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Abstract We consider the numerical solution of
optimization problems for systems of partial differen-
tial equations with constraints on the state and design
variables as they arise in the optimal design of the shape
and the topology of continuum mechanical structures.
After discretization the resulting nonlinear program-
ming problems are solved by an “all-at-once” approach
featuring the numerical solution of the state equations
as an integral part of the optimization routine. In par-
ticular, we focus on primal-dual Newton methods com-
bined with interior-point techniques for an appropriate
handling of the inequality constraints. Special empha-
sis is given on the efficient solution of the primal-dual
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system that results from the application of Newton’s
method to the Karush–Kuhn–Tucker conditions where
we take advantage of the special block structure of the
primal-dual Hessian. Applications include structural
optimization of microcellular biomorphic ceramics by
homogenization modeling, the shape optimization of
electrorheological devices, and the topology optimiza-
tion of high power electromotors.

1 Introduction

The optimization of the shape and the topology of con-
tinuum mechanical structures by means of a systematic,
physically consistent design methodology is referred to
as structural optimization. The design criteria are chosen
according to a goal oriented operational behavior of the
structures under consideration and typically lead to non-
linear objective functionals depending on the state vari-
ables describing the operational mode and the design
variables determining the shape and the topology. The
state variables are assumed to satisfy differential equa-
tions reflecting the underlying physical laws whereas
technological aspects may give rise to further equal-
ity and inequality constraints on both the state and the
design variables.

Although structural optimization can be traced back
to the work of Bernoulli, Euler, Lagrange, and Saint-
Venant, it became its own discipline during the second
half of the last century when the rapid progress in elec-
tronic data processing required the development and
implementation of highly efficient and robust algorith-
mic optimization tools (cf., e.g., the monographs by [1,3,
4,13,14,27,28,45,48,50,55] and the references therein).
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Figure 1 shows a classical example in structural opti-
mization, namely the topology optimization of a can-
tilever consisting of a homogeneous, isotropic material
with elasticity tensor E = (Eijk�) occupying a fraction
γ |�|, 0 < γ < 1, of a bounded domain � ⊂ R

2. Assum-
ing that the cantilever is fixed on a part of its boundary
and subject to volume and surface forces f and t, the
issue is to distribute the material in such a way that the
structure has maximal stiffness (minimal compliance).
The state variable is the deformation u of the cantile-
ver, whereas the design variable is a density function
ρ ∈ K ⊂ {µ|µ : �→ [0, 1]} such that the class of admis-
sible elasticity tensors is of the form E(ρ) := ρE. The
optimization problem can be stated as follows:

inf
u,ρ

J(u, ρ) , J(u, ρ) :=
∫

�

f · u dx+
∫

�N

t · u ds (1)

where ρ ∈ K and u satisfy the equations of linear elas-
ticity

− div σ (u) = f in �, (2)

u = 0 on �D, (3)

n · σ (u) = t on �N, (4)

n · σ (u) = 0 elsewhere (5)

with Hooke’s law σ (u) = E(ρ)ε(u) as the constitutive
equation. Here, σ stands for the stress tensor and ε(u) =
1/2(∇u + (∇u)T) refers to the linearized strain tensor.
Moreover, ρ ∈ K is subject to the equality constraint∫

�

ρ dx = γ |�|. (6)

If we choose ρ ∈ L∞(�; {0, 1}), the resulting 0-1 opti-
mization problem is ill-posed. As an appropriate relax-
ation, ρ is allowed to take all possible values between
0 and 1, i.e., K := L∞(�; [0, 1]).
Remark 1 In practice, the density function ρ is modi-
fied as follows: Firstly, to avoid problems with the loss
of ellipticity, 0 < ρmin � 1 is chosen as a lower bound.
Secondly, to reduce the amount of ”grey zones” in the
design (regions where ρ attains intermediate values) the

Fig. 1 Topology optimization of a cantilever

extreme values 1 and ρmin are enforced. A possible way
to do that is by the so-called SIMP-approach (simple iso-
tropic material with penalization) where ρ is replaced by
ρm with an appropriately chosen penalization parame-
ter m > 1 (cf., e.g., [67]).

After discretization of the problem by conforming P2
elements for the state variable and conforming P1 ele-
ments for the design variable with respect to a simplicial
triangulation of the computational domain (lower or-
der finite elements give rise to unwanted checkerboard
patterns in the design), the discretized optimization
problem can be stated as a constrained nonlinear pro-
gramming (NLP)problem:

minimize f (x1, x2) (7a)

over (x1, x2) ∈ R
n1 × R

n2 ,

subject to: h1(x1, x2) := A(x2)x1 − b = 0, (7b)

subject to: h2(x1, x2) :=Mx2 − γ |�| = 0, (7c)

ρmin ≤ x2, i ≤ 1 , 1 ≤ i ≤ n2 , (7d)

where x1 ∈ R
n1 and x2 ∈ R

n2 stand for the discrete state
and design variables, f represents the discretized objec-
tive functional, A(x2) ∈ R

n1×n1 and b ∈ R
n1 represent

the stiffness matrix and the load vector of the discret-
ized elasticity equations, and M ∈ R

n2×n2 results from
the discretization of the equality constraint (6).

As far as the solution of Eqs. 7a–7d is concerned, tra-
ditional techniques rely on what is called the alternating
approach (cf., e.g., [1]): Given a design, the discretized
state equations are numerically solved, followed by an
update of the design variables based on an appropriate
sensitivity analysis. This process is then continued until
convergence. Recently, new and more efficient methods
have been developed and implemented which use a so-
called “all-at-once” strategy where the numerical solu-
tion of the discretized state equations is an integral part
of the optimization routine (cf., e.g., [7,8,35,39,44,53]).
Typical representatives of this class of techniques are
primal-dual Newton methods treating inequality con-
straints either by interior-point methods [35,39,44] or
active set strategies [5,29].

We emphasize that in this paper we follow the strat-
egy “discretize first, then optimize”. We remark that the
alternative approach “optimize first, then discretize” can
be realized as well, e.g., by considering interior-point
methods in function space (see, for instance, [56–58,61,
62]).

