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Tunable transmittance in anisotropic two-dimensional materials
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A uniaxial strain applied to graphenelike materials moves the Dirac nodes along the boundary of the Brillouin
zone. An extreme case is the merging of the Dirac node positions to a single degenerate spectral node, which
gives rise to a new topological phase. Then isotropic Dirac nodes are replaced by a node with a linear behavior in
one and a parabolic behavior in the other direction. This anisotropy influences substantially the optical properties.
We propose a method to determine characteristic spectral and transport properties in black phosphorus layers,
which were recently studied by several groups with angle-resolved photoemission spectroscopy, and discuss
how the transmittance, the reflectance, and the optical absorption of this material can be tuned. In particular, we
demonstrate that the transmittance of linearly polarized incident light varies from nearly 0% to almost 100% in
the microwave and far-infrared regime.
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I. INTRODUCTION

Since the discovery of graphene [1], transport properties
of different semimetallic materials which crystallize on a
hexagonal lattice and have Dirac-like electronic spectra, have
been the focus of intensive research. Because of the subtle
issue of Klein tunneling, these materials turn out to have
nearly the same conductivity in the broad wavelength region
ranging from the microwave to the visible spectrum [2,3].
An intriguing further development is related to a continuous
deformation of the hexagonal lattice, which can result in a
topological transition of the spectrum. For the latter, it is
crucial that the sixfold isotropy of the hexagonal lattice is
broken by the deformation. For example, changing the carbon
bonds of graphene in one direction (as depicted on the left of
Fig. 1) changes the positions of the two Dirac nodes in the
perpendicular direction in momentum space. This can even
lead to their degeneracy in one point. Then the Dirac cones
are also affected, since the resulting spectrum is linear only
in the direction of the bond change but it becomes parabolic
in the perpendicular direction. This case is topologically
different from a single Dirac node, since the corresponding
wave function has a zero winding number, contrary to the
winding number ±1 of a single Dirac node. In this sense,
the system undergoes a topological transition, which has a
substantial effect on electronic and optical properties. These
ideas have a long history [4–13]. More recently, a detailed
experimental analysis of black phosphorus layers has revealed
that the spectral properties can be tuned by doping [14–16].
Using angle-resolved photoemission spectroscopy (ARPES),
it was found that there exists a split pair of Dirac nodes
that can be moved upon doping toward each other along the
zigzag direction of the underlying honeycomb lattice. The
detailed mechanism for the movement of the Dirac nodes in
black phosphorus is more complex (cf. Ref. [15]) but is based
on the fundamental mechanism of breaking a discrete lattice
isotropy, very similar to the case of an anisotropic honeycomb
lattice. In the following, we propose a method based on

light transmittance and absorption which could provide an
alternative to ARPES for the observation of the moving Dirac
nodes in black phosphorus layers. This could serve as a novel
analytic method as well as an application of the moving Dirac
nodes for sensors that are sensitive to polarization.

The intimate connection between electrical and optical
properties in semimetals allows us to study them together.
Because of the nearly frequency independent conductivity of
isotropic graphene, its transparency is frequency independent
too [2,3]. For small uniaxial lattice deformations, a variation of
the transmittance with respect to the plane-wave polarization
has been reported in Refs. [17,18]. The observed deviation
from the isotropic case was small, though, and did not exceed
1%. To extend these studies, we will consider stronger lattice
deformations in the regime, where the Dirac nodes are merging.
In this case, the optical transparency is much more affected
and can reach nearly 100% in the microwave regime. It is
caused by a divergent optical conductivity in the direction of
the stronger bonds and a vanishing optical conductivity in the
direction of the weaker bonds for low frequencies [19]. This
property opens a possibility for the development of a new type
of single-atom-thick optical polarization filter.

