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EDGE ELEMENT METHODS IN R
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Abstract. In this paper, we are concerned with mortar element methods for the numerical
solution of the eddy currents equations based on domain decompositions on nonmatching grids using
individual subdomain discretizations by the lowest order edge elements of Nédélec’s first family. The
main results are optimal a priori error estimates of the global discretization error and the Lagrange
multipliers that take care of the weak continuity constraints on the tangential traces across interior
subdomain boundaries. These estimates are derived under moderate regularity assumptions.
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1. Introduction. Mortar element methods have attracted considerable atten-
tion in recent years, since they can handle situations where meshes on different subdo-
mains need not align across interfaces, and the matching of discretizations on adjacent
subdomains is only enforced weakly. In [8], Bernardi, Maday, and Patera first intro-
duced basic concepts of general mortar element methods, including the coupling of
spectral elements with finite elements. Subsequently, they have been extensively used
and analyzed by many authors. In [4], Ben Belgacem studied the mortar element
method within a primal hybrid finite element formulation. Some extensions and con-
vergence results in three dimensions have been considered in [5], [10], and [22].

In the framework of edge element discretizations, the mortar element method has
been studied for two-dimensional problems in [3] and [6]. However, similar to second
order elliptic problems (cf., e.g., [5], [10], [22]), the situation in the three-dimensional
case is much more complicated, since it particularly requires a subtle specification of
the multiplier space. Recently, the second author of this paper considered a mortar
element method for three-dimensional Maxwell equations in [20], where the edge ele-
ment of the first family has been studied (see also [21]). Related work for mortar edge
elements has been proposed by Ben Belgacem, Buffa, and Maday in [7], but their result
holds only for the lowest order edge elements of Nédélec’s second family [26]. Further-
more, their error estimate of order O(hlog(h)) is not optimal and requires a somewhat
high regularity of the solution, i.e., the solution is assumed to belong to H2(curl; Ω).

In this paper, we will give an optimal error estimate for the mortar edge element
method based on the lowest order edge elements of Nédélec’s first family. Our conver-
gence results are established under a weaker regularity assumption, i.e., the solution
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is assumed to belong to H1(curl; Ω). On the other hand, on the basis of the discrete
inf-sup condition constructed in [20], we also obtain an optimal error estimate for the
Lagrange multiplier.

The paper is organized as follows. Section 2 describes the model problem under
consideration. Section 3 introduces the mortar edge element method followed by the
derivation of the optimal energy error estimate in section 4. Finally, section 5 is
devoted to an optimal error estimate for the Lagrange multiplier.

2. Model problem. Given a bounded simply connected domain Ω in R3 with
polyhedral boundary ∂Ω, we consider the following elliptic boundary value problem:{

curl A curl j + B j = f in Ω,
j ∧ n = g on ∂Ω,

(2.1)

where n denotes the exterior unit normal vector on ∂Ω. We note that the above
problem arises, for instance, in the computation of eddy currents and can be deduced
from the time-dependent equations by using an implicit finite difference scheme (cf.
[9], [18], [23]).

We assume A = {aij}3
i,j=1 and B = {bij}3

i,j=1 to be symmetric matrix-valued

functions, with aij ∈ C1(Ω̄), bij ∈ L∞(Ω), 1 ≤ i, j ≤ 3, satisfying

c|ξ|2 ≤
3∑

i,j=1

aij(x)ξiξj ≤ C|ξ|2, c|ξ|2 ≤
3∑

i,j=1

bij(x)ξiξj ≤ C|ξ|2, ξ ∈ R3,

for almost all x ∈ Ω. In this paper, the constants c and C with or without subscript
always denote general positive constants independent of the mesh size. Moreover, we
assume f ∈ L2(Ω)3 and suppose, for simplicity, that g = 0.

We denote by H(curl; Ω) the Hilbert space

H(curl; Ω) := {q ∈ L2(Ω)3 | curlq ∈ L2(Ω)3}

equipped with the norm

‖q‖curl,Ω := (‖q‖2
0,Ω + ‖curlq‖2

0,Ω)
1
2 .

Here and in what follows, ‖ · ‖k,Ω, k ∈ N0, stands for the norm of the Sobolev space
Hk(Ω)3. Moreover, we define the space

H1(curl; Ω) := {q ∈ H1(Ω)3|curlq ∈ H1(Ω)3}

equipped with the norm

‖q‖1,curl,Ω := (‖q‖1,Ω + ‖curlq‖1,Ω)
1
2 .

Similarly, if G is a subdomain of Ω, we can define the space H1(curl;G) over the
subdomain G. The corresponding norm is denoted by ‖q‖1,curl,G.

We refer to

V := H0(curl; Ω) = {q ∈ H(curl; Ω) | n ∧ (q ∧ n)|∂Ω = 0}

as the subspace of vector fields with vanishing tangential components trace on ∂Ω.
Then, the variational formulation of (2.1) is to find j ∈ V such that

aΩ(j,q) = l(q) ∀q ∈ V,(2.2)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1278 XUEJUN XU AND R. H. W. HOPPE

where the bilinear form aΩ(·, ·) : H(curl; Ω) × H(curl; Ω) → R and the functional
l(·) : H(curl; Ω) → R are given by

aΩ(j,q) :=

∫
Ω

(A curl j · curl q + B j · q) dx,

l(q) :=

∫
Ω

f · q dx.

