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Abstract – The topology of the band structure, which is determined by the lattice symmetries,
has a strong influence on the transport properties. Here we consider an anisotropic honeycomb
lattice and study the effect of a continuously deformed band structure on the optical conductivity
and on diffusion due to quantum fluctuations. In contrast to the behavior at an isotropic node
we find super- and subdiffusion for the anisotropic node. The spectral saddle points create van
Hove singularities in the optical conductivity, which could be used to characterize the spectral
properties experimentally.

                    

Introduction. – Graphene, a two-dimensional sheet of
carbon atoms which form a honeycomb lattice has excep-
tional opto-electronic properties [1]. The latter are related
to the band structure of this material, consisting of two
bands with two Dirac nodes [2,3]. The existence and the
positions of these nodes are a consequence of global sym-
metries of the lattice. Local breaking of the symmetries,
for instance, by impurities or other types of local disorder,
does not affect the robust opto-electronic properties, as
long as the symmetries are globally preserved. This is the
case when the distribution of the local disorder obeys the
global symmetries. The situation changes, though, when
the symmetries are globally broken. A typical example is
the breaking of the sublattice symmetry of the honeycomb
lattice when the carbon atoms are replaced by atoms with
different mass, such that the atomic mass is larger on one
sublattice. This leads to an opening of the Dirac nodes
by creating a gap between the two bands. A realization
of this effect is hexagonal boron nitride, which is charac-
terized by a gap of 5 eV [4]. Another global symmetry of
the honeycomb lattice is its isotropy. Breaking this sym-
metry by changing the bonds between neighboring sites
of the atomic lattice in one direction affects the positions
of the Dirac nodes. For special values of the anisotropic
bonds the Dirac nodes can even be brought to the same
position with only one degenerate node between the two
bands. This effect was proposed and discussed in a series

of papers by Montambaux et al. [5–8], by Bahat-Treidel
et al. for a photonic crystal [9]. Moreover, in terms of the
Kitaev model it was also discussed recently [10]. In par-
ticular, the spectral properties and the DC conductivity
become very anisotropic in the case of the doubly degen-
erate Dirac node [8]. This is quite remarkable in the light
of transport properties in graphene-like materials, which
are already exceptional near the Dirac nodes in isotropic
graphene. We briefly summarize the DC transport prop-
erties in undoped isotropic graphene.

Diffusion, the origin of conducting behavior in conven-
tional metals with finite conductivity, is a result of random
impurity scattering [11]. In the absence of the latter the
diffusion coefficient would diverge and we would experi-
ence ballistic transport. This simple picture is not valid
at spectral degeneracies, though. For instance, at a Dirac
(Weyl) node or at a node with parabolic spectrum there is
diffusion due to quantum fluctuations between the upper
and the lower band, even in the absence of random impu-
rity scattering (cf. appendix B). In this context it should
be noted that the Fermi Golden Rule gives [8]

σμμ =
e2h̄

πγ
v2

F , (1)

where γ is the strength of the disorder fluctuations and vF

is the Fermi velocity. It does not reproduce the constant
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Fig. 1: A hexagon of the honeycomb lattice with hopping
parameters t1, t2 and t3. The thickness of the bonds refers
to the hopping rate. Full (empty) circles indicate the two tri-
angular sublattices.

conductivity at the node in the pure limit γ → 0

σμμ =
e2

πh
, (2)

which was experimentally confirmed for graphene [1,12,13]
(up to the factor 1/π). The finiteness of the conductiv-
ity at the node of the pure system can be attributed to
quantum fluctuations between the two bands. The latter
are not taken into account in the Fermi Golden Rule (1),
whereas their inclusion leads to a finite conductivity at the
Dirac node even in the absence of any impurity scattering.
This result reflects a more delicate transport behavior at
the spectral node, whereas away from this node conven-
tional approximations, such as the Fermi Golden Rule (1),
are valid.

The result (2) of an isotropic nodal spectrum is in stark
contrast to the recently found behavior for an anisotropic
spectrum in the vicinity of a Dirac node. Adroguer
et al. [8] found a remarkable result for the conductivity
in the presence of random scattering, namely a strongly
anisotropic transport behavior, where σxx(EF ) vanishes
linearly with EF → 0, whereas σyy(EF ) stays nonzero
even for EF → 0. We will return to the details of this
result below.

