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ABSTRACT

An exciton gas on a lattice is analysed in terms of a convergent
hopping expansion. For a given chemical potential, our calculation
provides a sufficient condition for the hopping rate to obtain an
exponential decay of the exciton correlation function. This result
indicates the existence of a Mott phase in which strong fluctuations
destroy the long range correlations in the exciton gas at any
temperature, either by thermal or by quantum fluctuations.

              
                      
                      

        
                         
                       
          

1. Introduction

Coupled quantum wells represent a class of systems which allow us to study strongly
interacting particles under controllable conditions. They are conceptually simple: negative
electrons are trapped in a two-dimensional plane, while an equal number of positive holes
are trapped in a parallel plane a distance D away (see Figure 1). One of the appeals of
such systems is that the electron and hole wavefunctions have very little overlap, so that
the excitons can have very long lifetime (> 100 ns), and therefore they can be treated as
metastable particles to which quasi-equilibrium statistics applies.

The exciton gas is effectively a hardcore Bose gas, whose groundstate should be a
superfluid at low density or a Mott state at high density. The latter requires a lattice such
that a lattice commensurate state can be formed. A superfluid state of excitons in coupled
quantum wells was predicted some time ago in Ref. [1,2]. Several subsequent theoretical
studies [3–12] have suggested that superfluidity should be manifested as persistent electric
currents, quasi-Josephson phenomena and unusual properties in strong magnetic fields.
In the past 10 years, a number of experimental studies have focused on the observation
of the superfluid behaviour [13–23]. The transition from an exciton gas to an electron
plasma in GaAs–GaAlAs quantum wells was analysed in the framework of many body
effects, considering the dynamical screening of the Coulomb interaction in the one-particle
properties of the carriers and in the two-particle properties of electron–hole pairs [24]. This
was also studied for a 2D electron–hole system, considering the exciton self-stabilisation
mechanism, caused by the screening suppression due to the exciton formation [25]. We
recently studied a double-layer exciton gas in mean field approximation and found a
transition to a Mott state at high densities [26]. Although the destruction of the superfluid
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Figure 1. (colour online) Two coupled quantum wells with lattice gates, realised for electrons (filled
circles) in one well and holes (empty circles) in the other.

state by strong collisions in the dense exciton gas is plausible, a mean field approximation
is not a very trusted tool to analyse a two-dimensional system. Therefore, it remains to be
shown by an independent and reliable method beyond a mean field approximation that
the long range superfluid correlations are destroyed in a dense system for all temperatures.

Since an exciton is a strongly bound pair of an electron and a hole, we assume that
these pairs cannot dissociate or transform into a photon by recombination. This can be
justified by a strong Coulomb interaction and a sufficiently short time scale that is shorter
than the recombination rate. Moreover, we implement a lattice structure in the layers to
allow the excitons to form a commensurateMott state by filling each well of the lattice with
an exciton. A lattice can be realised by an electrically charged gate which is periodically
structured [27–29]. The gate can also be used to control the density of excitons via a
chemical potential μ. Then, a pure exciton gas in the periodic potential can be described
by the Hamiltonian

H = −
∑
rr′
(Jrr′ + μδrr′)a†rar′ + h.c. (1)

where the sites r and r′ are the minima of the potential wells and Jrr′ is a nearest neighbour
hopping rate:

Jrr′ =
{
J if r, r′ are nearest neighbours
0 otherwise .

The lattice structure is characterised by the number of nearest neighbours c (connectivity).
The exciton creation operator a†r is composed of the electron creation operator c†e,r and the
hole creation operator c†h,r as

a†r = c†e,rc
†
h,r . (2)

The form of the exciton operator in Equation (2) implies that the excitons can tunnel
freely with the hopping rate Jrr′ under the restriction that they are composite particles
which obey the Pauli principle. In other words, at most, one exciton can occupy a site of
the lattice. Therefore, it is a hardcore boson, similar to the exciton described by the effective
Hamiltonian of Ref. [30].