We further have to introduce the tangential traces of H(curl; Ω). In particular, we
denote by divτ and curlτ the surfacic divergence and the adjoint of the surfacic

rotational curlτ (cf. [1]). For B ⊂ ∂Ω, the space H
1
2
00(B) is the subspace of func-

tions u ∈ H
1
2 (Ω) whose extension ũ by zero to ∂Ω\B belongs to H

1
2 (∂Ω) with norm

‖u‖
H

1
2
00(B)

:= ‖ũ‖ 1
2 ,∂Ω. We refer to H− 1

2 (B) as the dual space of H
1
2
00(B) (cf. [19] for

details).
The tangential trace (q ∧ n)|B belongs to the Hilbert space

H− 1
2 (divτ ;B) := {q ∈ H− 1

2 (B)3 | n · q|B = 0 and divτq ∈ H− 1
2 (B)}

equipped with the norm

‖q‖− 1
2 ,divτ ,B := (‖q‖2

− 1
2 ,B

+ ‖divτq‖2
− 1

2 ,B
)1/2,

whereas the tangential components trace (n ∧ (q ∧ n))|B lives in the Hilbert space

H− 1
2 (curlτ ;B) := {q ∈ H− 1

2 (B)3 | n · q|B = 0 and curlτq ∈ H− 1
2 (B)}

equipped with the norm

‖q‖− 1
2 ,curlτ ,B := (‖q‖2

− 1
2 ,B

+ ‖curlτq‖2
− 1

2 ,B
)1/2.

The spaces H− 1
2 (divτ ;B) and H− 1

2 (curlτ ;B) are dual to each other with L2
t(B) :=

{q ∈ L2(B)3 | n · q|B = 0} as the pivot space (cf. [13], [14], and [15] for details).

3. The mortar edge element method. We now introduce a mortar finite
element method for the solution of (2.1). First, we partition Ω into nonoverlapping
subdomains such that

Ω =

N⋃
i=1

Ωi and Ωi ∩ Ωj = Ø, i 
= j.

We assume this decomposition to be geometrically conforming in the sense that the
intersection of Ω̄i ∩ Ω̄j for i 
= j is either empty, a vertex, an edge, or a face. The
skeleton of the decomposition

S =

N⋃
i=1

∂Ωi\∂Ω

is partitioned into a set of disjoint open faces γm (1 ≤ m ≤ M) called mortars, i.e.,

S =

M⋃
m=1

γ̄m, γm ∩ γn = Ø if m 
= n.

We denote the common interface between Ωi and Ωj by γm. We refer to γm(i) as
the mortar associated with subdomain Ωi, while the other face, which geometrically
occupies the same place, is denoted by δm(j) and is called the nonmortar.
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Let Ti be a regular and quasi-uniform triangulation of the subdomain Ωi with
mesh size hi := maxK∈Ti hK made of tetrahedra. The triangulations generally do
not align at the interfaces. We denote the global mesh ∪iTi by Th with mesh size
h := maxi hi. We refer to Tγm(i)

and Tδm(j)
as the triangulations which are inherited

from the triangulations Ti and Tj on the mortar and nonmortar sides, respectively.
We further denote by hγm(i)

and hδm(j)
the global mesh sizes with respect to the

triangulations Tγm(i)
and Tδm(j)

. Moreover, for Σi ⊂ Ω̄i we define Fh(Σi) and Eh(Σi)
as the sets of faces, respectively, edges, of Ti in Σi. Likewise, for Σγm(i)

and Σδm(j)
⊂ γm

we refer to Eh(Σγm(i)
) and Eh(Σδm(j)

) as the set of edges of Tγm(i)
, respectively, Tδm(j)

,
in Σγm(i)

, respectively, Σδm(j)
.

We assume that there exist constants c, C independent of hγm(i)
and hδm(j)

such
that

c hγm(i)
≤ hδm(j)

≤ C hγm(i)
.(3.1)

For the discretization of H(curl; Ωi), we introduce Nédélec’s curl-conforming
edge elements of the first family as described in [25], i.e., for a tetrahedron K ∈ Ti
the lowest order edge element ND1(K) is defined as

ND1(K) := {q = a + b ∧ x | a, b ∈ R3, x ∈ K}.

Note that any q ∈ ND1(K) is uniquely determined by the degrees of freedom

le(q) :=

∫
e

te · q ds, e ∈ Eh(K),(3.2)

where te stands for the tangential unit vector along e.
Then, the spaces ND1(Ωi; Ti) are given as follows:

ND1(Ωi; Ti) := {qh ∈ H(curl; Ωi) | qh|K ∈ ND1(K), K ∈ Ti}.

On the basis of the above definition, we consider the product space

Ṽh := {qh ∈ L2(Ω)3 | qh|Ωi ∈ ND1,0(Ωi; Ti), 1 ≤ i ≤ n},

where we refer to ND1,0(Ωi; Ti) as the subspace of vector fields with vanishing tan-
gential component traces on ∂Ω ∩ ∂Ωi.

It is clear that we cannot expect Ṽh to be a subspace of H0(curl; Ω), since the
tangential traces (qh ∧ n)|F ,qh ∈ Ṽh, are not continuous across the common face
F of two adjacent subdomains. Therefore, in order to guarantee consistency of the
approximation, we have to impose some weak continuity constraints on the tangential
traces. We note that (qh ∧n)|γm(i)

and (qh ∧n)|δm(j)
are elements of the lowest order

Raviart–Thomas finite element spaces RT0(γm(i); Tγm(i)
) and RT0(δm(j); Tδm(j)

). We
recall the definition of the lowest order Raviart–Thomas conforming finite element
(cf. [12], [27]). For a triangle T ∈ Tγm(i)

, we define RT0(T) by means of

RT0(T) := {q = a + bx | a ∈ R
2, b ∈ R, x ∈ T}.

Any q ∈ RT0(T) is uniquely defined by the degrees of freedom

le(q) :=

∫
e

ne · q ds, e ∈ Eh(T ),(3.3)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1280 XUEJUN XU AND R. H. W. HOPPE

where ne stands for the exterior unit normal vector with respect to e.
Then, RT0(γm(i); Tγm(i)

) is given as

RT0(γm(i); Tγm(i)
) := {qh ∈ H(div; γm(i)) | qh|T ∈ RT0(T ), T ∈ Tγm(i)

},

and we can similarly define RT0(δm(j); Tδm(j)
).

