3.15) the function ϕ is defined either by (1.7) or by (1.17).
We consider the problem: Find a pair of functions (v, p) satisfying

v ∈ H, p ∈ Y,(3.17)

(L(v), h) − (B∗ p, h) = (K + F, h), h ∈ H,(3.18)

(Bv,w) = 0, w ∈ Y.(3.19)

Here, B∗ is the operator adjoint of B and

(K + F, h) =

∫
Ω

Kihi r dr dα dz +

∫
S2

Fihi ds.(3.20)

The pair (u = v + ũ, p), where (v, p) is a solution of the problem (3.17)–(3.19), will
be called the generalized solution of the problem (2.6)–(2.11), (2.13)–(2.15).

Indeed, by use of Green’s formula, it can be seen that, if (v, p) is a solution of
the problem (3.17)–(3.19), then the pair (u = v + ũ, p) is a solution of the problem
(2.6)–(2.11), (2.13)–(2.15) in the distributional sense. On the contrary, if (u, p) is a
smooth solution of the problem (2.6)–(2.11), (2.13)–(2.15), then the pair (v = u−ũ, p)
is a solution of the problem (3.17)–(3.19).

Lemma 3.2. Suppose that the condition (A0) is satisfied. Then, the following
inf-sup condition,

inf
g∈Y

sup
w∈H

(Bw, g)

||w||H ||g||Y
≥ β1 > 0,(3.21)

holds true. The operator B is an isomorphism from H⊥
1 onto Y , where H⊥

1 is the
orthogonal complement of H1 in H, and the operator B∗ is an isomorphism from Y
onto the polar set

H◦
1 = {q ∈ H∗, (q, v) = 0, v ∈ H1}.(3.22)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1642 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

Moreover

||B−1||L(Y,H⊥
1 ) ≤

1

β1
, ||(B∗)−1||L(H◦

1 ,Y ) ≤
1

β1
.(3.23)

This lemma follows from the corresponding result in Cartesian coordinates (see
[2], [8], [13]), since G is an isomorphism of H0 onto H1(Ω1)

3 and I(v) is invariant (see
(3.10)) and divc v is an invariant also; i.e.,

(divc v)(r, α, z) = (divG(v))(P(r, α, z)).(3.24)

4. Approximate solutions and existence theorems. Let {Xm}∞m=1 and
{Nm}∞m=1 be sequences of finite-dimensional subspaces in H and Y , respectively,
such that

lim
m→∞

inf
h∈Xm

||w − h||H = 0, w ∈ H,(4.1)

lim
m→∞

inf
g∈Nm

||f − g||Y = 0, f ∈ Y,(4.2)

inf
g∈Nm

sup
h∈Xm

(Bh, g)

||h||H ||g||Y
≥ β > 0,(4.3)

Xm ⊂ Xm+1, Nm ⊂ Nm+1, m ∈ N.(4.4)

We seek an approximate solution of the problem (3.17)–(3.19) of the form

vm ∈ Xm, pm ∈ Nm,(4.5)

(L(vm), h) − (B∗ pm, h) = (K + F, h), h ∈ Xm,(4.6)

(Bvm, g) = 0, g ∈ Nm.(4.7)

Theorem 4.1. Suppose that the function ϕ defining the operator L (see (3.15))
is given by (1.7) and that the conditions (A0), (A1), (A2), (2.24) are satisfied. Let
also (3.13), (3.14), (4.1)–(4.4) hold. Then there exists a solution (v, p) of the problem
(3.17)–(3.19), and for an arbitrary m ∈ N there exists a solution of the problem (4.5)–
(4.7), and a subsequence {vk, pk} can be extracted from the sequence {vm, pm} such
that

vk → v in H, pk → p in Y.(4.8)

Indeed, we replace cylindrical coordinates r, α, z by Cartesian coordinates x1, x2, x3

in the problems (3.17)–(3.19) and (4.5)–(4.7). Then, we use Lemma 3.1 and Theorem
5.1 from [8] for these problems in Cartesian coordinates and pass back to cylindrical
coordinates. As a result, we obtain that there exists a solution of the problem (3.17)–
(3.19), and there exists a solution of the problem (4.5)–(4.7) for any m ∈ N, and a
subsequence {vk, pk} can be extracted from the sequence {vm, pm} such that

vk ⇀ v in H, pk ⇀ p in Y.(4.9)

(4.8) is proved by using (4.9) and the arguments of Theorem 2.1 from [2].
The next theorem follows from the results of [2].
Theorem 4.2. Suppose that the function ϕ defining the operator L (see (3.15))

is given by (1.17) and that the conditions (A0), (A3), (2.23), (2.24) are satisfied.
Let also (3.13), (3.14), (4.1)–(4.4) hold. Then there exists a unique solution (u, p) of
the problem (3.17)–(3.19), and for an arbitrary m ∈ N there exists a unique solution
(vm, pm) of the problem (4.5)–(4.7); moreover,

vm → v in H, pm → p in Y.
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5. Problem of axially symmetric flow.

