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In stochastic resonance, the combination of a weak signal with 
noise leads to its amplification and optimization1. This phe-
nomenon has been observed in several systems in contexts 
ranging from palaeoclimatology, biology, medicine, sociology 
and economics to physics1–9. In all these cases, the systems 
were either operating in the presence of thermal noise or were 
exposed to external classical noise sources. For quantum-
mechanical systems, it has been theoretically predicted that 
intrinsic fluctuations lead to stochastic resonance as well, a 
phenomenon referred to as quantum stochastic resonance1,10,11, 
but this has not been reported experimentally so far. Here we 
demonstrate tunnelling-controlled quantum stochastic reso-
nance in the a.c.-driven charging and discharging of single 
electrons on a quantum dot. By analysing the counting sta-
tistics12–16, we demonstrate that synchronization between the 
sequential tunnelling processes and a periodic driving sig-
nal passes through an optimum, irrespective of whether the 
external frequency or the internal tunnel coupling is tuned.

Stochastic resonance is known to arise in noisy bistable systems 
with proper periodic modulation of the switching rates. It manifests 
itself as an optimal synchronization of the driving signal with the 
switching process, as a function of the driving frequency f as well as 
the noise level. As a rule of thumb, this optimum occurs at1,13

Γ≈f2 (1)S

when the doubled driving frequency 2f approximately corresponds 
to the unperturbed switching rate ΓS. The switching rate ΓS thereby 
characterizes the noise spectrum of the system. Because stochastic 
resonance does not depend on the concrete physical realization 
of the system, this timescale matching condition should also be 
applicable to the tunnelling process between two quantum states. 
The noise source in that case is the intrinsic shot noise, which 
stems directly from the random quantum mechanical tunnel-
ling dynamics. To observe stochastic resonance in an a.c.-driven 
quantum dot, one needs to precisely control the tunnelling process 
between two quantum states of the quantum dot and measure the 
temporal fluctuations.

Figure 1a presents a scanning electron microscopy (SEM) image 
of our device structure as well as a schematic of the experimental 
set-up. The quantum dot (green e− island) is formed electrostatically 
by nanosized gate electrodes and behaves physically like an artificial 
atom, which can be charged or discharged via two tunnel-coupled 
electron reservoirs17. This single-electron charging process is sensed 
directly with the capacitively coupled quantum point contact (QPC), 
operated as a time-resolved charge detector15,16. The number Ne of 

bound electrons on the quantum dot is set in a controlled manner 
via the three gate voltages = V V VV ( , , )G d1 d2 d3 . Figure 1b presents 
a gate-dependent charge stability diagram of the quantum dot in 
the few-electron regime. Along the visible charging lines, a quan-
tum dot charge state μN is energetically close to the Fermi level μF 
of the tunnel-coupled reservoirs, allowing electrons to tunnel back 
and forth between the quantum dot and the reservoirs. The thermal 
energy kBT =  130 μ eV at T =  1.5 K is much smaller than the charging 
energy Ec ≈  2.5 meV. Ec is the difference between the electrochemi-
cal potential of the Nth and (N −  1)st electron. Therefore, only one 
additional electron can occupy the quantum dot at any given time 
(Coulomb blockade), causing sequential ‘in’ and ‘out’ tunnelling.

We set our experimental operation point VOP at the first charging 
line, indicated as Ne =  1 in Fig. 1b, where the electron number on the 
quantum dot fluctuates between zero and one. For the driving we 
periodically modulated the three gate voltages

π= +t A ftV V e( ) sin(2 ) (2)G OP d

with frequency f, amplitude A and in the direction of the unit vec-
tor ed.

To study the synchronization between the deterministic exter-
nal a.c. drive and internal stochastic tunnelling process, the detector 
current Iqpc(t) was monitored. A short snapshot of a typical detector 
trace is displayed in Fig. 1c, which directly reveals the sequential 
charging and discharging of the quantum dot. Whenever an elec-
tron tunnels into the quantum dot the current Iqpc jumps down, and 
it jumps up again when the electron tunnels out. From the detector 
traces we extract the times tin,out of all ‘in’ and ‘out’ tunnelling events 
(Fig. 1d).