For the Lagrange multiplier space we choose

Mh :=
∏
δm(j)

Mh(δm(j))

with

dim Mh(δm(j)) = dim RT0,0(δm(j); Tδm(j)
),

where RT0,0(δm(j); Tδm(j)
) denotes the subspace of vector fields with vanishing normal

components along the boundary ∂δm(j).
For the proper definition of Mh(δm(j)) we need a more detailed specification of

the basis fields of RT0(δm(j); Tδm(j)
). In view of (3.3), we specify the basis field qγ

associated with the edge eγ ∈ Eh(δ̄m(j)) according to∫
eμ

nμ · qγ ds = hδm(j)
δγμ, eμ ∈ Eh(δ̄m(j)).(3.4)

We now define Mh(δm(j)) by an extension of the basis field qe ∈ RT0,0(δm(j); Tδm(j)
)

with respect to those edges in δm(j) that have at least one neighboring edge on the
boundary ∂δm(j). The precise specification requires some notation:

1. For an interior edge e ∈ Eh(δm(j)), we denote by

E∂δm(j)

h (e) := {f ∈ Eh(∂δm(j)) | f ⊂ supp qe}(3.5)

the set of the neighboring edges on ∂δm(j).
2. For a boundary edge f ∈ Eh(∂δm(j)), we refer to

Eδm(j)

h (f) := {e ∈ Eh(δm(j)) | e ⊂ supp qf}(3.6)

as the set of neighboring edges in the interior of δm(j).
Finally we define

Eδm(j)

h (∂δm(j)) :=
⋃

f∈Eh(∂δm(j))

Eδm(j)

h (f)(3.7)

as the set of interior edges with a neighboring edge on ∂δm(j).

Then, for e ∈ Eδm(j)

h (∂δm(j)), we choose appropriate weighting factors λe,f ∈ R,

f ∈ E∂δm(j)

h (e), and define the basis field q̃e, e ∈ Eh(δm(j)), according to

q̃e =

⎧⎨
⎩qe, e ∈ Eh(δm(j))\E

δm(j)

h (∂δm(j))

qe +
∑

f∈E
∂δm(j)

h
(e)

λe,fqf , e ∈ Eδm(j)

h (∂δm(j)),
(3.8)

where the weighting factors are assumed to satisfy{
λe,f ≥ 0,∑

e∈E
δm(j)

h
(f)

λe,f = 1, f ∈ Eh(∂δm(j)).
(3.9)
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The thus specified basis fields define

Mh(δm(j)) := span{q̃e|e ∈ Eh(δm(j))}.(3.10)

Remark 3.1. In view of (3.9) it is easy to check that Mh(δm(j)) contains the
constant vectors.

Next, we introduce the L2-projection Q
δm(j)

h : L2(γm)2 → Mh(δm(j)) as follows:

(Q
δm(j)

h q,w) = (q,w), w ∈ Mh(δm(j)).(3.11)

Lemma 3.1. Let Q
δm(j)

h be given by (3.11). Then there holds

‖q −Q
δm(j)

h q‖0,γm ≤ C h
1
2

δm(j)
|q| 1

2 ,δm(j)
, q ∈ (H

1
2 (δm(j)))

2.

Proof. Let Ih denote the global interpolation operator associated with the space
Mh(δm(j)), i.e.,

Ihq =
∑

e∈Eh(δm(j))

le(q)q̃e,

where le(q) =
∫
e
ne · q ds ∀q ∈ (H1(δm(j)))

2.
In view of Remark 3.1 we know that Ih preserves constant vectors, i.e., for any

C ∈ R2,

IhC = C.

Consequently, by the standard Bramble–Hilbert lemma and scaling argument we get

‖(I − Ih)q‖2
0,γm

= ‖(I − Ih)(q + C)‖2
0,γm

=
∑

T∈Tδm(j)

‖(I − Ih)(q + C)‖2
0,T

≤ Ch2
δm(j)

|q|21,δm(j)
, q ∈ (H1(δm(j)))

2,

whence

‖(I − Ih)q‖0,γm ≤ Chδm(j)
|q|1,δm(j)

, q ∈ (H1(δm(j)))
2.

It follows from the definition of Q
δm(j)

h that

‖(I −Q
δm(j)

h )q‖0,γm
≤ ‖(I − Ih)q‖0,γm

≤ Chδm(j)
|q|1,δm(j)

, q ∈ (H1(δm(j)))
2.

On the other hand,

‖(I −Q
δm(j)

h )q‖0,γm ≤ 2‖q‖0,δm(j)
.

The assertion then follows from a standard interpolation of the preceding inequa-
lities.

We now introduce the following mortar edge element space:

Vh = {qh | qh ∈ Ṽh, and for any γm = γm(i) = δm(j),

Q
δm(j)

h (qh ∧ n|γm(i)
) = Q

δm(j)

h (qh ∧ n|δm(j)
)}.(3.12)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1282 XUEJUN XU AND R. H. W. HOPPE

We define the bilinear form ah(·, ·) : Vh × Vh → R by means of

ah(jh,qh) =

N∑
i=1

∫
Ωi

(A curl jh · curl qh + B jh · qh) dx.(3.13)

Then the mortar finite element method for the solution of (2.4) can be stated as
follows: Find jh ∈ Vh such that

ah(jh,qh) = l(qh), qh ∈ Vh.(3.14)

4. Error estimates. We first recall the well-known Strang lemma (cf., e.g.,
[17]).

Lemma 4.1 (Strang’s lemma). Let j, jh be the solutions of (2.2) and (3.14), re-
spectively. Then there holds

‖j − jh‖ah
≤

(
inf

qh∈Vh/{0}
‖j − qh‖ah

+ sup
qh∈Vh\{0}

|ah(j,qh) − (f,qh)|
‖qh‖ah

)

:= C(Ea + Ec),

where ‖ · ‖ah
= ah(·, ·) 1

2 .
We are now in a position to estimate the two terms on the right side of the above

inequality. As usual, we refer to the first one as the approximation error and to the
second one as the consistency error.