Model of merging Dirac nodes. – The Hamiltonian
of a tight-binding model with honeycomb structure (e.g.,
graphene) reads in the sublattice representation of the
two-dimensional k space [2,3]

H =

(
0 − ∑ 3

j=1 tje
iaj ·k

− ∑ 3
j=1 tje

−iaj ·k 0

)
(3)

with the basis vector of the sublattice with empty circles
in fig. 1,

a1 = a(0, −1), a2,3 =
a

2
(±

√
3, 1) (4)

and with the lattice constant a of this sublattice. For fixed
basis vectors aj the positions of the two Dirac nodes
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Fig. 2: Band structure of the honeycomb lattice for t1 = 2t
(top) and t1 = 3t (bottom).

depend on the hopping parameters t1,2,3. Increasing one
of them relative to the others (i.e., breaking isotropy)
moves the Dirac nodes towards each other. This is ac-
companied by lifting the degenerate saddle points of the
spectrum. In particular, the Dirac nodes merge if two
tunneling parameters are equal and the third one is twice
as large, for instance, for t1 = 2t2 = 2t3 (cf. figs. 2, 3).
For simplicity, we consider subsequently only t2 = t3 ≡ t.
At this point the Hamiltonian reads in the vicinity of the
merged Dirac nodes

H =
p2

x

2m
σx + cypyσy, (5)

where σj are Pauli matrices with the 2 × 2 unit matrix
σ0 with coefficients m and cy, which are related to the
tunneling rates tj in a rather complex manner [5]. Thus,
the tuning of t1 allows us to measure the effect of the
internode scattering on the transport properties.

Adroguer et al. [8] found with the Hamiltonian (5) for
the conductivity in the presence of a random scattering
rate γ

σxx(EF ) ≈ 0.197
e2h̄

πγ

2EF

m
, σyy(EF ) ≈ 1.491

e2h̄

πγ
c2
y.

(6)
The conductivity σyy(EF ) diverges for vanishing disorder,
while the behavior of σxx(EF ) diverges with γ ∼ 0 only
for EF �= 0. On the other hand, the result is not unique
in the limit EF → 0, γ → 0.

27001-p2



                                                                                      

0

0.4

0.8

1.2

-0.2 0 0.2

E
/t

kx/k
max
x

t1/t=1.00
t1/t=1.25
t1/t=1.50
t1/t=1.75
t1/t=2.00
t1/t=2.25

Fig. 3: (Colour online) Merging of two Dirac nodes with in-
creasing anisotropy. For t1 = 2.25t there is a gap.

Since the conductivity is proportional to the diffusion
coefficient of scattered electrons at the Fermi energy EF

due to the Einstein relation, the result in eq. (6) re-
flects also a strongly anisotropic diffusion coefficient at
the anisotropic Dirac node with EF = 0. This shall be
studied in this paper in the absence of random scattering.
For potential opto-electronic applications it is important
to analyze the optical conductivity.

Optical conductivity. – The linear response of the
electronic system to an electromagnetic field of frequency
ω is described by the Kubo formula of the optical conduc-
tivity. At temperature T this reads

σμν(ω) = − i

h̄
lim
α→0

∫
BZ

∑
l,l′=0,1

〈k, l|jμ|k, l′〉〈k, l′|jν |k, l〉
Ek,l − Ek,l′ + ω − iα

× fβ(Ek,l′ ) − fβ(Ek,l)
Ek,l − Ek,l′

d2k

ΩBZ

(7)
with the Fermi-Dirac distribution fβ(E) = 1/[1 +
exp(β(E − EF ))], β = 1/kbT . ΩBZ is the area of the
Brillouin zone BZ, and l, l′ refer to the band index. Its
derivation can be found, for instance, in ref. [14]. This for-
mula gives us for the Hamiltonian (5) with T ∼ 0, EF = 0
and ω > 0

Re[σxx(ω)] ≡ σ′
xx ∼ ω1/2Ix,

Re[σyy(ω)] ≡ σ′
yy ∼ ω−1/2Iy

(8)

for small ω, where Ix,y are ω-independent integrals.
Thus, the anisotropy of the optical conductivity depends
strongly on ω. The corresponding optical conductivity of
an isotropic Dirac node is independent of ω. For the full
Hamiltonian (3) and arbitrary values of ω the behavior of
σ′

xx and σ′
yy is plotted in figs. 4, 5. For higher frequen-

cies the behavior of the two conductivities is compared
in fig. 5.
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Fig. 4: (Colour online) Optical conductivities σ′
xx and σ′

yy with
moving van Hove singularities for different strengths of the
anisotropy. The van Hove singularity for σ′

yy of the isotropic
system is split by the anisotropy into a pair of van Hove sin-
gularities, which move apart with increasing anisotropy.
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Fig. 5: (Colour online) High-frequency behavior of σ′
xx and

σ′
yy near the van Hove singularity at ω = 4t of the anisotropic

lattice with t1 = 2t, where the effect of the anisotropy is weak.
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The real part of the integrand in eq. (7) contains a Dirac
Delta function for α ∼ 0, which picks Ek,l′ − Ek,l = ω.
Thus, σ′

μμ = 0 for ω smaller than the gap [14].