The fluctuations in the occupation are characterized by the sin-
gle-electron counting statistics14. We thus counted the total number 
n(Tf) of ‘in’ and ‘out’ tunnelling events within one driving period 
Tf. From all possible periods and phases of the a.c. drive we finally 
obtained a counting probability P(n) (Fig. 1e). A quantitative mea-
sure for the fluctuations is given by the Fano factor

σ=
⟨ ⟩

=
⟨ ⟩−⟨ ⟩

⟨ ⟩
F

n
n n

n
(3)

2 2 2

calculated from the variance σ2 =  〈 n2〉  −  〈 n〉 2 and the mean 〈 n〉 
of the counting probability P(n). For a strictly Poissonian random 
process the Fano factor equals F =  1. Without external a.c. drive 
the Fano factor always exceeds or equals this Poissonian limit (that 
is, F ≥  1) due to the bunching of tunnelling-in and tunnelling-out 
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events (Supplementary Fig. 1). The driving-dependent antibunch-
ing of tunnelling events, signalled by a suppression of the Fano 
factor below the Poissonian limit (that is, F <  1) thus provides an 
unambiguous measure of the synchronization strength14.

The red circles in Fig. 2 depict the experimentally deter-
mined Fano factor F as a function of external driving frequency f. 
Additionally, the inset shows the corresponding mean counts 
〈 n〉  per period. The amplitude A =  10 mV was kept constant for 
all frequencies. The experimental Fano factor F has a minimum 
at f =  800 Hz, providing evidence for stochastic resonance. At the 
minimum, essentially two tunnelling events (one ‘in’ and one ‘out’) 
occur on average per driving period (〈 n〉  ≈  2), corroborating the 
optimal synchronization between external a.c. drive and internal 
tunnelling. If the a.c. drive is too slow ≪f( 800 Hz) , more than two 
tunnelling events occur within one period ⟨ ⟩ ≫n( 2)  and the Fano 
factor F increases above the Poissonian limit. If the drive is instead 
too fast ≫f( 800 Hz) , most electrons need multiple periods to tun-
nel in and out of the quantum dot ⟨ ⟩ ≪n( 2)  and the Fano factor F 
approaches the Poissonian limit from below.

Because the ‘in’ and the ‘out’ tunnelling events are alternating, 
and hence their occurrences are strictly dependent, stochastic reso-
nance can be equally characterized on the basis of the occurrences 
of the specific tunnel events (Supplementary Fig. 2) or on the basis 
of the set of all transitions independent of their direction, as we do 
here. To demonstrate, in the presently investigated system, that the 

general mechanisms of stochastic resonance are at play, we extracted 
the tunnelling rates Γin(t) and Γout(t) with which an electron enters 
and leaves the quantum dot at time t, respectively, from the experi-
mental data (see Methods).

Figure 3a displays the tunnelling-in and tunnelling-out rates for 
a quantum dot with driving frequency f =  800 Hz and amplitude 
A =  10 mV in the direction ed, as indicated in Fig. 1b. The in rate 
(red) instantly follows the external a.c. driving voltage, as given 
by equation (2), without any visible delay, corroborated by the 
fact that the rate at half of the period agrees with its initial value, 
Γin(0) =  Γin(Tf/2). The out rate (blue) is shifted by a half period Tf/2 
relative to the in rate and also agrees at half of the period with its 
initial value, Γout(0) =  Γout(Tf/2). This asymmetric modulation of 
the rates is caused by the periodic shift of the charging state μ0(t) 
around the symmetry level μS, as illustrated in Fig. 3b. At the 

symmetry level μS =  μ0 = …( )t T T0, , ,f f
1
2

 the in and out rates 

are equal. In the first half of a period (0 <  t <  Tf/2) the charging 
state is pushed below the symmetry level, that is μ0 <  μS, causing 
an enhancement of the in rate and a suppression of the out rate. 
An electron tunnels from the reservoir most probably into the 
quantum dot when the charge state is at its energetically lowest 

position = …( )t T T, ,f f
1
4

5
4

. In the second half of a period (Tf/2 <  t <  Tf) 