4.1. Consistency error. For curl j ∈ (H1(Ωi))
3, qh ∈ ND1(Ωi; Ti), by Stokes’

theorem we get∫
Ωi

curl · Acurl j · qh dx

−
∫

Ωi

Acurl j · curl qh dx = (n ∧ (Acurl j ∧ n),qh ∧ n)0,∂Ωi,

where n ∧ (Acurl j ∧ n) is the tangential components trace of Acurl j. Rearranging
the right-hand term in the above equality, for any qh ∈ Ṽh, and curl j ∈ (H1(Ωi))

3,
i = 1, . . . , N, we have (cf. [7] for details)

N∑
i=1

(∫
Ωi

curl · Acurl j · qh dx −
∫

Ωi

Acurl j · curl qh dx

)

=

M∑
m=1

(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm ,(4.1)

where [·] denotes the jump across the interface γm, i.e.,

[qh ∧ n] = qh ∧ n|δm(j)
− qh ∧ n|γm(i)

.

On the basis of the above equality, we can easily show that

Ec = sup
qh∈Vh\{0}

∣∣∣∣∣
M∑

m=1

(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm

‖qh‖ah

∣∣∣∣∣ .
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Theorem 4.1. Assume j ∈ H1(curl; Ω). Then the consistency error can be
estimated as follows:

Ec ≤ C

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

.

Proof. It follows from Lemma 3.1, (3.12), and the trace inequality that

|(n ∧ (Acurl j ∧ n), [qh ∧ n])0,γm |
= |(n ∧ (Acurl j ∧ n) −Q

δm(j)

h (n ∧ (Acurl j ∧ n)), [qh ∧ n])0,γm
|

≤ ‖n ∧ (Acurl j ∧ n) −Q
δm(j)

h (n ∧ (Acurl j ∧ n))‖0,γm ‖[qh ∧ n]‖0,γm

≤ Ch
1
2

δm(j)
|n ∧ (Acurl j ∧ n)| 1

2 ,δm(j)
‖[qh ∧ n]‖0,γm

≤ Ch
1
2
j ‖curl j‖1,Ωj ‖[qh ∧ n]‖0,γm .

On the other hand, for qh ∈ Vh, Theorem 3.2 in [20] yields

‖[qh ∧ n]‖0,γm ≤ C h
1
2

δm(j)
(‖curl qh‖0,Ωi + ‖curl qh‖0,Ωj ).(4.2)

On the basis of the preceding inequalities, we get

Ec ≤

⎡
⎣ N∑
j=1

C hj ‖curl j‖1,Ωj
(‖curl qh‖0,Ωi

+ ‖curl qh‖0,Ωj
)

⎤
⎦ /‖qh‖ah

≤ C

⎡
⎢⎣‖curl qh‖0,Ω

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

⎤
⎥⎦ /‖qh‖ah

≤ C

⎛
⎝ N∑

j=1

h2
j ‖curl j‖2

1,Ωj

⎞
⎠

1
2

.

4.2. Approximation error. We first introduce the extension operator E
δm(j)

h :
RT0,0(δm(j); Tδm(j)

) → ND1(Ωj ; Tj), defined according to

(E
δm(j)

h λj
h) ∧ n = λj

h on δm(j), λj
h ∈ RT0,0(δm(j); Tδm(j)

),

where all degrees of freedom that are not located on δm(j) are set equal to zero.

In order to estimate E
δm(j)

h λj
h, λj

h ∈ RT0,0(δm(j); Tδm(j)
), we need some auxiliary

results.
Lemma 4.2. For any qh ∈ ND1(Ωi; Ti), there holds

ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curlqh)|T |2 ≤ ‖curlqh‖2
0,Ωi

≤ Ch3
i

∑
T∈Fh(Ω̄i)

|(nT · curlqh)|T |2,

and

ch3
i

∑
e∈Eh(Ω̄i)

|(te · qh)(xM
e )|2 ≤ ‖qh‖2

0,Ωi
≤ Ch3

i

∑
e∈Eh(Ω̄i)

|(te · qh)(xM
e )|2,

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1284 XUEJUN XU AND R. H. W. HOPPE

where nT denotes the exterior unit normal vector with respect to T ∈ Fh(Ω̄i), and
xM
e is the midpoint of the edge e. Similarly, for any δm(j) ⊂ S, and any qh ∈

RT0(δm(j); Tδm(j)
), we have

ch2
δm(j)

∑
T∈Tδm(j)

|(divτqh)|T |2 ≤ ‖divτqh‖2
0,δm(j)

≤ Ch2
δm(j)

∑
T∈Tδm(j)

|(divτqh)|T |2,

and

ch2
δm(j)

∑
e∈Eh(δ̄m(j))

|(ne ·qh)(xM
e )|2 ≤ ‖qh‖2

0,δm(j)
≤ Ch2

δm(j)

∑
e∈Eh(δ̄m(j))

|(ne ·qh)(xM
e )|2.

Proof. We first prove the second inequality. In the reference tetrahedron K̂, it is
easy to see that

‖q̂h‖0,K̂ and

⎛
⎝ ∑

e∈Eh(K̄)

|(te · q̂h)(xM
e )|2

⎞
⎠

1
2

are equivalent norms over the finite dimension space. By a scaling argument and
summing up all e ∈ Eh(Ω̄i), we can get the second inequality. Similarly, the fourth
inequality can be verified. Moreover, the first and third inequalities are easy conse-
quences of the following fact:

curl qh|K ∈ P0(K)3, K ∈ Ti, and divτqh|T ∈ P0(T ), T ∈ Tδm(j)
.

On the basis of Lemma 4.2 we can derive the following lemma.
Lemma 4.3. For λj

h ∈ RT0,0(δm(j); Tδm(j)
) there holds

‖Eδm(j)

h λj
h‖curl,Ωj

≤ C h
1
2

δm(j)
‖λj

h‖divτ ,δm(j)
,

where ‖v‖divτ ,δm(j)
:= (‖v‖2

0,δm(j)
+ ‖divτv‖2

0,δm(j)
)

1
2 , ∀v ∈ RT0,0(δm(j); Tδm(j)

).