II. MODEL

The tight-binding Hamiltonian for electrons hopping be-
tween sites of a hexagonal lattice reads in momentum space

H = −
3∑

j=1

(
0 tje

iaj ·k

tje
−iaj ·k 0

)
, (1)

where the positions of the nearest neighbors around an atom
at the origin of coordinates are given by a1 = a(0, − 1)
and a2,3 = a(±√

3,1)/2; tj denote hopping energies in each
direction, cf. Fig. 1, and a represents the distance between
nearest neighbors. The spectrum of Eq. (1) has two branches
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FIG. 1. Left: Generic hexagonal lattice. The isotropic case is characterized by all equal hopping integrals tj . This isotropy is lifted once tj
become different. Right: Real and imaginary part of conductivity components. The number t ∼ 2.8 eV refers to the hopping parameter of the
isotropic graphene. The cutoff energy is chosen at the position of the Van Hove singularity in isotropic graphene, i.e., εc = 2t .

corresponding to positive and negative energies

E = ±|t1eia1·k + t2e
ia2·k + t3e

ia3·k|. (2)

For an isotropic lattice, i.e., in the case where all tj are equal,
both spectral branches touch each other at six corners of the
hexagonal Brillouin zone, where they compose two Dirac
nodes. An expansion in powers of small momentum deviations
around these nodal points yields in leading order a linear
spectrum. The situation changes if the isotropy is lifted, i.e.,
when the hopping integrals are different. Then the Dirac nodes
can be continuously moved in momentum space [5–12], which
also changes the shape of the Brillouin zone, while keeping its
area constant. In the following, we will study the case where
the hopping integrals t2 and t3 are kept fixed at the value of
the isotropic lattice t , while t1 changes smoothly between t

and 2t [19]. Then the nodes (corresponding to Dirac particles
with different chirality) start moving in the momentum space
toward each other:

kx = ± 2√
3

arccos

[
t1

2t

]
, ky = ±2π

3
. (3)

At the particular value t1 = 2t the Dirac nodes merge and give
rise to an anisotropic spectrum with parabolic dispersion along
the direction of the motion and linear perpendicular to it. The
effective low-energy Hamiltonian then reads

H = − k2
x

2m
σ̂x ± cky σ̂y , (4)

where σ̂x,y denote Pauli matrices, m = 2/(3ta2) and c = 3at .
The sign ambiguity in the second term is due to different chi-
rality of merging Dirac nodes. The merging point is occupied
simultaneously by both copies with opposite chiralities. In
our subsequent calculation of the conductivity, which does
not depend on the sign in Eq. (4), we take into account this
degeneracy by an additional factor of two and assume the sign

to be +. The effective Hamiltonian has the eigenvalues

εk = ±
√

k4
x

4m2
+ c2k2

y, (5)

and the corresponding normalized eigenfunctions

ψ± = ∓e−ik·r
√

2εk

[
k2
x

2m
+ icky

∓εk

]
. (6)

The current operators jμ = i[H,rμ], corresponding to the
anisotropic Hamiltonian in Eq. (4), read

jx = −kx

m
σ̂x, j2 = cσ̂y . (7)

Then the interband current matrix elements read

〈ψ±|jx |ψ∓〉 = ∓i
c

m

kxky

εk

, (8)

〈ψ±|jy |ψ∓〉 = ±i
c

2m

k2
x

εk

, (9)

which will be used to compute the conductivity.

III. OPTICAL CONDUCTIVITY

To calculate the conductivity per valley and spin projection
we use the Kubo formula

σμν(ω) = 16iσ0

∑
λ,λ′=±

∫
d2k

(2π )2

fβ(εk,λ′) − fβ(εk,λ)

εk,λ − εk,λ′

×〈ψλ|jμ|ψλ′〉〈ψλ′ |jν |ψλ〉
εk,λ − εk,λ′ + ω − i0+ , (10)

Here, fβ(ε) = (1 + exp[β(ε − εF )])−1 denotes the Fermi
function at inverse temperature β = 1/kBT with Boltzmann
constant kB . The conductivity in Eq. (10) is measured in units
of universal dc conductivity per valley and spin projection
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σ0 = 1/16e2/h̄. Because of the preserved time-reversal sym-
metry of the model, the nondiagonal elements of the conduc-
tivity tensor with μ �= ν are zero. In the zero-temperature limit,
the diagonal elements of the conductivity tensor read

σμμ(ω) = i

∫
d2k

(2π )2

[

μμ

2εk + ω + i0+ − 
μμ

2εk − ω − i0+

]
.