The paper is organized as follows: In Sect. 2, we
consider primal-dual Newton interior-point methods
focusing on the iterative solution of the primal-dual
system arising from the application of Newton’s method
to the KKT conditions. We also discuss global
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convergence issues by means of a hierarchy of merit
functions combined with a suitable watchdog strategy.
Then, in Sect. 3, we apply these methods to the struc-
tural optimization of biomimetical materials, namely
biomorphic microcellular SiC ceramics, where the state
equations are homogenized equations of linear elasticity
and the design variables are geometric microstructural
quantities. As an example of shape optimization in fluid
mechanics, we consider the shape optimization of elec-
trorheological shock absorbers. Here, the state equa-
tions are based on a regularized Bingham-type model,
whereas the design parameters are the de Boor con-
trol points of a B-spline representation of the inlet and
outlet boundaries of the electrorheological ducts of the
fluid chamber. Finally, we address a topology optimiza-
tion problem in high power electronics with the quasi-
stationary limit of Maxwell’s equations (eddy currents
equations) as the state equations and the electric con-
ductivity as the design variable.

2 Primal-dual Newton methods

We consider constrained NLP problems of the form

minimize f (x1, x2) (8a)

over (x1, x2) ∈ R
n1 × R

n2 ,

subject to: h(x1, x2) = 0, (8b)

g(x1, x2) ≥ 0, (8c)

where f : Rn1 × R
n2 → R is the discretized objec-

tive functional depending on the discrete state variables
x1 ∈ R

n1 and design variables x2 ∈ R
n2 , (8b) with h =

(h1, h2)
T : Rn1 ×R

n2 → R
m , m ≥ n1, comprises the dis-

cretized state equation h1 : Rn1 ×R
n2 → R

n1 and possi-
bly further equality constraints h2 : Rn1×R

n2 → R
m−n1 ,

whereas Eq. 8c with g : Rn1 × R
n2 → R

p represents
inequality constraints on the state and design variables.
If we define the feasible set F according to

F := {(x1, x2) | h(x1, x2) = 0, g(x1, x2) ≥ 0},
then the NLP 8a–8c can be written more concisely as

min
(x1, x2)∈F

f (x1, x2) . (9)

The slack-variable formulation of the NLP is given by

minimize f (x1, x2) (10a)

over (x1, x2, z) ∈ R
n1 × R

n2 × R
p,

subject to: h(x1, x2) = 0, (10b)

g(x1, x2) − z = 0, (10c)

z ≥ 0, (10d)

where z ∈ R
q is called the vector of slack variables.

Classical algorithms for the numerical solution of
Eqs. 8 rely either on the primal or on the dual formula-
tion of the problem [6,23], whereas primal-dual meth-
ods take advantage of information provided by both the
primal and dual variables that are treated as indepen-
dent variables. They are based on the the saddle point
problem

min
(x1,x2)∈Rn1×R

n2
max

(λ,µ)∈Rm×R
p
+

L(x1, x2, λ,µ) (11)

for the Lagrangian

L(x1, x2, λ,µ)

:= f (x1, x2) + λTh(x1, x2) − µTg(x1, x2), (12)

where λ ∈ R
m and µ ∈ R

p
+ are the Lagrange multi-

pliers (dual variables) associated with the equality and
inequality constraints.
The KKT conditions give rise to the nonlinear system


∇f (x) + ∇h(x)λ + ∇g(x)µ

h(x)
g(x) − z
DzDµe


 = 0,

where Dz=diag(z1, . . . , zp) , Dµ=diag(µ1, . . . ,µp) and
e = (1, . . . , 1)T.
The Newton aspect is to apply Newton’s method to
the Karush–Kuhn–Tucker (KKT) conditions associated
with the primal-dual formulation. This means that each
Newton step requires the solution of a linear algebraic
system representing the optimality conditions of a
related quadratic programming (QP) problem. Hence,
primal-dual Newton methods can be interpreted in the
framework of sequential quadratic programming (SQP)
which is the most successful method for solving con-
strained nonlinear optimization problems [9,47].

As far as the appropriate treatment of the inequality
constraints is concerned, a local optimum can be approx-
imated from within the feasible set, which is the idea
behind interior-point methods [20,64–66], or by using
active set strategies where the iterates are not restricted
to feasibility (cf., e.g., [5,29] for recent work in the con-
text of constrained optimal control problems).

2.1 Interior-point methods

The so-called interior-point revolution in continuous
optimization started in the 1980s of the last century
with Karmarkar’s polynomial-time linear programming
algorithm [43]. It was immediately found [22] that there
is a close relationship to barrier functions which had
been used long time before for inequality constrained
NLP problems. Nowadays, interior-point methods are
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well-established tools for constrained nonlinear optimi-
zation problems (cf., e.g., [20,64–66] and the references
therein).

Barrier methods are used to transform constrained
problems to unconstrained ones and typically give rise
to parametrized families of approximate subproblems
whose solutions converge asymptotically to the exact
solution along centered paths tracing smooth trajecto-
ries with algebraic and geometric properties (for path-
following continuation methods see, e.g., [16]). They are
related to the slack variable formulation 10 of the NLP
problem.

Here, we focus on the coupling of the inequality con-
straints 8c by classical logarithmic barrier functions

B(β)(x1, x2) := f (x1, x2)− β
p∑

i=1

log(gi(x1, x2)), (13)

where β>0 stands for the barrier parameter [18,20,64].
This leads to the consideration of the following parame-
trized family of minimization subproblems

minimize B(β)(x1, x2) (14a)

over (x1, x2) ∈ R
n1 × R

n2 ,

subject to: h(x1, x2) = 0 . (14b)

Theorem 1 ([18]) Assume that the NLP 8a–8c satisfies
the linear independence constraint qualification and the
first and second order optimality conditions as well as
strict complementarity. Then, for sufficiently smallβ > 0
there exist local minima (x(β)1 , x(β)2 ) of Eqs. (14a), and
(14b) which converge to an isolated local minimum of
Eqs. 8a–8c as β → 0.