Proof. It follows from the definition of the extension operator E
δm(j)

h and Lemma
4.2 that

‖curl(E
δm(j)

h λj
h)‖2

0,Ωj
≤ Ch3

j

∑
T∈Tδm(j)

|nT · curl(E
δm(j)

h λj
h)|T |2

= Ch3
j

∑
T∈Tδm(j)

|divτ (E
δm(j)

h λj
h ∧ n)|T |2

= Ch3
j

∑
T∈Tδm(j)

|divτ (λ
j
h)|T |2

≤ Chj ‖divτ (λ
j
h)‖2

0,δm(j)
.

Using Lemma 4.2 again, we have

‖Eδm(j)

h λj
h‖2

0,Ωj
≤ Ch3

j

∑
e∈Eh(Ω̄j)

|(te · E
δm(j)

h λj
h)(xM

e )|2

= Ch3
j

∑
e∈Eh(Ω̄j)

|ne · (E
δm(j)

h λj
h ∧ n)(xM

e )|2
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= Ch3
j

∑
e∈Eh(δm(j))

|(ne · λj
h)(xM

e )|2

≤ hj‖λj
h‖2

0,δm(j)
.

Then, Lemma 4.3 follows from the above two inequalities.
Lemma 4.4. Let Πj

h : H1(curl; Ωj) → ND1(Ωj ; Tj) be the standard interpolation
operator associated with subdomain Ωj . Then there holds

(i)‖nT · (curl Πj
hj − curl j)‖0,T ≤ Ch

1
2

K‖curl j‖1,K , K ∈ Tj ,
(ii) ‖Πj

hj − j‖0,T ≤ Ch
1
2

K‖j‖1,curl,K , T ∈ ∂K.

Proof. We first prove (i). For K ∈ Ti and T ∈ ∂K let FK(x̂) = BK x̂+bK , x̂ ∈ K̂,
be the affine transformation mapping the reference element K̂ onto K. Further,
choose T̂ ∈ ∂K̂ such that T = FK(T̂ ) and denote by FT = FK |T̂ the associated affine

transformation FT (x̂) = BT x̂ + bT , x̂ ∈ T̂ , mapping T̂ onto T . Setting ĵ = B∗
Kj, it is

easy to check that

nT · (curl Πj
hj − curl j)|T = curlτΠ

j
hj|T − curlτ j|T .

We note (cf. Lemma 3.57 of [24] for details) that

curlτ j|T = (B∗
T )−1 curlτ ĵ|T̂ B−1

T ,

where curlτ u denotes the 2 × 2 matrix with entries

[curlτ u]i,j =
∂ui

∂xj
− ∂uj

∂xi
, u := (u1, u2).

It follows that

‖nT · (curl Πj
hj − curl j)‖2

0,T(4.3)

= ‖curlτΠ
j
hj|T − curlτ j|T ‖2

0,T

≤ C |det BT |‖B−1
T ‖4 ‖nT̂ · curl(Π̂j

hĵ − ĵ)‖2
0,T̂

≤ C |det BT |‖B−1
T ‖4 ‖curl(Π̂j

hĵ − ĵ)‖2
0,T̂

≤ C|det BT |‖B−1
T ‖4 ‖(I − Ŵ j

h)curl ĵ‖2
0,T̂

.

Here, we have used curl Π̂j
hĵ = Ŵ j

hcurl ĵ with Ŵ j
h being the L2-projection onto the

space of elementwise constants. It follows that

‖(I − Ŵ j
h)curl ĵ‖2

0,T̂
≤ C |curl ĵ|2

1,K̂
.(4.4)

We note that

curl ĵ = B∗
K curl j BK ,

where curl j stands for the 3 × 3 matrix with entries

[curl j]i,j =
∂ji
∂xj

− ∂jj
∂xi

, j := (j1, j2, j3).

Hence, by backtransformation we obtain (cf. Lemma 5.5 in [1] for details)

|curl ĵ|2
1,K̂

≤ C |det BK |−2 ‖BK‖7‖B∗
K‖2 |curl j|21,K .(4.5)

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1286 XUEJUN XU AND R. H. W. HOPPE

Summarizing (4.3), (4.4), and (4.5), it follows that

‖nT · (curl Πj
h j − curl j)‖2

0,T(4.6)

≤ C
|det BT |
|det BK | (‖B−1

T ‖ ‖BK‖)4 ‖BK‖3‖B∗
K‖2|det BK |−1 |curl j|21,K .

Finally, taking into account that Ti is a regular triangulation, we have

‖B−1
T ‖ ‖BK‖ ≤ C, ‖BK‖, ‖B∗

K‖ ≤ C hK .(4.7)

Moreover,

|det BT | =
meas(T )

meas(T̂ )
, |det BK | =

meas(K)

meas(K̂)
.(4.8)

Using (4.7) and (4.8) in (4.6) gives the assertion.
We now prove (ii). Observing

j|T = (B∗
T )−1ĵ|T̂ ,

we have

‖Πj
hj − j‖2

0,T ≤ |detBT |‖(B∗
T )−1‖2‖Π̂j

hĵ − ĵ‖2
0,T̂

.

Using the trace inequality and similar arguments as in the proof of Theorem 5.41 of
[24], we can derive that

‖Π̂j
hĵ − ĵ‖2

0,T̂
≤ C(|̂j|1,K̂ + |curl ĵ|1,K̂).

On the other hand,

|̂j|2
1,K̂

≤ ‖BK‖5‖B∗
K‖2|detB−1

K |2|j|21,K .

Combining the above three inequalities with (4.5), (4.7), and (4.8) yields Lemma
4.4(ii).

We further introduce a special projection operator π
δm(j)

h which will play an im-
portant role in analyzing the approximate error of the mortar edge element method.