(11)

Because of the anisotropy, the conductivities in x and y direc-
tions are different. We obtain the following matrix elements of
the current-current correlator:


xx = 8σ0

(
c

m

)2 k2
xk

2
y

ε3
k

, (12)


yy = 8σ0

(
c

2m

)2
k4
x

ε3
k

. (13)

Rewriting momentum integrals as
∫ ∞
−∞ dki → 2

∫ ∞
0 dki

(which is possible since the integrand function is even under
mirroring ki → −ki), introducing new integration variables
u = k2

x/2m and v = cky , and changing into polar coordinates
we arrive at

σxx(ω) = iγ σ0

(2π )2

∫ π/2

0
dφ cos

1
2 φ sin2 φ

×
∫ xc

0
dx

√
x

[
1

x − 1 + i0+ − 1

x + 1 − i0+

]
, (14)

σyy(ω) = iγ σ0

(2π )2

∫ π/2

0
dφ cos

3
2 φ

×
∫ xc

0

dx√
x

[
1

x − 1 + i0+ + 1

x + 1 − i0+

]
, (15)

where γ =
√

ω/mc2 and x = √
2ε/ω. Angular parts represent

standard elliptic integrals and can be found in the literature:∫ π/2

0
dφcos

1
2 φ sin2 φ ∼ 1

2
,

∫ π/2

0
dφ cos

3
2 φ ∼ 7

8
. (16)

Separating real and imaginary parts of the fractions under the
integral using the Dirac identity:

1

x ± 1 ± i0+ = P 1

x ± 1
∓ iπδ(x ± 1), (17)

where P denotes the operator of the principal part integration.
We ultimately obtain

Reσxx(ω) ∼ 2γ σ0

π
, Reσyy(ω) ∼ 7σ0

2πγ
, (18)

and

Imσxx(ω) ∼ 2γ σ0

π2

[
ln

∣∣∣∣xc − 1

xc + 1

∣∣∣∣ + 2 arctan xc

]
, (19)

Imσyy(ω) ∼ 7σ0

2π2γ

[
ln

∣∣∣∣xc − 1

xc + 1

∣∣∣∣ − 2 arctan xc

]
, (20)

as the real and the imaginary part of the conductivity. xc =√
2εc/ω denotes the effective dimensionless bandwidth. At

energies ω � εc we can approximate the expression in the
square brackets by π/2 and obtain the same conductivity

amplitudes for both real and imaginary parts in each direction.
Remarkably, in the low-energy regime, both conductivities
turn out to be functions of the variable γ =

√
ω/mc2, taken

to mutually inverse powers, though. Hence, the product of
both conductivities does not depend on the frequency, nor
on the parameters of the anisotropic Hamiltonian of Eq. (4).
It is related to the universal conductivity per spin projection
σ̄0 = 2σ0, Ref. [19]

2 lim
ω→0

√
|σxx(ω)||σyy(ω)| ∼ 1.2σ̄0, (21)

where the valley degeneracy is taken into account by the factor
2. The existence of such a relation is dictated by the current
conservation condition, which must hold for any smooth lattice
deformations which respects parity, time reversal, and charge-
conjugation symmetries. The deviation from unity is due to the
low-energy approximation, while numerical evaluations with
the full tight-binding spectrum give a value much closer to
unity.