The equality constraint 14b is taken care of by a
Lagrangian multiplier λ = (λ1, λ2)

T, λ1 ∈ R
n1 , λ2 ∈

R
m−n1 , so that we associate with Eqs.(14a) and (14b)

the Lagrangian

L(β)(x1, x2, λ) := B(β)(x1, x2) + λTh(x1, x2) (15)

and consider the saddle point problem

min
(x1,x2)∈Rn1×R

n2
max
λ∈Rm

L(β)(x1, x2, λ) . (16)

The KKT- conditions for Eq. 16 are given by

∇x1 L(β)(x1, x2, λ) = ∇x1f (x1, x2)

+ ∇x1 h(x1, x2)λ−
p∑

i=1

β

gi(x1, x2)
∇x1gi(x1, x2) = 0,

∇x2 L(β)(x1, x2, λ) = ∇x2f (x1, x2)

+ ∇x2 h(x1, x2)λ−
p∑

i=1

β

gi(x1, x2)
∇x2gi(x1, x2) = 0,

∇λL(β)(x1, x2, λ) = h(x1, x2) = 0.

The Hessian of the Lagrangian L(β) is ill-conditioned
as β → 0. We introduce the slack variable z(β) ∈ R

q

according to

z(β)i := β

gi(x1, x2)
, 1 ≤ i ≤ p, (17)

which is referred to as approximate complementarity,
since the following result holds true:

Corollary 1 Suppose that the conditions of Theorem 1
are satisfied. Then, for β → 0 the approximate comple-
mentarity z(β) converges to the optimal z ∈ R

p
+ in the

slack-variable formulation 10a–10d of the NLP.

For notational convenience, in the sequel we will drop
the upper index β for the approximate complementarity.

If we use Eq. 17 in the KKT conditions and apply
Newton’s method with respect to ϕ = (x1, x2, λ, z), we
arrive at the primal-dual system

Kδϕ = −F(β)(ϕ) (18)

for the Newton increments δϕ := (δx1 , δx2 , δλ, δz)
T, where

the right-hand side is the residual with respect to the
KKT conditions and the primal-dual matrix K is given
by

K =



∇2

x1x2
L(β) ∇2

x1x2
L(β) (∇x1h)T −(∇x1 g)T

∇2
x2x1

L(β) ∇2
x2x2

L(β) (∇x2h)T −(∇x2 g)T

∇x1h ∇x2h 0 0
∇x1g ∇x2g 0 D−1

z Dg




with Dg := diag(gi(x1, x2))
p
i=1 and Dz := diag(zi)

p
i=1.

Since Dg, Dz are diagonal matrices, it is easy to per-
form block Gauss elimination of the approximate com-
plementarity z which leads to the condensed primal-dual
system in δϕ(C) = (δx1 , δx2 , δλ)T

K(C) δϕ(C) = − F(C)(ϕ(C)) (19)

with the condensed primal-dual matrix

K(C) =

 ∇̃

2
x1x1

L(β) ∇̃2
x1x2

L(β) (∇x1h)T

∇̃2
x2x1

L(β) ∇̃2
x2x2

L(β) (∇x2h)T

∇x1h ∇x2h 0


 . (20)

Note that for 1 ≤ i, j ≤ 2

∇̃2
xixj

L(β) = ∇2
xixj

L(β) + (∇xig)
TD−1

g Dz∇xj g,

and that the right-hand side in Eq. 19 is given by

F(C)xi
(ϕ(C)) = ∇xif +∇xih− β(∇xi g)

TD−1
g e,

F(C)λ (ϕ(C)) = h, where e = (1, . . . , 1)T ∈ R
p.
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For the numerical solution of the condensed primal-dual
system 19 we will take advantage of its structural proper-
ties. Observing h = (h1, h2)

T, the condensed primal-dual
matrix 20 has the following 2× 2 block structure

K(C) =




∇̃2
x1x1

L(β) ∇̃2
x1x2

L(β) | (∇x1 h1)
T (∇x1h2)

T

∇̃2
x2x1

L(β) ∇̃2
x2x2

L(β) | (∇x2h1)
T (∇x2h2)

T

−−−− −−−− | − −−− −−−−
∇x1h1 ∇x2h1 | 0 0
∇x1h2 ∇x2h2 | 0 0


 .

We note that Eq. (19) resembles the optimality system of
an equality constrained QP problem. As far as the direct
solution of such systems is concerned, there are basi-
cally two techniques: the range space method applies
when the first diagonal block in K(C) is easily invert-
ible, whereas the null space approach is used otherwise
providing a basis for the kernel of the matrix associated
with the equality constraints [23]. These methodologies
can be adopted to the iterative solution of Eq. 19 as
well. We note that the range space is not appropriate in
the situation at hand. Observing that ∇x1 h1 is the Jaco-
bian of the discretized state equations and assuming that
an efficient iterative solver for its solution is available,
we will follow the null space method and regroup the
unknowns according to

y1 := (x1, λ1)
T, y2 := (x2, λ2)

T. (21)

This goes along with a rearrangement of the primal-dual
matrix K(C) by interchanging the second and third rows
and columns. We thus arrive at the following linear sys-
tem

Aδy =
(

A11 A12
A21 A22

) (
δy1

δy2

)
= −

(
b1
b2

)
(22)

with the 2× 2 block matrices Aij, 1 ≤ i, j ≤ 2,

A11 =
( ∇̃2

x1x1
L(β) (∇x1h1)

T

∇x1h1 0

)
,

A12 =
( ∇̃2

x1x2
L(β) (∇x1h2)

T

∇x2h1 0

)
,

A21 =
( ∇̃2

x2x1
L(β) (∇x2h1)

T

∇x1h2 0

)
,

A22 =
( ∇̃2

x2x2
L(β) (∇x2h2)

T

∇x2h2 0

)
,

and the right-hand side b given by

b1 = (∇x1 f + ∇x1h1 +∇x1h2 − β(∇x1 g)TD−1
g e, h1)

T,

b2 = (∇x2 f + ∇x2h1 +∇x2h2 − β(∇x2 g)TD−1
g e, h2)

T.