5.1. Formulation of the problem. In the case of axially symmetric flow
the components of a velocity vector u in the mobile orthonormal basis (er, eα, ez)
of the cylindrical coordinate system depend on r, z only, i.e., u(r, z) = (u1(r, z),
u2(r, z), u3(r, z)); the components of the rate-of-strain tensor have the form

ε11(u) =
∂u1

∂r
, ε22(u) =

u1

r
, ε33(u) =

∂u3

∂z
,

ε12(u) = ε21(u) =
1

2

(
∂u2

∂r
− u2

r

)
, ε23(u) = ε32(u) =

1

2

∂u2

∂z
,

ε13(u) = ε31(u) =
1

2

(
∂u1

∂z
+

∂u3

∂r

)
;(5.1)

and the second invariant of the rate-of-strain tensor is defined by

I(u) =

(
∂u1

∂r

)2

+
(u1

r

)2

+

(
∂u3

∂z

)2

+
1

2

(
∂u2

∂r
− u2

r

)2

+
1

2

(
∂u2

∂z

)2

+
1

2

(
∂u1

∂z
+

∂u3

∂r

)2

.(5.2)

We assume that the domain of flow of the electrorheological fluid Ω1 satisfies the
condition (A0) and has the following form:

Ω1 = {x|x = (x1, x2, x3), x3 ∈ (0, l), (x2
1 + x2

2)
1
2 < R2(x3),

(x2
1 + x2

2)
1
2 > R1(x3) if R1(x3) > 0, (x2

1 + x2
2)

1
2 ≥ R1(x3) if R1(x3) = 0},(5.3)

where R1 and R2 are functions given in (0, l). The function R1 takes nonnegative
values, R2 takes positive values, and R2(x3) > R1(x3) for all x3 ∈ (0, l).

The condition (A0) imposes restrictions on the functions R1 and R2. The func-
tions R1 and R2 can be Lipschitz continuous as well as discontinuous with a finite
number of points of discontinuity. But in the second case the functions R1 and R2

must be Lipschitz continuous in between the points of discontinuity.

Let Ω2 = P−1(Ω1); the mapping P−1 is defined by (2.4). Since the flow of the
fluid is assumed to be axially symmetric—i.e., the functions of velocity, pressure, and
electric field are independent of α in cylindrical coordinate system—we consider our
problem in the domain Ω3, which consists of points (r, z) such that (r, α, z) ∈ Ω2,
α ∈ [0, 2π).

According to (5.3), the domain Ω3 is defined by

Ω3 = {(r, z)|0 < z < l, R1(z) < r if R1(z) > 0,

R1(z) ≤ r if R1(z) = 0, r < R2(z)}.(5.4)

We consider the stationary flow problem under the neglect of the inertial forces.
Taking into account (2.6)–(2.8) and (5.1), we obtain the following motion equations:

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1644 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

∂p

∂r
− 2

∂

∂r

(
ϕ
∂u1

∂r

)
− ∂

∂z

(
ϕ

(
∂u1

∂z
+

∂u3

∂r

))
− 2

r
ϕ

(
∂u1

∂r
− u1

r

)
= K1 in Ω3,

(5.5)

− ∂

∂r

(
ϕ

(
∂u2

∂r
− u2

r

))
− ∂

∂z

(
ϕ
∂u2

∂z

)
− 2

r
ϕ

(
∂u2

∂r
− u2

r

)
= K2 in Ω3,(5.6)

∂p

∂z
− ∂

∂r

(
ϕ

(
∂u1

∂z
+

∂u3

∂r

))
− 2

∂

∂z

(
ϕ
∂u3

∂z

)
− ϕ

r

(
∂u1

∂z
+

∂u3

∂r

)
= K3 in Ω3,

(5.7)

where the function ϕ is defined either by (1.7) or by (1.17).
The equation of incompressibility takes the form

divc u =
∂u1

∂r
+

∂u3

∂z
+

u1

r
= 0 in Ω3.(5.8)

Let S be the boundary of Ω3 and

T = {z|z ∈ (0, l), R1(z) = 0},
S0 = {(r, z)|r = 0, z ∈ T }.(5.9)