2. Conditions for a Mott phase

Starting from the Hamiltonian (1), we consider a grand canonical ensemble of excitons
with the partition function Z = Tre−βH at temperature T (β = 1/kBT). The trace Tr is
taken with respect to all exciton states. The exciton correlation function then reads
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〈eβtHa†r e−βtHeβt
′Har′e−βt

′H〉 = 1
Z
Tre−βHeβtHa†r e−βtHeβt

′Har′e−βt
′H (3)

in imaginary time representation with 0 ≤ t − t ′ ≤ 1 [31].
The partition function Z of a one-dimensional hardcore Bose gas is given as the deter-

minant of non-interacting fermions (cf. Ref. [32]). The reason for the equivalence of non-
interacting fermions andhardcore bosons in one dimension is the fact that fermions cannot
exchange their positions but must obey the repulsive Pauli principle. In contrast to a non-
interacting Bose gas, this system exhibits twoMott and one intermediate incommensurate
phase. Using this example, we can expand its free energy F = −β−1 logZ in terms of the
hopping matrix J as

F = − 1
β
Tr log (1 + eβμeβJ) = −TrJ − 1

β
Tr[log (1 + eβμ)]

+ 1
β

∑
l≥1

(−1)l

l
Tr
[

1
1 + eβμ

(e−βJ − 1)
]l
, (4)

provided that J is small in comparison to μ. For βJ � 1 (strong quantum fluctuations),
the inequality is valid for μ < J . This example gives us an idea about the convergency of
the hopping expansion in higher dimensions.

For a dilute two-dimensional system, we expect a formation of a superfluid state with
power law correlations 〈eβtHa†r e−βtHeβt′Har′e−βt′H〉 ∼ |r − r′|−α [33]. On the other
hand, for sufficiently high density, the long range phase correlations will be destroyed
by frequent collisions of the excitons. This effect leads eventually to an exponentially
decaying correlation function 〈eβtHa†r e−βtHeβt′Har′e−βt′H〉 ∼ exp (− |r − r′|/ξ) with the
correlation length ξ . Such a state is either a thermal exciton gas with a fluctuating density
at high temperatures or a Mott state with fluctuating phases but non-fluctuating density
at low temperatures. These two states change from one to the other upon reducing the
temperature. If the two phases are connected by a crossover or by a phase transition is
not clear at this point. However, both phases are characterised by a gapped excitation
spectrum. A mean field approximation indicates a crossover [26], where the Mott phase is
characterised by the gap �mf = μ − J (for 0 < J < μ) [34,35]. Going beyond the mean
field approximation and using the dimensionless parameters

γ = cβJ
1 + eβμ

and � = γ eβJ

1 − γ
= cβJeβJ

1 + eβμ − cβJ
, (5)

we find the following condition for the existence of a Mott phase:
Mott correlations: For μ ≥ 0 and 0 ≤ � < 1, the exciton correlation function decays
exponentially as 0 ≤ 〈eβtHa†r e−βtHeβt′Har′e−βt′H〉 ≤ C0e−|r−r′]/ξ with a finite prefactor
C0 and a finite decay length ξ < −1/ log[(1 + eβJ)γ ].

The derivation of the upper bound is obtained from a hopping expansion, which is
given in Appendix 1. It should be noted that this expansion consists of two contributions:
in terms of Feynman’s functional path integral, the hopping walks of the excitons may or
may not cross the time boundaries. The former is essential for the derivation of the Mott
condition� < 1, whereas the latter requires only the weaker condition γ < 1.
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Figure 2. Phase boundary for the dimensionless chemical potential βμ vs. the dimensionless hopping
βJ of excitons on a square lattice: a Mott phase with exponentially decaying exciton correlations exists
above the solid curve. The dashed line is the mean field condition βJ < βμ for a Mott phase.

3. Discussion

The interaction in the exciton gas is mediated by the Pauli principle of the constituting
fermions (electrons and holes), leading to a hardcore interaction of excitons. This repulsive
interaction can stabilise a lattice commensurate state, where each lattice site is occupied
by one exciton. Without hopping (i.e. for J = 0), such a state exists if the lattice density
ρ = 1/(1 + e−βμ) is ρ = 1. This requires βμ ∼ ∞, i.e. a positive chemical potential at a
vanishing temperature. We have used in our discussion that theMott state is characterised
by an exponentially decaying exciton correlation. This characterisation is weaker than to
fix n = 1, allowing for gapped thermal exciton excitations. It leads to the condition� < 1
or, equivalently,

cβJ(1 + eβJ) < 1 + eβμ. (6)

This condition reflects the fact that an exciton superfluid state with long range correlations
can always be destroyed by strong fluctuations for certain values of the hopping rate βJ and
the chemical potential βμ. As an example, the phase boundary with� = 1 on the square
lattice (i.e. for c = 4) is depicted in Figure 2. Although the destruction of a superfluid
phase seems plausible in the case of suppressed tunnelling, i.e. for βJ 
 βμ, the sufficient
condition (6) for the appearance of short range phase correlations requires a calculation,
for instance, in terms of a hopping expansion (cf. Appendix 1).