For the iterative solution of Eq. 22 we use right-trans-
forming iterations with the right transform

TR :=
(

I −Â−1
11 A12

0 I

)
, (23)

where

Â11 :=
( ∇̃x1x1L(β) (∇̂x1h1)

T

∇̂x1h1 0

)

and ∇̂x1 h1 is an approximation of the Jacobian ∇x1h1

in the sense that (∇̂x1 h1)
−1 has to be interpreted as the

application of the available iterative solver for the lin-
earized discretized state equations. The right transform
23 induces the splitting

ATR := M − N, (24)

where

M =
(

Â11 0
A21 S

)
, S := A22 −A21Â−1

11 A12,

N =
(
(I −A11Â−1

11 )Â11 − (I −A11Â−1
11 )A12

0 0

)
.

Note that (∇̂x1h1)
−1∇x1h1 ∼ I implies Â−1

11 A11 ∼ I, and
hence, N ∼ 0.
Now, given an iterate δ(0)y , the right transforming itera-
tion is as follows:

δ(ν+1)
y = (I − TRM−1A)δ(ν)y − TRM−1b , ν ≥ 0 . (25)

The implementation of Eq. 25 requires the solution of
the block system

Mv(ν+1) = r(ν) := b+ aδ(ν)y .

We then compute w(ν+1) = TRv(ν+1) according to

w(ν+1)
1 = v(ν+1)

1 − Â−1
11 A12v(ν+1)

2 , w(ν+1)
2 = v(ν+1)

2 ,

and finally get the new iterate by

δ(ν+1)
y = δ(ν)y − w(ν+1).

Stopping the iteration at a prescribed accuracy, the last
iterate is accepted as the Newton increment δy. Observ-
ing Eq. 18, the increment δz in the approximate comple-
mentarity is obtained according to

δz = z− [
βe+Dz(∇x1gδx1 + ∇x2gδx2)

]
.

Remark 2 We note that right transforming iterations
have been systematically studied in the framework of
multilevel iterative solvers for PDEs [63]. For the itera-
tive solution of primal-dual systems in PDE constrained
optimization problems, they have been used for the first
time in [44].
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The efficiency of primal-dual interior point methods
can be strongly influenced by an appropriate steplength
selection (line-search) [47]. Here, we use two different
step- lengths s1 for the primal variables x = (x1, x2)

T

and s2 both for the dual variable λ and the approximate
complementarity z:

x 
−→ x+ s1δx,
{
λ 
−→ λ+ s2δλ
z 
−→ z+ s2δz

. (26)

The steplengths si, 1 ≤ i ≤ 2, are chosen such that feasi-
bility of the iterates is maintained:

si := min(1, τ , γi), 1 ≤ i ≤ 2,

where

τ := 1 − min(ε, Cβ2)

with problem dependent parameters 0 < ε � 1, C > 0,
and γi, 1 ≤ i ≤ 2, chosen according to

γ1 := max {t | g(x) + t∇xg(x)δx ≥ 0},
γ2 := max {t | z + tδz ≥ 0}.
Remark 3 In practice, an additional update of the dual
variables is performed involving the solution of a least-
squares problem. We refer to [35] for details.

Remark 4 We note that interior-point methods for non-
linear optimization problems based on a trust-region
approach have been considered in [15].

In SQP methods, global convergence can be achieved
by using appropriately chosen merit functions for con-
vergence monitoring (cf., e.g., [9]). Relying only on the
widely used �2-norm of the residual with respect to the
KKT conditions is not appropriate for discretized struc-
tural optimization problems, since it does not distinguish
between critical points and one might end up with a sad-
dle point instead of a local minimum. A better choice
is a hierarchy of two merit functions [21] combined
with a watchdog strategy originally proposed in [12].
The primary merit function is chosen as the augmented
Lagrangian

M(β)(x1, x2, λ, σ)

:= f (x1, x2) − β

p∑
i=1

log(gi(x1, x2))

+ λTh(x) + σ

2
h(x)Th(x), (27)

whereas the standard �2-norm of the residual with
respect to the KKT conditions serves as the secondary
merit function

F(x1, x2, λ, z) := ‖F(β)(x1, x2, λ, z)‖2 . (28)

The watchdog strategy works as follows: The line-search
counter lsteps and the watchdog counter watchsteps are
set to zero. The computed steplengths are accepted, if a
decrease of the primary merit function is realized. Oth-
erwise, the secondary merit function is checked. If it has
decreased, the steplengths are accepted and the watch-
dog counter is increased by one (watchsteps ← watch-
steps + 1). If not, the steplengths si, 1 ≤ i ≤ 2, are
damped according to si ← si/2 and the line-search
counter lsteps is increased by one (lsteps← lsteps + 1).
However, if a total number of watchmax watchdog it-
erations has occurred without a reduction of the pri-
mary merit function, we return to the initial iterates
and choose the penalty parameter σ large enough to
guarantee a decrease of the primary merit function. Af-
ter each steplength iteration, the barrier parameter β is
updated as well by means of the following heuristic rule
(cf. [21]):
If lsteps < lmax1 or β remained unchanged for lmax2
iterations, in case F(x1, x2, λ, z) < 10 β we set
{
β ← 10 β2

β ← β/10

}
if

{
β < 10−4

otherwise

}
,

whereas

β ← 0.8 β

is chosen for F(x1, x2, λ, z) ≥ 10 β.
Otherwise, β remains unchanged. (Typical values for

lmax1 and lmax2 are lmax1 = 3 and lmax2 = 10).

3 Structural optimization in materials science

3.1 Structural optimization of microcellular
biomorphic ceramics

Biomimetics is a discipline in materials science where
engineers mimic or use the pronounced functionality
of biological objects to design technologically relevant
devices and systems of higher performance than those
produced by conventional manufactural techniques. A
particular area in biomimetics is the production of me-
chanically robust, highly porous ceramics from naturally
grown wood by biotemplating [25,26]. Biotemplating is
a two-step process (cf. Fig. 2): in the first step, wooden
specimen are pyrolized at high temperatures resulting
in a graphite-like carbon preform while preserving the
high porosity of the original specimen cf. Fig. 3 (left).