We define π
δm(j)

h : L2(γm)2 → RT0,0(δm(j); Tδm(j)
) according to∫

δm(j)

π
δm(j)

h (p) · qh dx =

∫
δm(j)

p · qh dx, qh ∈ Mh(δm(j)).(4.9)

The boundedness of π
δm(j)

h is a direct consequence of the following result.
Lemma 4.5. The following inf-sup condition holds true:

inf
qh∈RT0(δm(j);Tδm(j)

)
sup

μh∈Mh(δm(j))

(qh, μh)0,δm(j)

‖qh‖0,δm(j)
‖μh‖0,δm(j)

≥ C > 0.

Proof. Taking the construction (3.8) on the basis of Mh(δm(j)) into account, for
qh ∈ RT0(δm(j); Tδm(j)

) we determine μh ∈ Mh(δm(j)) by specifying its degrees of
freedom according to

�e(μh) =

⎧⎨
⎩�e(qh), e ∈ Eh(δm(j)) \ E

δm(j)

h (∂δm(j)),

�e(qh) +
∑

f∈E
δm(j)

h
(e)

λe,f �f (qh), e ∈ Eδm(j)

h (∂δm(j)).
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The assertion can then be verified by following lines of proof analogous to those of
[20, Lemma 3.2].

Furthermore, by Lemma 3.2 in [20], we know that the following inf-sup condition
also true

Corollary 4.6. There holds

inf
μh∈Mh(δm(j))

sup
qh∈RT0,0(δm(j);Tδm(j)

)

(qh, μh)0,δm(j)

‖qh‖0,δm(j)
‖μh‖0,δm(j)

≥ C > 0.

On the basis of Lemma 4.5, we have the following.

Corollary 4.7. Let π
δm(j)

h be given by (4.9). Then there holds

‖πδm(j)

h (p)‖0,δm(j)
≤ C ‖p‖0,γm

, p ∈ L2(γm)2.

Proof. Using Lemma 4.5, straightforward computation reveals

‖πδm(j)

h (p)‖0,δm(j)
≤ C sup

μh∈Mh(δm(j))

(π
δm(j)

h (p), μh)0,δm(j)

‖μh‖0,δm(j)

= C sup
μh∈Mh(δm(j))

(p, μh)0,δm(j)

‖μh‖0,δm(j)

≤ C ‖p‖0,γm .

As a further consequence of the inf-sup condition in Lemma 4.5, we obtain the
following.

Lemma 4.8. Let Πh : H1(curl; Ω) ∩ V → Ṽh be the standard interpolation
operator. Then we have

‖divτπ
δm(j)

h [Πhj ∧ n]‖0,γm ≤ C ‖divτ [Πhj ∧ n]‖0,γm .

Proof. We denote by P
δm(j)

h the RT0(δm(j); Tδm(j)
)-interpolation operator. Obser-

ving that P
δm(j)

h |T , T ∈ Tδm(j)
, preserves constant tangential traces, by a Bramble–

Hilbert argument we obtain

‖(I − P
δm(j)

h )[Πhj ∧ n]‖2
0,γm

≤ Ch2
δm(j)

∑
T∈Tδm(j)

∑
T ′∩T �=Ø,T ′∈Tγm(i)

|[Πhj ∧ n]|21,T ′∩T

= Ch2
δm(j)

∑
T∈Tδm(j)

‖divτ [Πhj ∧ n]‖2
0,T

= C h2
δm(j)

‖divτ [Πhj ∧ n]‖2
0,γm

,

where we have used the fact that Πhj ∧ n|γm belongs to the lowest order Raviart–
Thomas space. Similar arguments for the proof of the first inequality can be found
in [16] . So we get

‖(I − P
δm(j)

h )[Πhj ∧ n]‖0,γm
≤ C hδm(j)

‖divτ [Πhj ∧ n]‖0,γm
.(4.10)

Moreover, in view of

divτP
δm(j)

h [Πhj ∧ n] = W
δm(j)

h divτ [Πhj ∧ n],

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1288 XUEJUN XU AND R. H. W. HOPPE

where W
δm(j)

h is the L2-projection onto the elementwise constants, we obtain

‖divτP
δm(j)

h [Πhj ∧ n]‖0,γm ≤ C ‖divτ [Πhj ∧ n]‖0,γm .(4.11)

We have (π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n] ∈ RT0(δm(j); Tδm(j)
), and hence, by Lemma 4.5

and (4.10),

‖(πδm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm(4.12)

≤ C sup
ψ∈Mh(δm(j))

((π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n], ψ)

‖ψ‖0,δm(j)

= C sup
ψ∈Mh(δm(j))

((I − P
δm(j)

h )[Πhj ∧ n], ψ)

‖ψ‖0,δm(j)

≤ C hδm(j)
‖divτ [Πhj ∧ n]‖0,γm .

Combining (4.11) and (4.12), we get

‖divτπ
δm(j)

h [Πhj ∧ n]‖0,γm

≤ ‖divτ (π
δm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm + ‖divτP
δm(j)

h [Πhj ∧ n]‖0,γm

≤ C h−1
δm(j)

‖(πδm(j)

h − P
δm(j)

h )[Πhj ∧ n]‖0,γm
+ ‖divτ [Πhj ∧ n]‖0,γm

≤ C ‖divτ [Πhj ∧ n]‖0,γm .

We are now in a position to estimate the discretization error of the mortar edge
element method.