The temperature enters the condition for an exponential decay only through the nor-
malisation of the chemical potential and the hopping rate as βμ and βJ , which reflects
that either the thermal fluctuations at high temperatures or the quantum fluctuations at
low temperatures are responsible for the exponentially decaying correlations. As βJ is a
measure for tunnelling (i.e. quantum fluctuations), in the case of βJ � 1, quantum fluctu-
ations dominate. Then, we must provide a sufficient large βμ to obtain Mott correlations:
βμ > βJ . This agrees with the mean field result of Ref. [34,35], although the mean field
approximation overestimates the stability of the Mott phase against fluctuations for most
values of μ. In the high temperature regime with βJ 
 1, where thermal fluctuations are
dominant, there is no restriction for βμ, which even can vanish. This is also found in the
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plot of Figure 2. Thus, in both asymptotic regimes, a Mott phase exists. In particular, it is
possible to obtain a Mott phase for μ = 0, where the density is ρ ≈ 0.5. This situation
should be accessible for gated coupled quantum wells.

In conclusion, as an extension of our previous consideration in Ref. [26] for a transition
to a Mott state at high densities, we proved, using a method which goes beyond the mean
field approximation, that a bosonic Mott phase exists in an electron–hole bilayer through
the formation of indirect excitons. In this strongly correlated phase, strong fluctuations
destroy the long range correlations in the exciton gas at any temperature, either by thermal
or by quantum fluctuations.
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Appendix 1. Functional integral representation
To prove the existence of Mott correlations, we consider a Grassmann functional integral represen-
tation of the partition function Z = Tre−βH for space–time variables x = (r, n) with the discrete
time n = 1, 2, . . . ,M [31]:

Z =
∫
ψ

exp
(
ψ1xψ2xψ̄2xψ̄1x + ψ1xψ2xvxx′ψ̄2x′ψ̄1x′

)
, vrn,r′n′ =

⎧⎨
⎩
1 + β

Mμ for r′ = r, n′ = n + 1
β
M Jrr′ for r′ �= r, n′ = n + 1
0 otherwise

(A1)
with the Grassmann integration

∫
ψ
[31]. At the end, we take the limitM → ∞. It should be noticed

that the Grassmann variables ψx are anti-periodic in the time direction.
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Figure A1. Walk from y = (r,m) to y′ = (r′,m′). The thick line represents the connecting walk, each
dashed line has the weight 1 + eβμ and the dotted line weight 1. There is either a walk that connects y
and y′ directly (upper example) or through the periodic boundaries in time direction (lower example).
The weight of the walk is estimated in (A8).

The correlation function of Equation (3) reads in terms of the functional integral

〈ψ̄2yψ̄1yψ1y′ψ2y′〉 = 1
Z

∫
ψ

ψ̄2yψ̄1yψ1y′ψ2y′ exp
(
ψ1xψ2xψ̄2xψ̄1x + ψ1xψ2xvxx′ ψ̄2x′ψ̄1x′

)
(A2)

with y = (r,Mt) and y′ = (r′,Mt ′). It is convenient to introduce the generating functional

Z({αyy′}) =
∫
ψ

exp
(
ψ1xψ2xψ̄2xψ̄1x + ψ1xψ2x(v + α)xx′ ψ̄2x′ ψ̄1x′

)
(A3)

and take the derivative of log (Z({αyy′}). This, for instance, provides for the correlation function

〈ψ̄2yψ̄1yψ1y′ψ2y′〉 = ∂

∂αy′y
log (Z({αyy′})

∣∣∣
α=0

.

A.1. Mott phase

The Grassmann integral (A1) can be directly calculated if Jrr′ = 0 (i.e. in the absence of exciton
hopping), giving ZM = [1 + (1 + βμ/M)M ]N for a lattice with N sites. For M → ∞, we obtain
limM→∞ ZM = (1+ eβμ)N . In this case, the exciton density is ρ = 1/(1+ e−βμ). This suggests that
we consider the hopping term

ψ1xψ2x
β

M
wxx′ψ̄2x′ψ̄1x′ (wxx′ = Jrr′δn′ ,n+1) (A4)

as a perturbation and apply the linked cluster approach for logZ({αxx′}), which leads to a connected
walk with end points y and y′ [36] (cf. Figure A1). In other words, we expand in (A2)
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ψ̄2yψ̄1yψ1y′ψ2y′
∑
W

∏
(x,x′)∈W

exp (ψ1xψ2xvxx′ ψ̄2x′ψ̄1x′)

= ψ̄2yψ̄1yψ1y′ψ2y′
∑
W

∏
(x,x′)∈W

(1 + ψ1xψ2xvxx′ψ̄2x′ψ̄1x′) (A5)

along the walk W between y and y′. Here, it should be noticed that W can either connect y and
y′ directly (upper example in Figure A1) or using the Grassmann anti-periodic boundaries in time
(lower example in Figure A1). The latter case will be called a walk with boundary crossing.