In the second step, the carbon preform is infiltrated
by liquid or gaseous silicon (Si) or titanium (Ti) which
reacts with the carbon and results in the final microcel-
lular SiC or TiC ceramics [cf. Fig. 3 (right)]. Often, the
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SiC-CeramicC-Preform

Drying

 Pyrolysis

(800-1800 C, N ,4h)

Si-Infiltration

(1600 C, vac., 4h)(70 C, 15h)

gaseous SiC

liquid SiSiC

2

o

oo

Wood

Fig. 2 Two-step processing of wooden specimen

Fig. 3 Pyrolized pine (left) and Si-infiltrated specimen (right)

inner walls are additionally coated by a thin layer of
oxide to enhance the densification of the structure.

Due to its excellent mechanical properties (cf.
Table 1; see also [59]), such ceramics are used as fil-
ters in chemical processing, as high performance brakes
in vehicles, or as implant materials in biomedical appli-
cations [54,60,68].

We assume the workpiece of macroscopic length L
to consist of periodically distributed constituents with a
periodicity cell Y of characteristic microscopic length �
consisting of an interior void (V) surrounded by layers
of silicon carbide (SiC) resp. titanium carbide (TiC) and
carbon (C) (cf. Fig. 4).

Assuming linear elasticity and denoting by u the
displacement vector, the stress tensor σ is related to the
linearized strain tensor e = 1/2(∇u+(∇u)T) by Hooke’s

Table 1 Mechanical properties of microstructured biomorphic
SiC ceramics

Material ρ β κ

(g/cm3) (MPa) (vol)

CB-Template CB 0.39 7 76
Si-melt SiSiC 2.22 130 11
(1600◦ C)
MTS SiCMTS 0.8–1.0 210 60
(1600◦ C)
Si-vapor SiCSi 1.0 13 71
(1600◦ C)
SiO-vapor SiCSiO 0.7 8 78
(1600◦ C)

density ρ, bending strength β, and porosity κ

Fig. 4 Periodicity cell

SiC CV

law σ = E(X)e, where E(X) = (Eijk�(X)) stands for the
elasticity tensor whose components attain different val-
ues in the regions V , SiC (resp. TiC ), and C.

Introducing x := X/L and y := X/� as the macro-
scopic and microscopic variables and ε := �/L as the
scale parameter, homogenization based on the standard
double scale asymptotic expansion results in the homog-
enized elasticity tensor EH = (EH

ijk�)whose components
are given by

EH
ijk� =

1
|Y|

∫

Y

(
Eijkl(y)− Eijpq(y)

∂ξk�
p

∂yq

)
dy. (29)

The tensor ξ = (ξk�
p ) with periodic components ξk�

p ∈
H1

per(Y) has to be computed via the solution of the elas-
ticity problems

divy
(
E(y) − E(y)ey(ξ

k�)
) = 0. (30)

We note that explicit formulas for the homogenized
elasticity tensor are only available in case of laminated
or checkerboard structures (cf., e.g., [1,3,4]). There-
fore, Eq. 30 has to be solved numerically which has
been done by using continuous, piecewise linear finite
elements with respect to adaptively generated locally
quasi-uniform and shape regular simplicial triangula-
tions of the periodicity cell Y. The discretized problems
have been solved by algebraic multigrid and the mesh
adaptivity has been realized by means of a Zienkiewicz-
Zhu type a posteriori error estimator [42] (cf. Fig. 5).

Fig. 5 Adaptively generated FE grids in the computation of the
homogenized elasticity coefficients EH

1111 (9 refinement levels; left)
and EH

1212 (10 refinement levels; right)
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Fig. 6 Dependence of the
homogenized elasticity tensor
on the width and length of the
SiC layer
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The homogenized elasticity tensor EH depends on
the lengths and widths of the different layers as well as
on the angle θ of orientation of the microcell Y with
respect to the reference frame which serve as the design
variablesα = (α1, . . . ,αm) in the structural optimization.
An explicit formula is only available for the dependence
on θ . Consequently, the dependence on the other design
variables has been provided numerically by multivariate
interpolation using B-splines with respect to a uniform
grid of the space of the design parameters (cf. Fig. 6
for the dependence on the length of the SiC-layer and
Fig. 7 for the dependence on the angle of orientation).

The choice of the objective functional depends on the
application. Various mechanical merit functions can be
chosen including maximal stiffness and bending strength.
The structural optimization problem can then be stated
as follows:

inf
u,α

J(u,α) (31)

subject to the state equations

− div σ (u) = f in �, (32)

u = 0 on �D, (33)

n · σ (u) = t on �N, (34)

n · σ (u) = 0 elsewhere, (35)
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Fig. 7 Dependence of the homogenized elasticity tensor on the
angle of orientation of the cell walls with respect to the reference
frame

where the stress tensor σ is related to the strain tensor
e by Hooke’s law

σ (u) = EH(α) e(u) (36)

with the homogenized elasticity tensor EH(α).
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Table 2 Convergence history of the primal-dual Newton interior-
point method (biomorphic SiC ceramics, minimum compliance)

NE iter α β M(β) F

160 19 8.1E−16 2.5E−25 0.840 2.9E−8
640 14 7.7E−10 9.1E−17 0.018 2.7E−5
1,048 11 4.6E−14 3.1E−22 0.53 4.5E−7
8704 11 3.7E−13 6.6E−21 0.29 1.1E−6
14,848 12 5.3E−13 8.3E−19 0.81 1.7E−6

We further impose the total mass in terms of the
homogenized density ρ(α)∫

�

ρ(α) dx = C (37)

The design variables are assumed to satisfy the box con-
straints

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m. (38)

The structural optimization problem has been
discretized by conforming P1 finite elements with respect
to a simplicial triangulation of the computational domain
and solved by the primal-dual Newton interior-point
method. The numerical solution of the discretized state
equations within the optimization cycle has been taken
care of by the Algebraic Multi-Grid (AMG) method as
a “plug-in” solver (see [51] for details).