Anomalous diffusion. – The motion of particles (e.g.,
electrons) is characterized by the mean square displace-
ment of a particle position, a concept which has been
applied to classical as well as to quantum systems [11].
It provides our basic understanding for a large number
of transport phenomena, such as the metallic behavior in
electronic systems. Starting point is the transition prob-
ability for a particle, governed by the Hamiltonian H , to
move from the site r′ on a lattice to another lattice site r
within the time t:

Prr′(t) =
∑
j,j′

|〈r, j|e−iHt|r′, j′〉|2. (9)

Here the indices j, j′ refer to different bands of the sys-
tem, represented in the Hamiltonian (3) or (5) by Pauli
matrices. With the expression (9) we obtain, for instance,
the mean square displacement as

〈(rμ − r′
μ)2〉 =

∑
r

(rμ − r′
μ)2Prr′(t) (μ = x, y).

After integration with respect to time this becomes
according to eq. (A.1)

ε2
∑
r

(rμ − r′
μ)2
∫ ∞

0
Prr′(t)e−εtdt =

∫
Dμ(ε, E)dE (10)

with Dμ(ε, E) defined in eq . (A.5). Thus, we obtain the
integral of the diffusion coefficient Dμ(ε, E) for a particle
of energy E with respect to all energies. In the case of a
Fermi gas only fermions at the Fermi energy contribute
at sufficiently low temperatures. Therefore, we study
this coefficient for particles at a fixed Fermi energy E.
Next, Dμ(ε, E) is calculated for a node with linear and/or
parabolic spectrum, as given for the merging point of two
Dirac nodes in eq. (5). With expression (A.6) for the dif-
fusion coefficient we obtain from eqs. (C.3) and (C.4)

Dx ≈ D̄xε1/2, Dy ≈ D̄yε−1/2, (11)

where the ε-independent coefficients D̄x and D̄y are inte-
grals given in appendix C.

These expressions for the diffusion coefficients reflect the
result of a divergent σyy for γ → 0 in eq. (6) and clarifies
the transport behavior at EF = 0 and γ = 0, previously
found in ref. [8]. It corresponds to the asymptotic time
(τ) behavior of superdiffusion (∼ τ3/2) in the y-direction
and subdiffusion (i.e., ∼ τ1/2) in the x-direction. For an
isotropic node we get D(1) ∼ 4π/3 for a linear (Dirac)
dispersion and D(2) ∼ 8π/3 for quadratic dispersion, re-
spectively (cf. appendix B).

We anticipate that additional disorder scattering
would replace ε by disorder strength γ which reduces
the superdiffusive behavior to normal diffusion in the
y-direction, whereas the subdiffusive behavior in the
x-direction would persist. This agrees with the behavior
of the conductivity in eq. (6).
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Fig. 6: (Colour online) Scaling behavior of the conductivity for
ω ∼ 0 with the strength of the anisotropy.

Discussion. – Transport properties are very sensitive
to the topology of the band structure. We have studied
this in terms of the optical conductivity and mean-square
displacement for a system, where the topology of the band
structure is characterized by two bands with two nodes
and saddle points between these nodes (i.e., a vanishing
gradient of the spectrum ∇kEk = 0 with different curva-
tures in different directions). For our study it is essential
that in real space we have a lattice with global symme-
tries. For instance, there is a sublattice symmetry due
to the two degenerate triangular lattices forming a hon-
eycomb lattice and a discrete threefold isotropy. Then
the band structure of the infinite lattice is a continuous
compact manifold. Continuous deformations of the lat-
ter can be achieved by breaking global lattice symmetries.
For example, breaking the sublattice symmetry opens the
Dirac nodes and creates a gap between the two bands [2,3].
The size of the gap increases continuously with increasing
sublattice asymmetry. Breaking the global isotropy of the
lattice by changing the electronic hopping rate in one di-
rection, breaks the isotropy of the nodal structure and
moves the nodes to different locations in k space [5–8].
At the same time the degeneracy of the saddle points is
lifted. The reduction of the saddle point value upon an
increasing anisotropy is visualized in fig. 3.