Theorem 4.2. For any j ∈ H1(curl; Ω) there exists a function qh ∈ Vh such
that

‖j − qh‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

Proof. We define qh as

qh = Πhj −
M∑

m=1

E
δm(j)

h {πδm(j)

h [(Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

]}

and remark that qh ∈ Vh can be easily seen.
For each δm(j), by Lemma 4.3, Corollary 4.7, and Lemma 4.8, we get

‖Eδm(j)

h (π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

))‖curl,Ωj
(4.13)

≤ C h
1
2

δm(j)
‖divτ

(
π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n)|γm(i)

)
)
‖0,γm

+ C h
1
2

δm(j)
‖πδm(j)

h

(
(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)

)
‖0,γm

≤ C h
1
2

δm(j)
‖divτ

(
(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)

)
‖0,γm

+ C h
1
2

δm(j)
‖(Πj

hj ∧ n)|δm(j)
− (Πi

hj ∧ n)|γm(i)
‖0,γm

:= I1 + I2.
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As far as the first term I1 is concerned, applying Lemma 4.4 results in

I1 ≤ C h
1
2
j (‖divτ

(
(Πj

hj ∧ n)|δm(j)
− (j ∧ n)|δm(j)

)
‖0,γm

(4.14)

+‖divτ

(
(Πi

hj ∧ n)|γm(i)
− (j ∧ n)|γm(i)

)
‖0,γm)

≤ C h
1
2
j

⎛
⎝ ∑

T∈T (δm(j))

(‖nT · (curl Πj
h j − curl j)|T ‖2

0,T

⎞
⎠

1
2

+

⎛
⎝ ∑

T∈T (γm(i))

(‖nT · (curl Πi
h j − curl j)|T ‖2

0,T )
1
2

⎞
⎠

≤ C h
1
2
j

(
h

1
2
j ‖curl j‖1,Ωj + h

1
2
i ‖curl j‖1,Ωi

)
.

For the second term I2, using Lemma 4.4, we obtain

I2 ≤ C h
1
2

δm(j)

(
‖(Πj

hj ∧ n)|δm(j)
− (j ∧ n)|δm(j)

‖0,γm

)
(4.15)

+‖(Πi
hj ∧ n)|γm(i)

− (j ∧ n)|γm(i)
‖0,γm

≤ C h
1
2
j

(
h

1
2
j ‖j‖1,curl,Ωj

+ h
1
2
i ‖j‖1,curl,Ωi

)
.

Observing the standard approximation property

‖j − Πhj‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

and using (4.13), (4.14), and (4.15) results in

‖j − qh‖2
ah

≤ C
(
‖j − Πhj‖2

ah

+

m∑
m=1

‖Eδm(j)

h (π
δm(j)

h ((Πj
hj ∧ n)|δm(j)

− (Πi
hj ∧ n))‖2

curl,Ωj
)

≤ C

N∑
j=1

h2
j ‖j‖2

1,curl,Ωj
.

Finally, Theorems 4.1 and 4.2 imply the main result of this paper.
Theorem 4.3. Let j ∈ H1(curl; Ω) and jh ∈ Vh be the solutions of (2.2) and

(3.14), respectively. Then there holds

‖j − jh‖ah
≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

5. Saddle point formulation. A saddle point formulation for mortar element
methods associated with second order elliptic problems has been introduced in [4].

In particular, an a priori estimate for the Lagrange multiplier in the (H
1
2
00)

′-norm
has been established there, whereas related estimates in mesh-dependent norms have
been given in [28], [29], [30]. In this section, we will derive an a priori estimate for
the Lagrange multiplier of the mortar edge element method.

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



1290 XUEJUN XU AND R. H. W. HOPPE

First, we introduce a macrohybrid variational formulation for the continuous prob-
lem (2.1).

Using the domain decomposition as presented in the preceding section, we intro-
duce the product space

X := {q ∈ L2(Ω)3 | q|Ωi
∈ H(curl; Ωi), (n ∧ (q ∧ n))|∂Ωi∩∂Ω = 0}

equipped with the norm

‖q‖X :=

(
N∑
i=1

‖q‖2
curl,Ωi

) 1
2

.

We further consider the subspace

Ṽ :=
{
q ∈ X | [q ∧ n]|γm ∈ (H

1
2
00(γm))2

}
provided with the norm

‖q‖Ṽ :=
(
‖q‖2

X + ‖[q ∧ n]‖2
1
2 ,S

) 1
2 ,

where

‖[q ∧ n]‖ 1
2 ,S

:=

⎛
⎝ ∑

γm∈S

‖[q ∧ n]‖2

(H
1
2
00(γm))2

⎞
⎠

1
2

.

A natural candidate for the multiplier space is then

M :=
∏
γm

(H− 1
2 (δm(j)))

2

equipped with the norm

‖μ‖M :=

⎛
⎝ ∑

δm(j)∈S

‖μ|δm(j)
‖2
− 1

2 ,δm(j)

⎞
⎠

1
2

,

where H− 1
2 (δm(j)) := (H

1
2
00(δm(j)))

′.
We introduce the bilinear form a(·, ·)X×X → R as the sum of the bilinear forms

associated with the subdomain problems according to

a(j,q) :=

N∑
i=1

aΩi(j|Ωi
,q|Ωi

) =

N∑
i=1

∫
Ωi

[
Acurl j · curl q + Bj · q

]
dx.

Furthermore, we define the bilinear form b(·, ·) : Ṽ × M → R by means of

b(q, μ) := 〈[q ∧ n], μ〉 1
2 ,S

,

where 〈·, ·〉 1
2 ,S

:=
∑

δm(j)∈S〈·, ·〉 1
2 ,δm(j)

.

Then the appropriate macrohybrid variational formulation of (2.1) can be formu-
lated as follows:

Find (j, λ) ∈ Ṽ × M such that

a(j,q) + b(q, λ) = l(q), q ∈ Ṽ,(5.1)

b(j, μ) = 0, μ ∈ M.
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Denote by B : Ṽ → M the operator associated with the bilinear form b(·, ·), i.e.,

〈Bq, μ〉 1
2 ,S

= b(q, μ), μ ∈ M.

It is proved in Theorem 2.1 of [20] that the bilinear form a(·, ·) is KerB-elliptic and
the bilinear form b(·, ·) satisfies the LBB condition. So the saddle point problem (5.1)
admits a unique solution. For q ∈ V ⊂ Ṽ, the first equation of (5.1) reduces to (2.2).
Hence, the solution j of (5.1) is also the solution of (2.2). Finally, by (4.1) we know
that λ|γm = n ∧ (A curl j ∧ n)|γm .