Table 2 contains the convergence history of the
primal-dual Newton interior-point method for the mini-
mum compliance as the objective functional and no con-
straint on the total mass. In the table, NE is the number
of elements used in the finite element discretization of
the homogenized model, “iter” stands for the number
of iterations until convergence, α is the optimal length
of the C-layer, β is the last value of the barrier parame-
ter, and M(β), F are the final values of the primary and
secondary merit functions. For further results we refer
to [31–33,36,40].

3.2 Shape optimization of electrorheological
shock absorbers

Electrorheological fluids are concentrated suspensions
of small electrically polarizable particles with diameters
in the range of micrometers dissolved in nonconduct-
ing silicon oils. The rheological effect is based on the
fact that under the influence of an outer electric field
the particles form chains along the field lines and then
aggregate to form larger and larger columns. The im-
pact on the macroscopic scale consists in a rapid change
of the rheological properties which happens within a
few milliseconds. The viscosity increases in the direction

orthogonal to the electric field such that the character of
the fluid changes from liquid to almost solid. Under the
action of large stresses, depending on the electric field
strength (field dependent yield stress), the columnar
structures break such that the viscosity decreases and the
fluid behaves less anisotropic. The process is reversible,
i.e., the viscosity decreases with decreasing field strength
and the fluid behaves again like a Newtonian fluid for
vanishing outer electric field.
Therefore, electrorheological fluids are used in all tech-
nological processes where a controlled power transmis-
sion plays a significant role. The field of applications
ranges from automotive shock absorbers and actuators
in hydraulic systems to tactile devices for virtual reality
[19].

In the sequel, we shall be concerned with the opti-
mization of the shape of the walls of an ERF shock
absorber [cf. Fig. 8 (left)] in a vicinity of the inlet and
outlet boundary of the ERF transfer ducts. A schematic
diagram of such a shock absorber is shown in Fig. 9
(left). The absorber contains two chambers filled with
an ERF, a piston with two transfer ducts connecting
the chambers, and a third gas-filled chamber separated
from the others by a floating piston. The inner walls of
the transfer ducts serve as electrodes and counter-elec-
trodes, respectively. The electrodes are connected with
an outer power source by a high voltage lead within the
piston rod. As the piston moves, the fluid passes through
the ducts from one chamber to the other. In the com-
pression stage, the piston moves downwards and the
ERF is streaming from the lower into the upper cham-
ber, whereas in the rebound stage, the piston is pulled
upwards and the ERF flow is in the opposite direction.

In contrast to conventional shock absorbers, where
the fluid chambers are filled with hydraulic oils, both in
the compression and in the rebound stage, ERF shock
absorbers have a much wider characteristics [damper
force as a function of the velocity of the piston; cf. Fig. 8
(right)]. Therefore, ERF shock absorbers offer the best
compromise between safety and comfort for a wide spec-
trum of road conditions.

The performance of the shock absorber does not only
depend on the applied voltage and the velocity of the
piston, but also on the geometry of the device. In par-
ticular, the geometry of the inlet and outlet boundaries
of the ducts plays a decisive role. In extreme cases, cav-
itation due to high pressure variations may occur which
negatively affects the damper characteristics. Therefore,
given a prescribed pressure profile pd, the optimiza-
tion issue is to design the geometry in such a way that
pressure variations are minimized. Due to axisymmetry,
the computational domain � reduces to the right part
of the fluid chamber. The inlet and outlet boundaries
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Fig. 8 Electrorheological
shock absorber (left) and its
characteristics (right);
(Courtesy of Fluidicon
GmbH)

are represented by B-splines using the de Boor con-
trol points α = (α1, . . . ,αm) as design variables [cf. Fig.
9 (right)]. Consequently, the computational domain de-
pends on the choice of the design variables, i.e.,
� = �(α).

In the stationary case, the fluid flow is described by
the equations

− ∇ · σ (u) = f in �(α), (39)

∇ · u = 0 in �(α) (40)

along with appropriate boundary conditions. Here, u =
(u1, u2) is the velocity vector, σ refers to the stress ten-
sor and f describes exterior forces acting on the fluid.
The stress tensor σ is related to the rate of deformation
tensor D(u) with (D(u))ij := (∂ ui/∂ xj + ∂ uj/∂ xi)/2 ,
1 ≤ i, j ≤ 2, by a constitutive equation where the electric
field E enters as a parameter. Most constitutive equa-
tions are of extended Bingham fluid type [17,49] and use
some sort of power law dependence [52]. Here, we use
a constitutive equation developed in [34]

σ = −p I + 2 ϕ(I(u), |E|,µ(u, E)) D(u), (41)

where ϕ is a viscosity function depending on the shear
rate I(u), the electric field strength |E|, and the angle
µ(u, E) between the velocity field u and the electric field
E. In particular, the viscosity function ϕ is assumed to
be of the form

ϕ(I(u), |E|,µ(u, E))

= b(|E|,µ(u, E)) (ε + I(u))−1/2

+ ψ(I(u), |E|,µ(u, E)), (42)

where ε > 0 is a regularization parameter. In practice,
the functions b andψ are approximated by splines fitted
to rheometrical data obtained for different electric field
strengths (cf. Fig. 10).
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Fig. 9 Electrorheological shock absorber: schematic diagram
(left) and B-Spline representation of the inlet and outlet bound-
aries of the right part of the fluid chamber (right)

The shape optimization problem can be stated as fol-
lows:

inf
(u,p,α)

J(u, p,α) , J(u, p,α) :=
∫

�(α)

|∇p−∇pd|2dx (43)

subject to the state equations 39 and 40 and the inequal-
ity constraints

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m (44)
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Fig. 10 Dependence of the shear stress on the electric field
strength (Rheobay TP AI 3565, polyurethane); from [2]

on the design variables which are motivated by techno-
logical constraints on the shape of the inlet and outlet
boundaries.