IV. OPTICAL PROPERTIES OF STRAINED
GRAPHENELIKE MATERIALS

To study optical properties, we must consider the coupling
of the electrons in the hexagonal lattice and an external
monochromatic electromagnetic field with frequency ω. For
this case, we have to solve the classical Maxwell equations
for the electromagnetic field together with Ohm’s law due to
conductivity obtained above. We consider linearly polarized
light propagating perpendicular to the layer along z direction
and the interaction with electrons in the graphenelike material
at z = 0. φ is the angle between the polarization plane and x

axis. Then the Maxwell equation of the electromagnetic field
reads [20]

∂2E
∂z2

= ε
ω2

c2
0

E − 4πi
ω

c2
0

δ(z)j, (22)

with the electronic current in the lattice and c0 denoting the
speed of light in vacuum. A unique solution of this equation is
obtained if we assume that the tangential component of electric
field is continuous at z = 0:

Ẽi + Ẽr = Ẽt , (23)

with i,r , and t denoting incident, reflected, and transmitted,
respectively, and Ẽ denoting the amplitude of the correspond-
ing field component, along with a discontinuity of its spatial
derivative, cf. Appendix:

−iqẼt + iq(Ẽi − Ẽr ) = 4πi
ω

c2
0

j. (24)

Exploiting Ohm’s law j = σ Ẽ and the dispersion relation ω =
c0q for the external electromagnetic field, we finally obtain a
relationship between the transmitted and the incident electric
field:

Ẽ
μ
t = Ẽ

μ

i

1 + πα
2 fμμ

, μ = x,y , (25)

with Ẽx
i = |Ẽi | cos φ, Ẽ

y

i,t = |Ẽi,t | sin φ. Here α = e2/h̄c0 ∼
1/137 is the fine structure constant, fμμ = σμμ/σ0 and the
valley and spin degeneracy is taken into account by the factor
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FIG. 2. Left: Transmittance as function of the incident polarization angle for different light frequencies measured in units of the hopping
energy t . Right: Reflectance as function of the incident polarization angle for different light frequencies measured in units of the hopping
energy t .

4. The transmittance is defined as the ratio of the intensities of
the transmitted and the incident field

T ≡ It

Ii

=
∣∣Ex

t

∣∣2 + ∣∣Ey
t

∣∣2∣∣Ex
i

∣∣2 + ∣∣Ey

i

∣∣2 = Tx cos2 φ + Ty sin2 φ, (26)

with

Tμ =
∣∣∣1 + πα

2
fμμ

∣∣∣−2
. (27)

The reflectance reads according to Eqs. (23) and (25)

R ≡ Ir

Ii

=
∣∣Ẽx

t − Ẽx
i

∣∣2 + ∣∣Ẽy
t − Ẽ

y

i

∣∣2∣∣Ẽx
i

∣∣2 + ∣∣Ẽy

i

∣∣2

= Rx cos2 φ + Ry sin2 φ, (28)

with

Rμ =
(

πα

2

)2

|fμμ|2Tμ. (29)

Both, transmittance and reflectance are plotted versus the
polarization angle in Fig. 2. Then the ratio of the absorbed
and incident intensity A = Ia/Ii is

A = 1 − R − T

= 1 − 1 + |zx |2
|1 + zx |2 cos2 φ − 1 + |zy |2

|1 + zy |2 sin2 φ, (30)

where zμ = πα
2 fμμ, which is plotted in Fig. 3 as function of

the polarization angle at fixed light frequency and in Fig. 3 as
function of the light frequency at fixed polarization angle.