the charging state is instead pushed above the symmetry level, 
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Fig. 1 | Experimental set-up, device operation and statistical analysis. a, SEM image of the device structure with a schematic of the experimental set-up. 
The quantum dot (green e− island) is defined electrostatically by the red gates Vd1,d2,d3 and yellow gates Vd4,d5. The QPC charge detector is formed by the 
blue gate Vqpc. The quantum dot and QPC current paths are galvanically isolated from each other; the visible gap between the yellow middle gates is closed 
electrostatically and has the purpose of enhancing detector sensitivity. The quantum dot can be charged and discharged by electrons tunnelling in from 
(red arrow) and tunnelling out to (blue arrow) the coupled electron reservoirs. The tunnelling process is controlled and driven periodically by the three gate 
voltages = V V VVV ( , , )G d1 d2 d3 . Crossed squares indicate the ohmic contacts of the sample. b, Charge stability diagram of the quantum dot in the few-electron 
regime. The operation point VVG,OP is indicated by a circle with a dot at the charging line Ne =  1. The gate voltages VVG are periodically modulated along the 
highlighted direction eed. c, A typical time-resolved current trace Iqpc(t) of the QPC charge detector, revealing the sequential charging and discharging of 
the quantum dot. The shown trace was recorded with a drive of f =  800 Hz and an amplitude of A =  10 mV. d, Extracted ‘in’ (red) and ‘out’ (blue) tunnelling 
events relative to the external a.c. drive. The times tin,tout and the residence times τ are extracted from the detected events. e, Counting statistics P(n) for 
the number of tunnelling events within one driving period Tf. The Fano factor F =  σ2/〈 n〉 , equation (3), of the distribution is calculated from the mean 〈 n〉 
and variance σ2 =  〈 n2〉  −  〈 n〉 2 of the distribution.
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that is μ0 >  μS. There, the in rate is suppressed and the out rate 
is enhanced. The best opportunity to tunnel out occurs at the 
energetically highest position = …( )t T T, ,f f

3
4

7
4

. The transition rates 

Γin(t) and Γout(t) specify a two-state Markovian process for which 
the counting probability P(n) can be determined13,14 (see Methods). 
The theoretical results for the first moment of the number of transi-
tions and the Fano factor are in good agreement with the respective 
direct experimental outcomes, as can be seen from Figs. 2 and 4.

The resonance frequency f =  800 Hz at which the Fano factor 
attains its minimum also conforms well with the stochastic rule 

of thumb. The double resonance frequency 2f ≈  1,600 Hz approxi-
mately matches the tunnel coupling Γs ≈  1,675 Hz at the symmetry 
level μS. When the driving frequency is much faster than the tunnel 
coupling (that is, Γ ≪ f2s , an electron easily ‘misses’ the first good 
opportunity to tunnel and will wait until another good opportunity 
occurs, one or several periods later. These findings show that the 
variation of the frequency f conforms well with the idea of stochastic 
resonance as a resonance phenomenon.

The so-called ‘residence time’ is given by the time span dur-
ing which a quantum dot is occupied without interruption1. As a 
random variable it is characterized by a probability density func-
tion (p.d.f.), denoted as ρ1(τ). The blue dots in Fig. 3c display the 
experimentally determined residence time p.d.f. The residence time 
p.d.f. for fast driving with f =  10 kHz consists of a train of maxima 
at odd integer multiples of the half period1, that is τk =  (2k +  1)Tf/2, 
k =  0,1,2,… , demonstrating the waiting of the electron for a good 
tunnelling opportunity. At the resonance frequency f =  800 Hz 
instead, obeying 2f ≈  ΓS, ρ1(τ) quickly decreases with increasing 
residence times with a strong shoulder at Tf/2 and a weak shoulder 
at 3Tf/2, indicating optimal synchronization between internal tun-
nelling and the external a.c. drive.

Under the assumption that the time-periodic rates Γin/out(t) 
govern a Markovian process of alternate visits of the occupied (1) 
and empty (0) quantum dot states, the residence time p.d.f., ρ1(τ), 
can be calculated14 (see Methods). Figure 3c demonstrates that 
the residence time p.d.f.s from the Markovian model (solid lines) 
agree nicely with experimental statistics.