Spectral properties are difficult to observe directly; it
is easier to analyze them indirectly through transport
measurements. For instance, the saddle points in the spec-
trum lead to van Hove singularities in the optical conduc-
tivity (cf. figs. 4 and 5). Nodes, on the other hand, are
characterized by a kind of universal transport behavior
when random scattering is suppressed, as discussed in the
Introduction. This limit reveals details of the spectrum at
the nodes. More directly, though, it is the measurement
of the optical conductivity for low frequencies.

The main effect of a globally broken isotropy on the op-
tical conductivity σ′

yy is the appearance of two van Hove
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singularities rather than one, in contrast to the isotropic
case. This is visualized in fig. 4: For the isotropic case
t1 = t of the Hamiltonian (3) the saddle points are degen-
erate. The conductivities (red curves in fig. 4) indicate a
single van Hove singularity at ω = 2t. In the anisotropic
case t1 > t, on the other hand, the degeneracy of the sad-
dle points is lifted to one van Hove singularity at ω < 2t
and another one at ω > 2t. In the special case of t1 = 2t
one saddle point appears at ω = 0 and the other one at
ω = 4t.

The frequency ω of the external electromagnetic field
creates a finite lengthscale (wavelength) for the electronic
system through the relation λ = vF /ω. The Fermi ve-
locity vF is the spectral slope near the Dirac node. This
length scale is similar to the mean-free path lm = vF τ ,
created by random scattering with scattering time τ . In
our calculations the role of τ is played by h̄/ε. For the
optical conductivity the electronic wave length λ sets a fi-
nite scale in the (graphene) sample. The relevance of these
two lengthscales is reflected by the similarity of the opti-
cal conductivity in eq. (8) and the diffusion coefficients in
eq. (11) in terms of ω and ε, respectively. An increasing
length creates an increasing σyy (Dy) and a decreasing
σxx (Dx).

In isotropic graphene the hopping parameter is t =
2.8eV and the Fermi velocity is vF =106m/s. If we choose
for the frequency of the external electromagnetic field
ω = 2t/h̄ ≈ 8 · 1015 s−1 (extreme ultraviolet), we have
for the conductivity at the van Hove singularity an elec-
tronic wavelength of λ = vF /ω ≈ 2.3 ·10−10 m. Through a
deformation of the lattice we can tune the frequency of the
van Hove singularity between 0 and 4t, which would allow
us to detect this singularity with the optical conductivity
over a wide range of frequencies.

For very low frequencies (i.e., for very large length-
scales) the conductivity satisfies a scaling behavior with
respect to anisotropy parameter Δ = (t1 − t)/t. There
is a critical point Δ = 1, which is approached by
the conductivity with a power law, as visualized in
fig. 6.

An important question is how the isotropy can be
globally broken in a honeycomb lattice. In graphene, for
instance, we can apply uniaxial pressure or pull the ma-
terial in one direction. It seems to be unrealistic, though,
that one could reach the point of degenerate nodes (i.e.,
t1 = 2t) by this method. Another possibility is to use
“artificial” graphene [15] in the form of a photonic crys-
tal [16,17] or a microwave metamaterial [18], which can
be designed in the laboratory with any kind of lattice
structure. A disadvantage is that the particles are pho-
tons rather than electrons, for which the conductivity can-
not be measured directly. A third option is spontaneous
breaking of the isotropy through electron-phonon interac-
tion. Analogously to the dimerization in 1D materials [19],
dimerization can also occur in 2D materials, for instance,
in the form of Kekulé order [20]. Our case of t1 > t would
represent a similar order.

Conclusions. – The spectral properties near a node
in a two-band system determines the electronic transport.
While an isotropic node with linear spectrum (Dirac node)
creates isotropic diffusion, an anisotropic node with a lin-
ear spectrum in one direction and a quadratic spectrum
in the other direction leads to anisotropic transport with
subdiffusive behavior in one direction and superdiffusive
behavior in the other direction, respectively. The fact that
a lattice system is associated with a compact manifold
of the band structure opens up the possibility to study
topological transitions of compact manifolds by tuning
the global lattice symmetry, such as sublattice symme-
tries or isotropy. This is particularly promising for pho-
tonic metamaterials, where the lattice structure is easy to
modify [18].
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Appendix A: transition probability and mean
square displacement. – Averaging over large times

ε

∫ ∞

0
〈(rμ−r′

μ)2〉e−εtdt = ε
∑
r

(rμ−r′
μ)2
∫ ∞

0
Prr′(t)e−εtdt

(A.1)
provides the asymptotic behavior ∼ Aε−α for this ex-
pression if the long-time behavior of the mean square
displacement is

〈(rμ − r′
μ)2〉 ∼ Atα. (A.2)

Special cases are diffusion for α = 1 and ballistic transport
for α = 2.