V. DISCUSSION AND CONCLUSIONS

In sharp contrast to the case of the isotropic hexagonal
lattice, lifting the isotropy by a smooth lattice deformation
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FIG. 3. Left: Absorption as function of the incident polarization angle for different light frequencies measured in units of the hopping
energy t . Close to 0 and π , there are narrow regions where the absorption is approximately constant. Right: Absorption as function of the light
frequency for different polarization angles.
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changes substantially the transport properties. Essential for
our discussion is that the optical conductivity, which is nearly
constant with respect to the frequency of the incident field
(at least in the low-energy regime) in the isotropic lattice,
becomes strongly frequency dependent. In the case studied
in this paper, where the armchair-oriented hexagonal lattice
is compressed along the y axis, the corresponding hopping
amplitude t1 increases, as visualized in Fig. 1. This enhances
the conductivity parallel to the y axis and suppresses the
transport in the perpendicular direction. In the particular case
where t1 becomes twice the hopping energy of isotropic lattice,
the dc conductivity in the x direction is suppressed and the
optical conductivity vanishes like ∼γ . On the other hand, the
dc conductivity in the y direction diverges for small ω like
∼1/γ (cf. Fig. 1). Thus, a finite lattice anisotropy (t1 = 2t2,3)
leads to a very strong transport anisotropy at small frequencies.
This reflects the degeneracy of the Dirac nodes, which is a
topological effect in the spectrum.

The strong transport anisotropy has remarkable conse-
quences for the optical properties too, in which the trans-
parency and the reflectivity of the system depend on the orien-
tation of the polarization of the incident light. For instance, if
the polarization is parallel to the x axis, the system becomes
almost completely transparent in the infrared regime, Fig. 2.
This behavior is typical for insulators, which is supported
by the fact that σxx ∼ 0 in the infrared. On the other hand,
σyy grows toward smaller frequencies and makes the system
increasingly more reflective for a polarization parallel to the
y axis, cf. Fig. 2. Such a behavior is known for conventional
metals. Our calculations indicate that much larger transparency
oscillations can occur than those reported in Refs. [17,18] due
to strong deformations with degenerate Dirac nodes.

Another experimentally accessible quantity is the absorp-
tion, which is related to the electronic currents induced in
the sample. This observable quantity has a nonmonotonous
behavior as a function of both polarization angle and frequency,
cf. Fig. 3. In particular, the absorption has a maximum for all
frequencies if the polarization is parallel to the y axis. However,
in the dc limit, the absorption goes to zero for any angle φ,
which is in sharp contrast to the isotropic case, where it is given
by the constant πα. This limit is visible in Fig. 3. With growing
frequency, the absorption initially exhibits a steep growth and
reaches a maximum at some specific frequency value.

One could employ the optical method as an alternative
to the ARPES studies [14–16] of the spectral anisotropy in

black phosphorus layers. This would provide a simple and
flexible approach either by measuring the surface reflectance,
as described in Eq. (28) and visualized in Fig. 2, or by measur-
ing the absorption as presented in Fig. 3. This method could
shed some additional light on the peculiar spectral properties
found by ARPES. Moreover, it provides not only information
regarding the spectral properties but also information in terms
of transport.
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APPENDIX: DERIVATION OF THE DISCONTINUITY
CONDITION EQ. (24)

Here we obtain the discontinuity condition Eq. (24) from
the wave equation Eq. (22). It is obtained with the plane-wave
ansatz

Ei,t = Ẽi,te
iqz, Er = Ẽre

−iqz. (A1)

For this, we integrate Eq. (22) along teg z -axis within an
infinitesimally thin region around z = 0

lim
λ→0

∫ +λ

−λ

dz

{
∂2E
∂z2

− ε
ω2

c2
0

E + 4πi
ω

c2
0

δ(z)j
}

= 0. (A2)

Separating the integral in z < 0 and z > 0 parts and noticing

E(z � 0) = Ei + Et , E(z � 0) = Et , (A3)

and Eq. (23) precisely at z = 0 we get

lim
λ→0

{
ε
ω2

c2
0

∫ 0

−λ

dz(Ei + Er ) − ε
ω2

c2
0

∫ λ

0
dzEt + ∂

∂z
Et

∣∣∣∣
z=λ

− ∂

∂z

(
Ei + Er

)∣∣∣∣
z=λ

}
= −4πi

ω

c2
0

j(0). (A4)

With the plane-wave ansatz Eq. (A1), terms in the first line
of this equation disappear individually in the limit λ → 0.
Remaining terms form the condition Eq. (24).
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