The finite element discretization of the optimization
problem is based on the variational formulation of the
state equations 39 and 40 which is given by

〈∂ Fε
∂w

(u, u), z〉+〈M(u), z〉−〈B∗p, z〉=〈f, z〉, z∈V, (45)

〈Bu, q〉 = 0 , q ∈ H. (46)

where V ⊂ H1(�(α))2 , H := L2(�(α)), and 〈·, ·〉 de-
notes the dual pairing between V∗ and V and H∗ and H,
respectively. Moreover, Fε : V×V→ R is the functional

Fε(v, w) = 2
∫

�(α)

b(|E|,µ(v, E))(ε + I(w))1/2dx ,

M : V→ V∗ stands for the nonlinear operator given by

〈M(v), w〉

= 2
∫

�(α)

ψ(I(v), |E|,µ(v, E))D(v):D(w) dx.

and B : V→ H∗ refers to the div operator.

Theorem 2 ([34]) Assume that the functions b : R+ ×
[0, 1] → R and ψ : R+ × R+ × [0, 1] → R in Eq. 42 are
continuous and there exist constants ai , 1 ≤ i ≤ 3, such
that

(C1) 0 ≤ b(x1, x2) ≤ a1,

(C2) a3 ≥ ψ(x1, x2, x3) ≥ a2.

Moreover, suppose that the function z 
−→ ψ(z2, x2, x3)z
is monotonically increasing, i.e.,

(C3) z1 > z2 �⇒ ψ(z2
1, x2, x3)z1 > ψ(z2

2, x2, x3)z2 .

Then, the variational system 45 and 46 admits a solution
(u, p) ∈ V×H.

Remark 5 The assumptions (C1), (C2), and (C3) in
Theorem 2 are moderate and physically reasonable. In
particular, the monotonicity condition (C3) requires
increasing shear stress for increasing shear rate.

Assuming a known angle µ(u, E) between the velocity
vector and the exterior electric field, the flow model
39 and 41 has been discretized in space by Q2 − P1
Taylor-Hood elements with respect to a simplicial tri-
angulation of a reference computational domain �(α̂),
where α̂ ∈ R

m is chosen within the set of feasible de-
sign parameters such that �(α) = �(�(α̂)). The result-
ing NLP problem has been solved by the primal-dual
Newton interior point method featuring an augmented
Lagrangian approach [24] for the solution of the dis-
cretized state equations within the optimization loop
(for details see [41]).

In case of the compression stage (fluid flow from the
lower into the upper fluid chamber) and an applied elec-
tric field strength of |E| = 1, 000 V/mm, Fig. 11 displays
the optimized inlet boundary as a whole (left) and a
detail of it (right), where the red curve marks the final
optimized configuration. On the other hand, Fig. 12 (left)
shows the flow profile in the electrorheological duct con-
necting the lower and the upper fluid chamber for var-
ious electric field strengths. In case of no electric field,
one clearly observes the parabolic flow profile typical for
Newtonian fluid flow (red curve), whereas for increas-
ing field strength the profile flattens in the middle of the
duct (blue curve). According to the Bingham-type flow
model, the flat region characterizes solid behavior of the
electrorheological fluid (Rheobay TP AI 3565 based on
polyurethane). For a particular part of the inlet bound-
ary, Fig. 12 (right) shows the initial configuration (black)
and the optimized configurations in case of no electric
field (red) and electric field strengths of |E| = 500 V/mm
(magenta) as well as |E| = 1, 000 V/mm (blue).

We note that the differences between the initial con-
figuration and the optimized configurations are small,
but give rise to reductions in the pressure variations
between 10 and 20%, depending on the operating con-
ditions.

3.3 Topology optimization of high power electronic
devices

We consider the topology optimization of pulse width
modulated converter modules that are used in high
power electromotors in energy generation, energy trans-
mission, and high technology transportation systems
such as high speed trains (cf. Fig. 13). Figure 14 shows the
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Fig. 11 Optimized inlet
boundary (left) and zoom
(right) (the red line marks the
final optimized configuration)
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Fig. 12 Flow profile in the ER duct (left) and detail of the optimized inlet boundary for various electric field strengths (right) [red:
0 V/mm, magenta: 500 V/mm, Blue: 1,000 V/mm]

Fig. 13 Applications of converter modules in high power elec-
tronics Fig. 14 Schematic representation of a converter module
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schematic representation of a converter module consist-
ing of specific semiconductor devices such as insulated
gate bipolar transistors (IGBTs) and gate turn off thy-
ristors (GTOs). The IGBTs and GTOs serve as valves
for the electric currents in the range of several kilo-
ampères featuring switching times of less than 100 ns
(cf. [10,11]). They are interconnected and linked with
the power source and the electro motor by copper made
bus bars.

Figure 15 displays the typical configuration of the bus
bars. Each bus bar has N ports where the IGBTs and
GTOs are attached to the device. Although high cur-
rents and fast switching times can be realized, the prob-
lem in the design of the converter modules is that steep
current ramps cause the generation of eddy currents
in the bus bars leading to parasitic inductivities which
result in significant losses in the power transmission.
Experimental investigations by the design engineers
revealed that placing holes in the bus bars strongly influ-
ences the eddy currents and thus helps to reduce the
power losses. Therefore, the ultimate problem can be
stated as follows: how many holes of which size should
be placed where in the bus bars to minimize the par-
asitic inductivities. In mathematical terms, this design
objective can be formulated as a topology optimization
problem.

In the sequel, we restrict ourselves to the optimiza-
tion of a single bus bar occupying a bounded domain
� ⊂ R

3 with N ports �ν ⊂ � , 1 ≤ ν ≤ N. The opera-
tional behavior of a bus bar can be described by the eddy
currents equations which we consider in its potential for-
mulation by means of a scalar electric potential ϕ and
a magnetic vector potential A which satisfy a coupled
system of PDEs consisting of an elliptic boundary value
for the scalar electric potential in �

div (σ grad ϕ) = 0 in � , (47)

Fig. 15 Typical configuration of bus bars

σ n · grad ϕ =
{−Iν(t) on �ν

0 else
(48)

and a parabolic equation for the double curl operator

σ
∂A
∂t
+ curlµ−1curl A =

{−σgradϕ in �

0 in R3 \�
, (49)

which has to be considered in the interior and exterior
domain together with appropriate boundary, transmis-
sion, and initial conditions. Here, σ refers to the electric
conductivity, µ denotes the magnetic permeability, and
Iν , 1 ≤ ν ≤ N, are the current densities at the contacts
satisfying the compatibility condition

N∑
ν=1

Iν(t) = 0.