In particular, S0 can be an empty set.
Let also

S′ = {(r, α, z)|(r, z) ∈ S\S0, α ∈ [0, 2π)}.(5.10)

Then P(S′) = Γ, where Γ is the boundary of the domain Ω1 defined by (5.3).
Suppose that S1 and S2 are open subsets of S\S0 such that S1 is not empty,

S1 ∩ S2 = ∅, and S1 ∪ S2 = S\S0. We consider mixed boundary conditions, wherein
velocities are specified on S1 and surface forces are given on S2, i.e.,

u|S1 = ǔ,(5.11)

[(−p + 2ϕε11(u))ν1 + 2ϕε13(u)ν3]|S2 = F1,(5.12)

[2ϕε21(u)ν1 + 2ϕε23(u)ν3]|S2 = F2,(5.13)

[(−p + 2ϕε33(u))ν3 + 2ϕε31(u)ν1]|S2
= F3,(5.14)

where ν1 and ν3 are the components of the unit outward normal ν = (ν1, 0, ν3) to the
boundary S′. By analogy with the above (see (2.13)–(2.15)), we obtain the following
boundary conditions on S0:

u1

∣∣
S0

= 0, u2

∣∣
S0

= 0,
∂u3

∂r

∣∣∣
S0

= 0,

lim
r→0

(
∂u1

∂r
− u1

r

)
(r, z) = 0, z ∈ T ,

lim
r→0

(
∂u2

∂r
− u2

r

)
(r, z) = 0, z ∈ T .(5.15)

5.2. Functional spaces and two lemmas. We introduce the following sets:

J0 = {v|v = (v1, v2, v3) ∈ C∞(Ω3)
3, v1

∣∣
S0

= 0, v2

∣∣
S0

= 0},
J = {v|v ∈ J0, v = 0 on S1},
J1 = {v|v ∈ J , divc v = 0},(5.16)

where the operator divc is defined by (5.8).
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We denote by H and H1 the closures of J and J1 with respect to the norm

||v||H =

(∫
Ω3

I(v)r dr dz

) 1
2

,(5.17)

where I(v) is given by (5.2).
Let H0 be the closure of J0 relative to the norm

||v||H0 =

(
||v||2H +

∫
S1

|v|2 ds
) 1

2

,(5.18)

where ds = (dz2 + dr2)
1
2 .

Let also Y be the space of scalar functions which are square integrable in Ω3 with
respect to the measure r dr dz. The norm in Y is defined by

||h||Y =

(∫
Ω3

h2r dr dz

) 1
2

.(5.19)

By analogy with the Lemma 3.1, we obtain the following result.
Lemma 5.1. Suppose that the domain Ω1 defined by (5.3) satisfies the condition

(A0). Then, the expressions (5.17) and (3.8) define equivalent norms H, and the
expressions (5.18) and (3.8) are equivalent norms in H0; moreover, the following
equality holds:

(2π)
1
2 ||h||Y = ||h̃ ◦ P−1||L2(Ω1),(5.20)

with h̃(r, α, z) = h(r, z), α ∈ [0, 2π).
Lemma 5.2. Suppose that the domain Ω1 defined by (5.3) satisfies the condition

(A0). Denote by B the operator divc acting in the space H, i.e.,

Bv =
∂v1

∂r
+

∂v3

∂z
+

v1

r
.(5.21)

Then, the following inf-sup condition,

inf
g∈Y

sup
v∈H

(Bv, g)
||v||H||g||Y

≥ β2 > 0,(5.22)

holds true.
The operator B is an isomorphism from H⊥

1 onto Y, where H⊥
1 is the orthogonal

complement of H1 in H, and the operator B∗ that is the adjoint of B is an isomorphism
from Y onto the polar set

H◦
1 = {q ∈ H∗, (q, v) = 0, v ∈ H1}.(5.23)

Moreover,

||B−1||L(Y,H⊥
1 ) ≤

1

β 2

, ||(B∗)−1||L(H◦
1 ,Y) ≤

1

β 2

.(5.24)

Lemma 5.2 does not follow from Lemma 3.2. For the proof of Lemma 5.2, see [14].