Next, we consider the discrete version of (5.1). On Ṽh, we define the norm

‖qh‖Ṽh
:=

(
‖qh‖2

X + ‖[qh ∧ n]|S‖2
1
2 ,h,S

) 1
2 , qh ∈ Ṽh,

where ‖ · ‖ 1
2 ,h,S

is given by

‖[qh ∧ n]|S‖ 1
2 ,h,S

:=

⎛
⎝ ∑

γm⊂S

‖[qh ∧ n]‖2
1
2 ,h,γm

⎞
⎠

1
2

and ‖ · ‖ 1
2 ,h,γm

stands for the mesh-dependent norm:

‖[qh ∧ n]‖ 1
2 ,h,γm

:= h
− 1

2

δm(j)
‖[qh ∧ n]‖0,γm .

The Lagrange multiplier space Mh will be provided with the following mesh-dependent
norm:

‖μh‖Mh
:= ‖μh‖− 1

2 ,h,S
, μh ∈ Mh,

where

‖μh‖− 1
2 ,h,S

:=

⎛
⎝ ∑

δm(j)⊂S

‖μh‖2
− 1

2 ,h,δm(j)

⎞
⎠

1
2

and ‖ · ‖− 1
2 ,h,δm(j)

is given by

‖μh|δm(j)
‖− 1

2 ,h,δm(j)
:= h

1
2

δm(j)
‖μh‖0,δm(j)

.

In addition to the bilinear form ah(·, ·) : Ṽh × Ṽh → R as defined by (3.13), we
introduce the bilinear form bh(·, ·) : Ṽh × Mh → R according to

bh(qh, μh) :=
∑

γm∈S

([qh ∧ n]|γm
, μh)0,δm(j)

.

Then the mortar edge element approximation of (5.1) amounts to the solution of the
following problem: Find (jh, λh) ∈ Ṽh × Mh such that

ah(jh,qh) + bh(qh, λh) = l(qh), qh ∈ Ṽh,(5.2)

bh(jh, μh) = 0, μh ∈ Mh.
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The saddle point problem (5.2) admits a unique solution which follows from the
following LBB condition for the bilinear form bh(·, ·).

Lemma 5.1. The bilinear form bh(·, ·) : Ṽh × Mh → R satisfies a discrete inf-
sup condition (LBB condition) uniformly in hi, i.e., there exists a constant c > 0
independent of the mesh size hi such that

sup
qh∈Ṽh

bh(qh, μh)

‖qh‖Ṽh

≥ c ‖μh‖Mh
.

Proof. For any μh ∈ Mh(δm(j)) we define pj
h ∈ RT0,0(δm(j); Tδm(j)

) according to

�e(p
j
h) = �e(μh), e ∈ Eh(δm(j))

and refer to qj
h ∈ ND1(Ωj ; Tj) as the trivial extension, i.e.,

qj
h ∧ n = pj

h on δm(j),

where all degrees of freedom that are not located on δm(j) are set equal to zero,

especially [qj
h ∧ n] = pj

h. On the basis of Lemma 4.3, we have

‖qj
h‖curl,Ωj ≤ C h

1
2
j ‖pj

h‖divτ ,δm(j)

≤ C h
− 1

2
j ‖pj

h‖0,δm(j)

= C h
− 1

2
j ‖[qj

h ∧ n]‖0,δm(j)
.

By Corollary 4.6 and the above inequality, we obtain

(μh, [q
j
h ∧ n]|δm(j)

)0,δm(j)
≥ C ‖μh‖0,δm(j)

‖[qj
h ∧ n]‖0,δm(j)

≥ C h
1
2
j ‖μh‖0,δm(j)

‖qj
h‖curl,Ωj

≥ C ‖μh‖− 1
2 ,h,δm(j)

‖qj
h‖curl,Ωj .

On the other hand,

(μh, [q
j
h ∧ n]|δm(j)

)0,δm(j)
≥ C ‖μh‖0,δm(j)

‖[n ∧ qj
h]‖0,δm(j)

= C h
1
2
j ‖μh‖0,δm(j)

h
− 1

2
j ‖[qj

h ∧ n]‖0,δm(j)

= C ‖μh‖− 1
2 ,h,δm(j)

‖[qj
h ∧ n]‖ 1

2 ,h,δm(j)
.

Adding the above inequalities and summing over all δm(j) ⊂ Γ gives the asser-
tion.

Finally, we obtain the following.
Theorem 5.2. Let j ∈ H1(curl; Ω) and (jh, λh) ∈ Ṽh × Mh be the solutions of

(2.2) and (5.2), respectively. Then there holds

‖λ− λh‖− 1
2 ,h,S

≤ C

⎛
⎝ N∑

j=1

h2
j ‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.

Proof. On the basis of the inf-sup condition developed in Lemma 5.1 and argu-
ments similar to those in [12] for the mixed finite element methods and [30] for the
saddle point method for mortar element methods, we get

‖λ− λh‖− 1
2 ,h,S

≤ C(‖j − jh‖ah
+ inf

μh∈Mh

‖λ− μh‖− 1
2 ,h,S

).
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By Theorem 4.3, we have

‖j − jh‖ah
≤ C

⎛
⎝ N∑

j

h2
j‖j‖2

1,curl,Ωj

⎞
⎠

1
2

.(5.3)

Moreover, by Lemma 3.1

inf
μh∈Mh(δm(j))

‖λ− μh‖− 1
2 ,h,δm(j)

= h
1
2

δm(j)
inf

μh∈Mh(δm(j))
‖λ− μh‖0,δm(j)

≤ C hj ‖n ∧ (A curl j ∧ n)‖ 1
2 ,δm(j)

≤ C hj ‖curl j‖1,Ωj .

Summing over all δm(j) results in

inf
μh∈Mh

‖λ− μh‖− 1
2 ,h,S

≤ C

⎛
⎝ N∑

j

h2
j‖curl j‖2

1,Ωj

⎞
⎠

1
2

.(5.4)

Finally, combining (5.3) and (5.4) gives the assertion.
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