So far, we have succeeded in showing that the synchronization 
can be optimized by tuning the driving frequency f. Alternatively, 
one may aim at synchronizing a signal at fixed frequency f. Thereby, 
the tunnel coupling ΓS needs to be adapted to the double driving 
frequency 2f. The coupling ΓS depends on the size of the tunnel 
barriers, as illustrated in Fig. 4a. We tuned the coupling by shift-
ing the operation point VG,OP along the charging line (Fig. 1b). The 
driving frequency f =  1 kHz and the amplitude A =  10 mV were 
kept constant. The experimentally determined Fano factor F is 
plotted as a function of the tunnel coupling ΓS in Fig. 4b and the 
inset shows the corresponding mean 〈 n〉  of the counting statis-
tics. The experimental Fano factor F has a minimum at 1.75 kHz, 
which is close to the double driving frequency 2f =  2 kHz. At the 
minimum we also find nearly two tunnelling events per period 

0.3 1 3 10

Driving frequency, f (kHz)

0.9

1.0

1.1
F

an
o 

fa
ct

or
, F

80
0 

H
z

A = 10 mV

Measurement

Theory

0.3 1 3

f (kHz)

0.6

2

6

M
ea

n 
<

n
>

Fig. 2 | Frequency-dependent stochastic resonance. Experimental (red 
circles) and theoretical (black line) Fano factor F as a function of driving 
frequency f. The experimental data have a minimum at f =  800 Hz, in good 
agreement with the theoretical resonance frequency. Inset, Corresponding 
average number of tunnelling events per period 〈 n〉 . At the resonance 
frequency (vertical red line) nearly two tunnelling events (〈 n〉  ≈  2) occur on 
average per period.

ee

0µs

4
3TfTT

TfTT
2

TfTT
4

5
Measurement

Fit

a b c

4

3

2R
at

e 
(k

H
z)

1

0
0 0.5

Time, t /TfTT

1

Γin

ΓSΓΓ

Γout

ee

ee

1.5
Measurementa m

Theorye

f = 800 Hz

f = 10 kHz

1.0

0.5

0.0
0 1 2

Residence time, τ/ττ TfTT

3 4 5

p.
d.

f.
ρ 1(

τ)

Fig. 3 | Temporal modulation of the tunnelling process. a, Experimentally time-dependent tunnelling-in rate Γin(t) (red dots) and tunnelling-out rate 
Γout(t) (blue dots). The rates were extracted for a drive with f =  800 Hz and A =  10 mV. The fits (solid lines) are based on a Fourier expansion of the 
logarithm of the rates. The horizontal black line marks the tunnel coupling ΓS =  1,675 Hz at symmetry level μS. b, Asymmetric modulation of the rates is 
caused by the periodic shift of the quantum dot charging state around the symmetry level μS. At the symmetry level μS (t =  0, Tf/2), the two tunnelling 
rates are identical. An electron tunnels from reservoirs most probably into the quantum dot when the charge state is at its lowest position (t =  Tf/4). 
The best opportunity to tunnel out of the quantum dot occurs when the charging state reaches its energetically highest position (t =  3Tf/4). c, Periodic 
modulation of the tunnelling process is also observable in the residence time probability density ρ1(τ). For a fast driving frequency f =  10 kHz, the residence 
time probability density function (p.d.f.) ρ1(Δ t) displays a train of maxima at odd integer multiples of the half period τk =  (2k +  1)Tf/2, k =  0,1,2,…  At the 
lower driving frequency f =  800 Hz, the maximum at Tf/2 is accompanied by considerably suppressed satellites. In both cases the agreement between 
experiment (dots) and theory (solid lines) is striking.

                                                                             332



                     

(〈 n〉  ≈  2), corroborating the optimal synchronization of the Rice 
frequency defined as the rate of transition events into the occupied 
state12,13. Furthermore, we compared the experimental results with 
the outcome of the Markovian two-state model. According to our 
empirical finding the rates at different operation points are pro-
portional to the tunnel coupling ΓS. Therefore, the rates are given 
by Γ Γ Γ Γ Γ Γ= ∕∕ ∕t t( , ) ( ) ( , )* *in out S S S in out S . As reference we chose 
the extracted tunnelling rates (see Methods) with Γ *S  =  1,675 Hz. 
Figure 4 displays good agreement between the resulting theoreti-
cal Fano-factors and the average numbers of transitions with the 
according experimental findings.

We emphasize that there is a crucial difference between the 
variation of the external driving frequency f and the internal 
tunnel coupling ΓS. With a change of frequency f, the time aver-
ages of the transition rates as well as the values of their minima 
and maxima remain the same, while both rate characteristics alter 
upon a variation of the tunnel coupling ΓS. Hence the variation of 
ΓS corresponds more closely to the original characterization of the 
stochastic resonance phenomena, indicating that an increase of 
the noise up to a certain level can lead, counter-intuitively, to an 
improved signal-to-noise ratio.