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1646 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

5.3. Generalized solution. We suppose that the function ǔ (see (5.11)) belongs

to the traces on S1 of the functions from H0. Then there exists a function
∗
u such that

∗
u ∈ H0,

∗
u
∣∣
S1

= ǔ, divc
∗
u = 0.(5.25)

We assume also that

K = (K1,K2,K3) ∈ Y3, F = (F1, F2, F3) ∈ L2(S2)
3.(5.26)

Define an operator M : H → H∗ as follows:

(M(v), h) = 2

∫
Ω3

ϕεij(
∗
u + v)εij(h)r dr dz, v, h ∈ H,(5.27)

where the function ϕ is given either by (1.7) or by (1.17), and εij(v) are defined by
(5.1). We consider the problem: Find a pair of functions (v, p) satisfying

v ∈ H, p ∈ Y,(5.28)

(M(v), h) − (B∗ p, h) = (K + F, h), h ∈ H,(5.29)

(Bv, w) = 0, w ∈ Y.(5.30)

Here B∗ is the operator adjoint of B and

(K + F, h) =

∫
Ω3

Kihir dr dz +

∫
S2

Fihi ds.(5.31)

The pair (u =
∗
u + v, p), where (v, p) is a solution of problem (5.28)–(5.30), will be

called the generalized solution of the problem (5.5)–(5.8), (5.11)–(5.15).
Let {Xm}∞m=1 and {Nm}∞m=1 be sequences of finite-dimensional subspaces in H

and Y, respectively, such that

lim
m→∞

inf
h∈Xm

||w − h||H = 0, w ∈ H,(5.32)

lim
m→∞

inf
g∈Nm

||f − g||Y = 0, f ∈ Y,(5.33)

inf
g∈Nm

sup
h∈Xm

(Bh, g)
||h||H||g||Y

≥ β > 0,(5.34)

Xm ⊂ Xm+1, Nm ⊂ Nm+1, m ∈ N.(5.35)

We seek an approximate solution of the problem (5.28)–(5.30) of the form

vm ∈ Xm, pm ∈ Nm,(5.36)

(M(vm), h) − (B∗ pm, h) = (K + F, h), h ∈ Xm,(5.37)

(B vm, g) = 0, g ∈ Nm.(5.38)

Theorem 5.1. Suppose that the function ϕ is given by (1.7) and that the con-
ditions (A1), (A2), (2.24) are satisfied. Let the conditions (A0), (5.3) hold and Ω3

be defined by (5.4). Assume also that (5.25), (5.26), (5.32)–(5.35) are fulfilled. Then
there exists a solution v, p of the problem (5.28)–(5.30), and for an arbitrary m ∈ N

there exists a solution of the problem (5.36)–(5.38), and a subsequence {vk, pk} can
be extracted from the sequence {vm, pm} such that

vk → v in H, pk → p in Y.(5.39)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



FLOW OF ELECTRORHEOLOGICAL FLUIDS 1647

Indeed, by using the arguments of Theorem 5.1 from [8], we prove that there exists
a solution of the problem (5.36)–(5.38) for any m ∈ N, and a subsequence {vk, pk}
can be extracted from the sequence {vm, pm} such that

vk ⇀ v in H, pk ⇀ p in Y.(5.40)

(5.39) is proved by using (5.40) and the reasonings of the Theorem 2.1 from [2].
Theorem 5.2. Suppose that the function ϕ is given by (1.17) and that the

conditions (A0), (A3), (2.23), (2.24) are satisfied. Let also (5.25), (5.26), (5.32)–
(5.35) hold. Then, there exists a unique solution of the problem (5.28)–(5.30), and
there exists a unique solution of the problem (5.36)–(5.38) for any m ∈ N; in addition,
vm → v in H, pm → p in Y.

The proof of this theorem is analogous to the proof of Theorem 2.1 from [2].

6. Electrorheological clutch.

6.1. Problem on an electric field. Figure 1 (left) displays a scheme of an
electrorheological clutch consisting of two coaxial cylinders. The gap between the
cylinders is filled with an electrorheological fluid. The inner cylinder hosts a high
voltage lead supplying the lateral surface, which serves as the electrode, whereas the
lateral surface of the outer cylinder acts as the counter electrode.

ω

Gap between
cylinders filled
with ER fluid

Electrodes

ri

li
le

re

Ω3

z

r

Fig. 1. Simple model for an electrorheological fluid clutch (left) and the computational domain
(right).

By applying a voltage, one enhances the viscosity of the fluid. Under sufficiently
large voltage the inner and external cylinders are almost rigidly bound and rotate
practically at the same angular velocity. By varying the voltage, one obtains various
slippage of the cylinders, i.e., various transmission ratio of the clutch.

The flow in the clutch is axially symmetric. According to Figure 1 (left) and (5.3),
(5.4), the domain Ω3 corresponding to the flow in the clutch has the form shown in
Figure 1 (right).