The total inductivity can be described by the func-
tional

J(ϕ, A, σ) := σ−1

T∫

0

∫

�

f (ϕ, A) dx dt , (50)

where the integrand f depends on the generated eddy
currents in terms of the scalar electric potential and the
magnetic vector potential (cf., e.g., [11]).
Choosing the conductivity σ as the design variable, the
topology optimization problem reads as follows:

inf
ϕ,A,σ

J(ϕ, A, σ) (51)

subject to the equality constraints

ϕ, A satisfy Eqs. 47–49 (52)

∫

�

σ dx = C (53)

and the inequality constraints

σmin ≤ σ ≤ σmax. (54)

Remark 6 The equality constraint Eq. 53 prescribes the
total amount of material. Without this constraint, the
optimization would result in technologically not feasi-
ble extremely thin interconnects between the contacts.

Remark 7 The obvious choice of the design variable
[either σ = 0 (no material) or σ = σmax (conductivity of
copper)] leads to an ill-posed 0-1 optimization problem.
Therefore, Eq. 54 represents some sort of relaxation by
allowing the design variable to vary between a small
positive value σmin � 1 and the maximum value σmax.
However, to avoid “grey scales” in the design, the ex-
treme values σmin and σmax are enforced by the SIMP
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method known from topology optimization of mechan-
ical structures (cf., e.g., [67]). The SIMP approach relies
on the scaling

η(σ ) =
(
σ − σmin + ε
σmax − σmin

)m

, 0 < ε � 1, (55)

with an appropriate penalty parameter m ≥ 1.

In topology optimization, the finite element discreti-
zation of the state equations has to be done with care,
since it is well known that lower order conforming ele-
ments based on a simplicial triangulation Th of the
computational domain � often give rise to checker-
board patterns in the design. A convenient remedy is
to use either higher order or nonconforming elements.
Therefore, as far as the state equations (47–49) are con-
cerned, the potential equations (47) and (48) for the
scalar electric potential ϕ is discretized by the lowest
order nonconforming Crouzeix–Raviart elements. For
the discretization in time of the parabolic equation (49)
for the magnetic vector potential A we use the back-
ward Euler scheme, whereas the discretization in space
is done by means of the lowest order curl-conforming
edge elements of Nédélec’s first family (cf. [46]) both
in the interior domain and in the exterior domain with
an artificial boundary off the device. In the interior do-
main, the design variable σ is discretized by elementwise
constants.

The discretized topology optimization problem rep-
resents an equality and inequality constrained NLP and
has been solved by the primal-dual Newton interior-
point method described in Sect. 2. Within the right trans-
forming iterative scheme for the condensed primal-dual
system, the iterative solution of the discretized state
equations has been realized by mortar edge element
methods involving a domain decomposition approach
on nonmatching meshes featuring multigrid precondi-
tioners with hybrid smoothing with respect to adaptively
generated hierarchies of simplicial triangulations of the
subdomains (cf., e.g., [30,37,38]).

Figure 16 shows the computed material distribution
in a 2D test example with two and six ports, respectively.
The penalty parameter m in the SIMP method (55) has
been chosen according to m = 2 in both cases.

Table 3 contains the convergence history of the pri-
mal-dual Newton interior-point method for the topology
optimization of a single bus bar with the parasitic induc-
tivity as the objective functional. In the table, NC is the
number of contacts (ports), “iter” stands for the num-
ber of iterations until convergence, β is the last value of
the barrier parameter, M(β), F are the final values of the
primary and secondary merit functions, and ‖w‖2 is the
�2-norm of the perturbed complementarity at the last
iteration.

Fig. 16 Optimal material distribution for a 2D test example [two
ports (left) and six ports (right)]

Table 3 Convergence history of the primal-dual Newton inte-
rior-point method (topology optimization of bus bars in converter
modules)

NC iter β M(β) F ‖w‖2
2 19 1.97E−17 4.47 3.49E−5 2.27E−09
4 21 7.34E−18 27.29 8.12R−5 4.75E−11
5 22 7.48E−18 79.14 8.45E−4 7.16E−10
6 20 9.85E−17 81.99 1.27E−3 5.62E−09

J-Current [A/cm**2]

Fig. 17 Distribution of currents in an optimized bus bar

For further results, including the impact of the penalty
parameter and the granularity of the triangulations on
the final design as well as the history of the iterative
solution process, we refer to [35] and [39].

In the 3D case, Fig. 17 shows the distribution of the
surface current densities in an optimized single bus bar
by a scale ranging from 0.0 kA/cm2 (blue) to 2.0 kA/cm2

(yellow). The impact of the holes on the generated eddy
currents is illustrated in Fig. 18 displaying the computed
magnetic vector potential A (left) and the magnetic
induction B = curl A (right) in a vicinity of two ports
that are located above the two holes in the lower part of
the pictures.
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Fig. 18 Magnetic vector potential (left) and magnetic induction
(right)

The application of the primal-dual Newton interior-
point method gave rise to a local minimum of the objec-
tive functional realizing a reduction of the loss in the
power transmission. Depending on the operating condi-
tions, reductions in the range between 20 and 30% could
be achieved. Moreover, compared to the traditional de-
sign methodology (alternating approach characterized
by the solution of the state equations for a given design
followed by an update of the design variables based on
a sensitivity analysis), the “all-at-once” method turned
out to be computationally much more efficient with a
reduction of computational times by an order of magni-
tude.

4 Conclusion

The “all-at-once” approach by primal-dual Newton
interior-point methods represents a highly efficient
and robust numerical technique for the solution of
constrained nonlinear optimization problems with PDE
constraints. The simultaneous treatment of the discret-
ized state equations and the design objective within an
integrated optimization loop offers decisive computa-
tional advantages compared to more traditional strat-
egies, in particular, when the specific structure of the
primal-dual Hessian is adequately taken into account.
Numerical results for various technologically relevant
shape and topology optimization problems in structural
mechanics, fluid mechanics, and electromagnetics under-
line the wide range of applicability.
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