Such a.c.-driven single-electron tunnelling has also been studied 
intensively in the form of turnstiles18, ratchets19 and pumps20, the lat-
ter being promising candidates for the redefinition of the ampere21. 
The functionality of these devices is based on the locking of the mean 

counts 〈 n〉  =  const., meaning that the number of transferred electrons 
per period is frequency independent and robust against noise. For 
the stochastic resonance discussed here with a relatively weak driving 
amplitude A =  10 mV, locking is not present, as is evident from the 
inset of Fig. 2. The observed synchronization is a consequence of the 
timescale matching of the external a.c. drive and the internal tunnel-
ling process. At a larger amplitude, A =  30 mV (Supplementary Fig. 3), 
however, the average number of transitions starts to develop plateaux 
around the respective resonance values of frequency and tunnel coef-
ficient, in accordance with theoretical12–14 and experimental22 obser-
vations for strongly a.c.-driven stochastic resonance systems. This 
confirms that the locking in a.c.-driven single-electron devices is sub-
ject to the same statistical physics and can be seen as a special case of 
stochastic resonance in the limit of strong a.c. driving.

Stochastic resonance in a.c.-driven single-electron tunnelling 
should also occur in direct shot-noise measurements23 or cor-
responding heat and work distributions24.The optimal working 
point for on-demand single-electron sources25,26, which provide an 
important toolbox for quantum electronics, is defined by tunnel-
ling-driven stochastic resonance. Quantum dots have been utilized 
successfully as displacement sensors for nanomechanical oscilla-
tors27,28. Their resolution is thought to be limited by the standard 
quantum limit, due to the stochastic backaction of the single-elec-
tron tunnelling process. The phenomenon of tunnelling-driven sto-
chastic resonance provides a way to overcome this limit.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41567-018-0412-5.
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Methods
Experimental set-up. Our quantum dot device is based on a GaAs/AlGaAs 
heterostructure, which forms a two-dimensional electron gas (2DEG) 100 nm 
below the surface. The 2DEG charge carrier density is ne =  2.4 ×  10−11 cm, and the 
mobility is μe =  5.1 ×  105 cm2 V−1 s−1. On the surface we patterned nanosized metallic 
top gates (7 nm Cr, 30 nm Au) using electron-beam and optical lithography. The 
quantum dot and QPC are formed electrostatically. By applying negative voltages 
to the gates, we deplete the 2DEG below.

All measurements were carried out on a low-noise d.c. transport set-up in a 4He 
cryostat at 1.5 K. Filtering and signal amplification were fully carried out outside 
the cryostat at room temperature. All gates were filtered by a 1 MHz low-pass 
filter. The QPC source was filtered by a 10 Hz low-pass filter and a 1:1,000 voltage 
divider was used to increase the resolution. The QPC charge detector current was 
amplified with a low-noise FEMTO transimpedance amplifier (100 MV A−1 gain, 
100 kHz bandwidth), connected to the QPC drain by a 25 pF low-capacity coaxial 
line. An Adwin Pro2 real-time system was used (1 GHz ADSP T12) to supply the 
voltage (16-bit digital-to-analog convertor card) and to record the QPC detector 
signal (18-bit analog-to-digital convertor card) for the statistical analysis. The a.c. 
signals were also generated by the ADwin system. The input and output sampling 
rates were ΓS =  400 kHz.

To minimize the crosstalk with the drive, the detector was kept at a constant 
working point by periodically adjusting the QPC gate voltage Vqpc(t).

The detector current Iqpc(t) was monitored with a temporal resolution of 
Δ ts =  2.5 μ s. For significant statistics we always recorded traces for a duration 
of 10 min, typically extended over 105–107 driving periods and containing 
approximately 106 tunnelling events.