The vector function of electric field E is defined as E = − grad θ, where θ is the
function of the electric potential that meets the following equation:

div(χ grad θ) = 0,(6.1)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1648 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

where χ is the dielectric permittivity. In our case grad θ = (∂θ∂r ,
∂θ
∂z ), and (6.1) takes

the form

∂

∂r

(
χ
∂θ

∂r

)
+

χ

r

∂θ

∂r
+

∂

∂z

(
χ
∂θ

∂z

)
= 0 in Ω3,(6.2)

and θ satisfies the following boundary conditions:

θ = U on D1, θ = 0 on D2,
∂θ

∂r
= 0 on S0,

ν1χ
∂θ

∂r
+ ν3χ

∂θ

∂z
= 0 on S\(D1 ∪D2 ∪ S0).(6.3)

Here, U = constant> 0, S is the boundary of Ω3, and

D1 = {(r, z)| r = ri, z ∈ (le − li, le)},

D2 = {(r, z)| r = re, z ∈ (le − li, le)},

S0 = {(r, z)| r = 0, z ∈ (0, le − li)}.(6.4)

Let

Z =

{
w|w ∈ C∞(Ω3),

∂w

∂r
= 0 onS0

}
,(6.5)

and let Z0 be the closure of Z with respect to the norm

||w||Z0 =

(∫
Ω3

[
w2 +

(
∂w

∂r

)2

+

(
∂w

∂z

)2
]
r dr dz

) 1
2

.(6.6)

Again, we consider the following space:

Z = {w|w ∈ Z0, w = 0 on D1 ∪D2}.(6.7)

The expression

||w||Z =

(∫
Ω3

[(
∂w

∂r

)2

+

(
∂w

∂z

)2
]
r dr dz

) 1
2

(6.8)

defines a norm in Z being equivalent to the norm of Z0 determined by (6.6). Let θ0

be a function such that

θ0 ∈ Z0, θ0 = U on D1, θ0 = 0 on D2.(6.9)

We assume that χ is a function that is integrable in Ω3 with respect to the measure
r dr dz, and in addition,

b1 ≥ χ ≥ b0 > 0 a.e. in Ω,(6.10)

where b0 and b1 are positive constants.
Define a bilinear form a : Z0 × Z → R as follows:

a(q, h) =

∫
Ω3

χ

(
∂q

∂r

∂h

∂r
+

∂q

∂z

∂h

∂z

)
r dr dz, q ∈ Z0, h ∈ Z.(6.11)
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Consider the following problem: Find θ1 satisfying

θ1 ∈ Z, a(θ1, h) = −a(θ0, h), h ∈ Z.(6.12)

The function θ = θ0 + θ1 is a generalized solution of the problem (6.2), (6.3).
The Riesz theorem implies the following result.
Theorem 6.1. Suppose that (6.9) and (6.10) are satisfied. Then there exists a

unique solution of the problem (6.12), and there exists a unique generalized solution
θ of the problem (6.2), (6.3). The function θ is represented in the form θ = θ0 + θ1,
where θ0 is a function satisfying (6.9) and θ1 is the solution of the problem (6.12).

6.2. Problem on the fluid flow. We assume that the velocity vector u and the
pressure p depend only on r, z in the mobile orthonormal basis er, eα, ez of cylindrical
coordinate system r, α, z and, in addition, u(r, z) = (0, u2(r, z), 0). We denote the
function u2 by u.

According to (2.1), we have

ε12(u) = ε21(u) =
1

2

(
∂u

∂r
− u

r

)
, ε23(u) = ε32(u) =

1

2

∂u

∂z
,

ε11(u) = ε22(u) = ε33(u) = ε13(u) = ε31(u) = 0,(6.13)

and

I(u) =
1

2

(
∂u

∂r
− u

r

)2

+
1

2

(
∂u

∂z

)2

.(6.14)

In line with (5.5)–(5.7), the motion equations take the form

∂p

∂r
=

∂p

∂z
= 0,(6.15)

∂

∂r

(
ϕ

(
∂u

∂r
− u

r

))
+

∂

∂z

(
ϕ
∂u

∂z

)
+

2

r
ϕ

(
∂u

∂r
− u

r

)
= 0,(6.16)

where volume force vector is ignored.
In the case under consideration, the condition of incompressibility (2.9) is satis-

fied.
We prescribe velocities on the surfaces of the internal and external cylinders S1

and specify surface forces on the top boundary of the electrorheological fluid S2. In
this case, we have (see Figure 1 (right))