After the Grassmann integration, expression (A5) gives for walks with k boundary crossings a
sequence ofm − m′ + Mk factors vxx′ :

〈ψ̄2yψ̄1yψ1y′ψ2y′〉 =
∑
k≥0

∑
x1 ,...,xm−m′+Mk∈W

(1 + eβμ)−nvvyx1vx1x2 · · · vxm−m′+Mky′ , (A6)

where nv is the number of visited spatial sites. The product of the v terms for a fixed walkW from
z = (r,m) to z′ = (r′,m′) with 0 ≤ m′ ≤ m ≤ M and without boundary crossing is estimated as

0 ≤ vzx1vx1x2 · · · vxm−m′ z′ ≤

⎧⎪⎨
⎪⎩
(
1 + β

Mμ
)m−m′

n = 1[
1 + β

M (μ+ J)
]m−m′−nv+1

(βJ)nv−1 n ≥ 2
. (A7)

Now, we use the time variables t = m/M, t′ = m′/M and take the limitM → ∞ to obtain

0 ≤ (1 + eβμ)−nvvzx1vx1x2 · · · vxm−m′ z′ ≤
{
eβμ(t−t′)/(1 + eβμ)nv = 1
[βJ/(1 + eβμ)]nv−1eβ(μ+J)(t−t′)/(1 + eβμ) nv ≥ 2

.

(A8)
Moreover, we have

eβ(μ+J)(t−t′)/(1 + eβμ) ≤ eβJ(t−t′) ≤ eβJ , (A9)

since 0 ≤ t − t ′ ≤ 1. As a time-independent upper bound, we can choose t = 1, t′ = 0.
Finally, we must sum over all possible walks W . There are c (number of nearest neigbours)

choices for each hop of an exciton. With k − 1 boundary crossings, this implies for the correlation
function

〈ψ̄2yψ̄1yψ1y′ψ2y′〉 ≤
∑
n≥1

an�n(|r − r′|)+
∑
k≥2

∑
n1 ,...,nk≥2

an1 · · · ank�n1 ,...,nk (|r − r′|), (A10)

where

�n1 ,...,nk (|r − r′|) =
{
1 for n1 + · · · + nk − k ≥ |r − r′| + 1
0 otherwise , an =

{
1 n = 1
eβJγ n−1 n ≥ 2

and γ is defined in Equation (5).�n1 ,...,nk (|r − r′|) enforces that at least |r − r′| + 1 sites are visited
to connect the sites r and r′. Next, we perform the summation in Equation (A10) without the factor
�n1 ,...,nk (|r − r′|) and obtain
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∑
n≥1

an +
∑
k≥2

∑
n1 ,...,nk≥2

an1 · · · ank = 1 + eβJ
∑
n≥2

γ n−1 +
∑
k≥2

ekβJ
⎛
⎝∑

n≥2

γ n−1

⎞
⎠

k

= 1 + (eβJ − 1)γ
1 − γ

+ �2

1 −�
, (A11)

provided that� = γ eβJ/(1 − γ ) < 1. This condition can also be written as

cβJ(1 + eβJ ) < 1 + eβμ. (A12)

Thus, the contribution of the summation of crossings is a factor 1+eβJ . Finally, wemust include the
factor �n1 ,...,nm(|r − r′|) in the summation to obtain the upper bound in (A10). This is equivalent
of taking in (A11) only terms into account with powers γ |r−r′|+1 and higher. The first term on
the right-hand side of Equation (A11) is a geometric series in powers of γ and the second term a
geometric series in powers of γ (1 + eβJ ) since

�

1 −�
= γ eβJ

1 − γ (1 + eβJ )
= γ eβJ

∑
l≥0

[
γ
(
1 + eβJ

)]l
.

Thus, the second term gives the leading contribution in Equation (A11), which allows us to extract

〈ψ̄2yψ̄1yψ1y′ψ2y′〉 ≤ C0

(
cβJ

(
1 + eβJ

)
1 + eβμ

)|r′−r|
(A13)

as an upper bound for the correlation function (A10).
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