The time integral in eq. (A.1) can also be written in
terms of the Green’s function G(z) = (H − z)−1 as an
energy integral∫ ∞

0
Prr′(t)e−εtdt =

1
π

∫
Tr2{Grr′(E − iε)

× [Gr′r(E + iε) − Gr′r(E − iε)]}dE,

(A.3)

where Tr2 is the trace with respect to the spinor index.
The one-particle Green’s function is defined as the re-
solvent G(z) = (H − z)−1 of the Hamiltonian H , and
Gr0(E + iε) describes the propagation of a particle with
energy E from the origin to a site r. Then the expression
in eq. (A.1) becomes

ε2
∑
r

(rμ − r′
μ)2
∫ ∞

0
Prr′(t)e−εtdt =

∫
Dμ(ε, E)dE

(A.4)
with

Dμ(ε, E) =
1
π

ε2
∑
r

(rμ − r′
μ)2Tr2 {Grr′(E − iε)

× [Gr′r(E + iε) − Gr′r(E − iε)]} . (A.5)
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There is an additional prefactor ε in comparison with
eq. (A.1) to get a finite expression in the case of diffusion.
Thus, we obtain the integral of the diffusion coefficient
Dμ(ε, E) for a particle of energy E with respect to all en-
ergies. Subsequently, we study this coefficient for particles
at a fixed energy E. The coefficient (A.5) for a two-band
system of non-interacting particles with the Hamiltonian
Hk at the node with energy E = 0 is proportional to

Dμ(ε, 0) = −ε2
∫
k

Tr2

([
∂2

∂k2
μ

(Hk − iε)−1
] [

(Hk + iε)−1

− (Hk − iε)−1]),

where
∫
k is the integral with respect to the Brillouin zone

of the lattice,

= −2ε2
∫
k

Tr2

[
(H2

k + ε2)−1 ∂Hk

∂kμ
(Hk − iε)−1

× ∂Hk

∂kμ
(Hk − iε)−1

]

+ ε2
∫
k

Tr2

[
(H2

k + ε2)−1 ∂2Hk

∂k2
μ

(Hk − iε)−1
]

− ε2
∫
k

Tr2

[
(Hk − iε)−2 ∂Hk

∂kμ
(Hk − iε)−2 ∂Hk

∂kμ

]
.

(A.6)

Appendix B: diffusion at an isotropic node. – Let
us consider

H
(1)
k = k1σ1 + k2σ2, H

(2)
k = (k2

1 − k2
2)σ1 + 2k1k2σ2.

(B.1)
Using the expression (A.6), a straightforward calculation
yields

D(1)
μ = 4πε2

∫ λ

0

ε4 + 4ε2k2 − k4

(k2 + ε2)4
kdk =

4π

∫ λ/ε

0

1 + 4κ2 − κ4

(κ2 + 1)4
κdκ ∼ 4π

3
(κj = kj/ε),

(B.2)

D(2)
μ = πε2

∫ λ

0

k2(16ε4 + 64ε2k4 − 16k8)
(k4 + ε2)4

kdk =

16π

∫ λ/
√

ε

0

κ2(1 + 4κ4 − κ8)
(κ4 + 1)4

κdκ ∼ 8π

3
(κj = kj/

√
ε), (B.3)

where the numerical values of the integral are obtained
for ε ∼ 0. Thus, both coefficients are finite for ε → 0 and
describe diffusion.

Appendix C: diffusion at an anisotropic node. –
From the expression (A.6) we obtain

Dx =

2ε2
∫
k

k2
1 [5ε4+ε2(26k4

1+10k2
2)−11k8

1−6k4
1k

2
2+5k4

2]
(k4

1 + k2
2 + ε2)4

,

(C.1)
Dy =

−4ε2
∫
k

ε4 + ε2(2k4
1 − 12k2

2) + k8
1 + 4k4

1k
2
2 + 3k4

2

(k4
1 + k2

2 + ε2)4
.

(C.2)

After the rescaling k1 → κ1 = k1/
√

ε and k2 → κ2 = k2/ε
these expressions become

Dx = 2ε1/2
∫

κ

κ2
1[5 + 26κ4

1+10κ2
2−11κ8

1 − 6κ4
1κ

2
2+5κ4

2]
(κ4

1+κ2
2+1)4

,

(C.3)

Dy = −4ε−1/2
∫

κ

1 + 2κ4
1 − 12κ2

2 + κ8
1 + 4κ4

1κ
2
2 + 3κ4

2

(κ4
1 + κ2

2 + 1)4
.

(C.4)
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