S1 =

4⋃
i=1

S1i,(6.17)

where

S11 = {(r, z)|z = 0, r ∈ (0, re)}, S12 = {(r, z)|r = re, z ∈ (0, le)},

S13 = {(r, z)|z = le − li, r ∈ (0, ri)}, S14 = {(r, z)|r = ri, z ∈ ((le − li), le)},
(6.18)

and

S2 = {(r, z)|z = le, r ∈ (ri, re)}.(6.19)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1650 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

In the case that the inner cylinder is leading, we deal with the following boundary
conditions:

u(r, z) =

⎧⎨
⎩

0 on S11 ∪ S12 ∪ S0,
ωr on S13,
ωri on S14,

(6.20)

ϕ
∂u

∂z
= 0 on S2, p = c̃ on S2.(6.21)

Here ω is the angular velocity of the internal cylinder, and we assume that F1 = F2 =
0, F3 = −c̃, c̃ = constant> 0; see (5.12)–(5.14). S0 is given in (6.4), and according to
(5.15), we have

u
∣∣
S0

= 0, lim
r→0

(
∂u

∂r
− u

r

)
(r, z) = 0, z ∈ (0, le − li).(6.22)

In the case that the external cylinder is leading, we consider the boundary con-
ditions of this type:

u =

⎧⎨
⎩

ωr on S11,
ωre on S12,
0 on S13 ∪ S14 ∪ S0,

(6.23)

where ω is the angular velocity of the external cylinder, and, in addition, (6.21) and
(6.22) hold.

In the case under consideration the set J0 has the form

J0 = {v|v ∈ C∞(Ω3), v = 0 on S0},(6.24)

and H0 is the closure of J0 relative to the norm (compare with (5.16)–(5.18), (6.14))

||v||H0 =

(∫
Ω3

[
v2 +

(
∂v

∂r
− v

r

)2

+

(
∂v

∂z

)2
]
r dr dz

) 1
2

.(6.25)

The space H appears as

H = {v|v ∈ H0, v = 0 on S1},(6.26)

and the norm in H is given by

||v||H =

(∫
Ω3

[(
∂v

∂r
− v

r

)2

+

(
∂v

∂z

)2
]
r dr dz

) 1
2

.(6.27)

It follows from Lemma 5.1 that the expressions (6.25) and (3.8) with v1 = 0,
v2 = v, v3 = 0 define equivalent norms in H0, whereas (6.27) and (3.8) are equivalent
norms in H.

Equation (6.15) implies p = c = constant, and (6.21) yields c = c̃.

Let
∗
u be a function from H0 that satisfies either (6.20) or (6.23) according to

which cylinder, inner or external, is leading.
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The operator M : H → H∗ is defined as follows:

(M(v), h) =
1

2

∫
Ω3

ϕ

[(
∂(

∗
u + v)

∂r
−

∗
u + v

r

)(
∂h

∂r
− h

r

)
+

∂(
∗
u + v)

∂z

∂h

∂z

]
r dr dz.

(6.28)

In the case under consideration the velocity vector is orthogonal to the vector of the
electric field at each point (r, z) ∈ Ω3. Therefore, in (6.28) the function ϕ is defined
by (see (1.7))

ϕ = b(|E|, 0)(λ + I(
∗
u + v))−

1
2 + ψ(I(

∗
u + v), |E|, 0),(6.29)

where the function I is given by (6.14).
We consider the following problem: Find a function v such that

v ∈ H, (M(v), h) = 0, h ∈ H.(6.30)

The pair (u =
∗
u + v, p), where v is a solution of the problem (6.30) and p = c̃, is a

generalized solution of the problem (6.15), (6.16), (6.21), (6.22), and (6.20) or (6.23).
Let {Vm}∞m=1 be a sequence of finite-dimensional subspaces in H such that

lim
m→∞

inf
h∈Vm

||w − h||H = 0, w ∈ H,(6.31)

Vm ⊂ Vm+1, m ∈ N.(6.32)

We define an approximate solution of the problem (6.30) of the form

vm ∈ Vm, (M(vm), h) = 0, h ∈ Vm.(6.33)

It follows from Theorem 5.2 that for the function ϕ defined by (6.29) there exists a
unique solution of the problems (6.30) and (6.33); in addition, vm → v in H.