Extraction of tunnelling rates. Starting from a long detector trace of alternating 
in and out states the numbers Nin(te) (Nout(te)) with which an electron has entered 
(left) the quantum dot within a bin of width Δ ts around te =  t mod Tf and the 
numbers N0(te) (N1(te)) representing how often the quantum dot is empty 
(occupied) within the same bin are determined. On the basis of these numbers 
one can estimate the conditional probabilities of a transition to the occupied 
state within the interval Δ ts as p(1, t +  Δ ts|0, t) =  Nin(te)/N0(te) and, similarly, 
of a transition to an empty dot as p(0, t +  Δ ts|1,t) =  Nout(te)/N1(te). For a 
sufficiently small bin width Δ ts, the conditional probabilities can be expanded 
as p(1, t +  Δ ts|0) ≈  Γin(t)Δ ts and (0, t +  Δ ts|1) ≈  Γout(t)Δ ts, yielding for the 
time-periodically varying rates
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The dots in Fig. 3a represent the results of equation (4) for bin width 
Δ ts =  Tf/500. Solid lines are fits based on a Fourier expansion of the logarithm of 
the rate with at most three higher harmonics. The experimental in and out rates 
do not cross exactly at t =  0, Tf/2, … , because the charging state was not perfectly 
adjusted to the symmetry level μS. Also, the experimental rates differ slightly 
in their form. This has two main causes. First, the two tunnelling processes are 
differently affected due the twofold spin degeneracy of the first charging state29,30, 
which slightly shifts the symmetry level μ μ= + ∕k T 2S F B  above the Fermi level 
μF. Second, the a.c. drive also modulates the size of the tunnelling barriers.

Generally, the in and out rates exhibit a non-trivial dependence on the driving 
frequency f. Because, in the present case, the driving frequency f is much smaller 
than any electronic or phononic timescale relevant for the tunnelling process of an 

electron, the rates depend adiabatically on the frequency f, that is Γin/out(t, f) = 
Γin/out(tf/f*, f*), where f* is a reference frequency, which we chose as f* =  800 Hz.

Counting statistics. For the two-state Markov process with periodically time-
dependent rates Γin(t) and Γout(t), the probabilities pα(n;t, s) to find the quantum 
dot at time s in the empty or the occupied state α =  0, 1, respectively, and to observe 
n transitions until the time t >  s can be calculated as the solution of a hierarchy of 
first-order differential equations with respect to time t (refs. 13,14). This hierarchy 
can be solved successively starting at n =  0. Choosing in pα(n;t, s) the later time as 
t =  Tf +  s with 0 ≤  s <  Tf one obtains the counting statistics P(n;s) =  p0(n, Tf +  s, s) 
+  p1(n, Tf +  s, s) for the number of transitions within a period, which still depend 
on the initial phase 2π s/Tf at which the counting window begins. For a comparison 
with the experimental, phase-averaged results the mean over this phase is 
performed, yielding the averaged counting statistics ∫= ∕P n sP n s T( ) d ( ; )

T
f0

f , from 
which the moments of n and the Fano factor can be determined. The theoretical 
results for the first moment of the number of transitions and the Fano factor are in 
good agreement with the respective direct experimental outcomes, as can be seen 
from Figs. 2 and 4. The average number of transitions per period at the minimum 
is only slightly larger than two, in accordance with the matching condition of the 
driving frequency with the average Rice frequency defined as the rate of transition 
events into the occupied state12,13.

Residence time p.d.f. The residence time p.d.f. ρ1(τ) can be obtained in terms 
of the conditional p.d.f. ρ(τ|s) =  Γout(τ +  s)P1(τ +  s|s) to find the quantum 
dot occupied without interruption during the time span (s, s +  τ), where 

∫τ Γ+ ∣ = −
τ+{ }P s s t t( ) exp d ( )

s

s
1 out  denotes the probability for a quantum 

dot being permanently occupied from s to τ +  s. To obtain the residence time 
p.d.f. the conditional p.d.f. ρ1(τ|s) must be averaged with respect to the time s 
at which an electron occupies the quantum dot. These events occur according 
to the p.d.f. ∫ρ Γ= ∕ Γs s p s s p s( ) ( ) ( ) ( ) ( )

T
in in 0 0 in 0

f . Because we disregard initial 
transients, the probability p0(s) to find the quantum dot unoccupied at time s is 
determined as the asymptotic, and hence periodic, solution of the master equation 

Γ Γ Γ̇ = − + +p t t t p t t( ) [ ( ) ( )] ( ) ( )0 in out 0 out . This yields, for the residence time, the 
result p.d.f.14
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Because the two tunnelling rates Γin/out(t) differ in phase but only little in form, 
the residence time probability density ρ0(τ) for the unoccupied (intervals between 
‘out’ and ‘in’ events) quantum dot is almost identical to that of the occupied 
quantum dot.
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