6.3. Simulation results. The nonlinear problem (6.30) is solved through solv-
ing a sequence of linear problems. Given v0 ∈ H, find vk ∈ H, k = 1, 2, . . . , such that

d ∈ H, (M̂(vk−1)d, h) = −(M(vk−1), h) ∀h ∈ H,(6.34)

vk = vk−1 + α d.(6.35)

Here α is a relaxation parameter, and M̂ is the linearized version of the operator M
(cf. [2]), defined as

(M̂(w)v, h) =
1

2

∫
Ω3

(b(|E|, 0)(λ + I(
∗
u + w))−

1
2 + ψ(I(

∗
u + w), |E|, 0))

×
[(

∂(
∗
u + v)

∂r
−

∗
u + v

r

)(
∂h

∂r
− h

r

)
+

∂(
∗
u + v)

∂z

∂h

∂z

]
r dr dz.(6.36)

Note that (M̂(w)v, h) = (M(v), h) whenever w = v. The algorithm can be termed
the Birger–Kachanov method with relaxation; see [5] for the analysis of the original
Birger–Kachanov method.

We consider the electrorheological fluid called the Rheobay TP AI 3656, a prod-
uct of Bayer [1]. The experimentally obtained flow curves (relating the shear stress
to the shear rate) of this product, corresponding to different electric field strengths
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4.0 × 104 V

3.5

3.0

2.5

2.0

1.5

1.0

Fig. 2. Contour plot of the electric potential: wide gap configuration.

orthogonal to the velocities, have been approximated by cubic splines. The viscosity
function ϕ is then calculated from these splines; see the appendix for details.

In order to understand the behavior of our electrorheological fluid in our model
clutch, we study the flow in two different geometrical configurations of the clutch,
the wide- and the narrow gap configurations. In the wide gap configuration, we take
ri = 35 mm, re = 70 mm, and li = 250 mm, le = 300 mm. During this test the
cylinder (outer or inner, whichever is leading) rotates with an angular velocity of 125
rad sec−1. For the narrow gap configuration, we take a much narrower gap between
the cylinders by setting ri = 24 mm and re = 25 mm. In this case li = 25 mm, le = 30
mm, and the angular velocity of the leading cylinder (outer or inner) is 5 rad sec−1.

The function of the electric field potential θ was calculated approximately by
using the Galerkin method with continuous and piecewise linear finite elements for
the problem (6.12).

Figure 2 shows a contour plot of the electric potential calculated on the wide gap
configuration for an applied voltage of 10 kV on the inner electrode. The distribution
of this electric potential is linear along any cross-section inside the gap between the
electrodes.

Angular velocity profiles for different applied voltages, calculated at one cross
section of the gap, are shown in Figures 3 and 4.

From the calculations performed we arrive at the following conclusions:
1. The electric field E = (Er, Ez) in the gap between the cylinders is close to a

constant vector (U/(ri − re), 0) for the narrow and wide gap configurations.
At each point between the electrodes, with the exception of points in a very
small zone by the ends of the electrodes, the electric field (Er, Ez) tends to
(U/(ri − re), 0) as (re − ri)/ri tends to zero. The electric field decays sharply
as the distance to the electrodes increases (see Figure 2).

2. In the case when the gap between the cylinders is wide and the outer cylinder
is leading, a zone with a constant angular velocity is formed near the outer
cylinder, and this zone increases with the increase of voltage (see Figure 3
left).

3. In the case when the gap between the cylinders is wide and the inner cylinder
is leading, a zone with a constant angular velocity is formed near the outer
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Fig. 3. Angular velocity profile. Wide gap configuration with leading outer cylinder (left) and
leading inner cylinder (right). The curves C1, C2, and C3 correspond to U = 0 V, U = 50 kV, and
U = 100 kV, respectively.
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Fig. 4. Angular velocity profile. Narrow gap configuration with leading outer cylinder (left)
and leading inner cylinder (right). The curves C1, C2, and C3 correspond to U = 0 V, U = 2 kV,
and U = 3 kV, respectively.

cylinder, as in the case when the outer cylinder is leading. This zone increases
under the increase of voltage (see Figure 3 right).

4. In the case of a narrow gap between the cylinders, the zone with a constant
angular velocity is not formed. The velocity profiles are almost linear at
various voltages. No matter what cylinder is leading and what voltage is
applied, the velocity profile tends to linear as (re − ri)/ri tends to zero (see
Figure 4). In this case essentially the velocity profile does not depend on the
shape of a flow curve, and the shear rate is a constant.

We note that in the case of a wide gap between the cylinders, the zone with
a constant angular velocity is also formed under the flow of the Bingham fluid.
The proximity of the Bingham velocity profiles to the profiles presented in Figure 3

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1654 R. H. W. HOPPE, W. G. LITVINOV, AND T. RAHMAN

depends on the proximity of approximations of the flow curves by the affine functions
τ0+b0γ, where τ0 and b0 are the yield stress and the viscosity of the Bingham fluid
and γ is the shear rate. (About the proximity of solutions for close flow curves, see
[13, section 6.2].)

As may be seen from the appendix Figure A-1, one cannot obtain good approxi-
mations of the flow curves by affine functions, especially for small shear rates.

Appendix. Identification of the viscosity function. In the following, we
present a set of cubic splines (flow splines) approximating a set of experimentally
obtained flow curves and show how the viscosity function ϕ is calculated from these
splines. These flow curves (splines) are for the electrorheological fluid called Rheobay
TP AI 3656, a product of Bayer, based on a water-free dispersion of polymer particles
in silicone oil (Baysilone Oil M); see [1] for specifications. The application of such a
product can be found in various devices, such as shock absorbers, vibration dampers,
clutches, and so on.

A.1. The flow splines. The set of cubic splines approximating experimentally
obtained flow curves corresponding to a set of different electric field strengths, which
are orthogonal to the velocity, are shown in Figure A-1. Complete information for the
reconstruction of these splines, i.e., the sample points representing the shear rates γ,
the data representing the shear stress τ , and the end slopes (derivatives), are provided
in Table A-1.

Each flow curve has been approximated within the interval [γ0, γ1] (in our case
γ0 = 100 sec−2, γ1 = 2000 sec−2) by a cubic spline with the given end slopes. Outside
of the interval [γ0, γ1] the splines have been extended on R+ by straight lines (see
the dotted lines in Figure A-1), so that the obtained function γ → τ(γ) becomes
continuously differentiable in R+.

A linear interpolation is used to calculate the function τ(γ) for values of |E|
intermediate between the values given in the Table A-1.
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Fig. A-1. Flow splines showing the effect of field strength (50Hz, AC) and shear rate γ on
shear stress τ at 40oC. The cubic splines are constructed using the data provided in Table A-1.
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Table A-1

The table contains complete information for the reconstruction of the five cubic splines displayed
in Figure A-1. Each of the last five columns in the table corresponds to a spline approximating a
flow curve, containing two end slopes and eleven data values corresponding to the eleven sample
points in the first column of the table.

Shear stress (Pa)

Shear rate 0.0 1.5 2.0 2.5 3.0
γ [per sec] V/mm kV/mm kV/mm kV/mm kV/mm

1.0 ×102 30.2 563.0 979.0 1360.0 1720.0
2.0 ×102 48.0 650.0 1070.0 1500.0 1900.0
4.0 ×102 69.3 695.0 1140.0 1600.0 2030.0
6.0 ×102 83.5 700.0 1170.0 1640.0 2070.0
8.0 ×102 100.0 712.0 1180.0 1670.0 2110.0
1.0 ×103 110.0 723.0 1200.0 1676.0 2140.0
1.2 ×103 115.0 727.0 1210.0 1686.0 2160.0
1.4 ×103 120.0 731.0 1220.0 1693.0 2180.0
1.6 ×103 125.0 735.0 1240.0 1696.0 2190.0
1.8 ×103 130.0 740.0 1250.0 1706.0 2200.0
2.0 ×103 135.0 743.0 1254.0 1710.0 2210.0

Slope at left end 0.180 0.870 0.910 1.400 1.800
Slope at right end 0.025 0.015 0.020 0.020 0.050

A.2. The viscosity function. We now show how the viscosity function ϕ is
calculated from the function τ(γ). Let τ0 be the point of intersection of a left dotted
line with the shear stress axis. This dotted line is the continuation of the flow curve
in the interval [0, γ0), and τ0 is the yield stress.

The viscosity function, in the case of a simple shear flow, is determined as follows:

ϕ =
1

2

τ

γ
, where γ =

(
1

2
I(u)

) 1
2

.

Generalizing it to an arbitrary flow, we get

b =
τ0√
2

and ψ =
τ − τ0

2γ
=

τ − τ0

(2I(u))
1
2

.(A-1)

For a fixed value of |E| and I(u), we can thus find the value of ϕ using (A-1) and
(6.29), i.e.,

ϕ =
b

(λ + I(u))
1
2

+ ψ.(A-2)

The parameter λ was chosen equal to 1.011e−11 sec−2.
In the general case, when there are given flow curves for different values of |E|

and μ(u,E), one obtains expressions (A-2) for different values of |E| and μ(u,E); see
(1.7).
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[20] L. Schwartz, Analyse Mathématique 1, Hermann, Paris, 1967.
[21] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden Day, San

Francisco, 1964.
[22] M. Whittle, R. J. Atkin, and W. A. Bullough, Fluid dynamic limitations on the perfor-

mance of an electrorheological clutch, J. Non-Newtonian Fluid Mech., 57 (1995), pp. 61–81.

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 


