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Emergent Chern-Simons excitations due to electron-phonon interaction
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We address the problem of Dirac fermions interacting with transversal optical phonons. A gap in the spectrum
of fermions leads to the emergence of the Chern-Simons excitations in the spectrum of phonons. We study the
effect of those excitations on observable quantities: the phonon dispersion, the phonon spectral density, and the
Hall conductivity.
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I. INTRODUCTION

During the last decade, there has been considerable progress
in experimental studies of the two-dimensional (2D) Dirac
gas in various fields. This was initiated by the investigation
of exfoliated and epitaxial graphene [1–3], followed later by
experiments with silicene [4] and with a number of chemical
compounds, commonly referred to as topological insulators
[5,6]. Other realizations are optical hexagonal lattices filled
with ultracold atoms [8–12] and photonic crystals [13,14].
Besides the linear Dirac spectrum with nodes, particle-particle
interactions can play an important role, depending on the
specific system. For instance, the coupling to lattice vibrations
(phonons in cond-mat realization [1–7], shaking in optical
lattices [8–12], and photonic crystals with Dirac spectrum
[13,14]) can lead to instabilities [15,16]. Such an instability
was recently observed in graphene [17]. The complexity of
the phonon modes can give rise to the plethora of other
interesting effects. This is related to the fact that in-plane
optical phonons act like effective gauge fields that couple to
the Dirac particles. Moreover, it has been known for a long
time that the coupling of massive Dirac particles to gauge
fields leads to Chern-Simons excitations [18–24]. It is crucial
to note that the Chern-Simons term is created by the expansion
of the fermion determinant with respect to a vector field, where
the latter is usually a gauge field. We will show in this paper
that an optical in-plane phonon mode, which is a massive
vector field, can also create such a term. In condensed-matter
systems, there is no ambiguity from the UV regularization
because of a natural momentum cutoff from the underlying
lattice. The main objective of this paper is to study how
the Chern-Simons term affects the transport properties. In
particular, we will focus on the quantum Hall effect and study
the Hall conductivity when the Dirac fermions are gapped.

II. THE MODEL

Our microscopic lattice model describes the interaction
between spinless fermions and monochromatic transversal
optical phonons on a two-dimensional hexagonal lattice. The
dynamics of the free fermionic quasiparticles is given by the
tight-binding Hamiltonian

H0 = −t
∑
〈rr ′〉

(c†rdr ′ + d
†
r ′cr ), (1)

where c and d denote fermionic species identified with each
sublattice of the hexagonal lattice and t ∼ 2.8 eV is the

hopping amplitude. We use the unit system with lattice con-
stant, elementary electric charge, and � = 1. The index 〈rr ′〉
suggests the summation over next neighbors, while the absence
of the parentheses means summation over each sublattice index
separately. The Hamiltonian is readily diagonalized by the
Fourier transform and yields a well-known spectrum with
two degenerated parity symmetric Fermi points. As a striking
feature, close to those Fermi points, the fermion dispersion
is linear and therefore describes massless Dirac particles. In
order to model the fermion mass, we have to account either
for a staggered potential altering its sign from one lattice site
to another [25] or for a spin-orbit coupling term [26]. The
parity between the cones is broken by exposing the system to
the chemical modification, e.g., by a periodic flux [27] or a
spin texture [28]. Combining fermionic operators to spinors
�

†
r = (c†,d†)r and �r = (c,d)Tr , the mass term reads

H1 = μ
∑

r

�†
r σ3�r + t ′

∑
r.r ′

�†
r χrr ′�r ′ , (2)

where t ′ is the hopping amplitude between second-nearest
neighbors (t ′/t ∼ 0.1 [2,7]) and the matrix element of the
Haldane term is given by [27,28]

χrr ′ =
∑

i=1,2,3

(
eiφδr ′,r+ai

+ e−iφδr ′,r−ai

)
, (3)

with the adjustable Peierls phase φ, and ai denoting the posi-
tions of the second-nearest neighbors on the hexagonal lattice.
A particular choice of both parameters μ = 3t ′(1 + √

3)/
√

2
and φ = π/4 opens up a gap at one Dirac point with size
2m ∼ 2 × 0.75t , while keeping the other Dirac point gapless.
This band structure is visualized in Fig. 1. Moreover, changing
the value of the Peierls phase, it is also possible to get into the
situation where all cones are gapped with different signs of
the Dirac mass. For the chosen parameter set, all elements
of the conductivity tensor of the Haldane model are nonzero
[27,28], where the gapped (gapless) channel contributes to the
Hall (longitudinal) conductivity. But since we are primarily
interested in the anomalous Hall conductivity, we focus on the
gapped channel only. Recently, an experimental realization of
the Haldane model was reported in Ref. [12].

In our model, the monochromatic phonons appear as
fluctuating bonds between neighboring sites [29–31]. The
corresponding Holstein Hamiltonian reads

H2 =
∑
〈rr ′〉

{γ b
†
rr ′br ′r + α(b†rr ′c

†
rdr ′ + br ′rd

†
r ′cr )}. (4)
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FIG. 1. The fermion band structure of the considered model. The
parity symmetry between both fermion copies is explicitly broken
as visualized by the gap 2m ∼ t at the Fermi point in the negative
momentum −K vs the gapless state at the Fermi point at the positive
momentum K = 4π/3

√
3. The total bandwidth 2
0 ∼ 6.5t is only

slightly larger than that of the pristine tight-binding Hamiltonian
in Eq. (1).

The operator brr ′ (b†r ′r ) destroys (creates) a phonon between
sites r and r ′. In the continuous limit, the phonons couple to
the spinors via combinations of nondiagonal Pauli matrices
σ1 ± iσ2 with the coupling strength α. While the phonon
frequency γ ∼ 160–170 meV is intrinsic to the hexagonal
lattice [17,32,33], the electron–phonon coupling strength α,
measured in units of energy × length, can be varied in the
experiment.

In the continuous limit, we use the low-energy approxima-
tion for massive Dirac fermions. This approximation is well
known from the literature [34,35] and we do not discuss it
here. Next, we introduce the coherent state functional integral
with the partition function given by

Z =
∫

D[ψ̄,ψ,A] exp{−S[ψ̄,ψ,A]}, (5)

with the (2+1)-dimensional Euclidean action

S[ψ̄,ψ,A] = 1

2g

∫
d3xA2

μ

+
∫

d3xψ̄

[
/∂ + m + i√

2
Aμγμ

]
ψ, (6)

where /∂ =γ0∂τ +γ1∂r1
+γ2∂r2

, γ = (γ0,γ1,γ2)= (σ3,−iσ1σ3,

− iσ2σ3), ψ̄ = ψ†γ0, and
∫

d3x = ∫
dτd2r , with τ denoting

the imaginary time. The Fermi velocity vF = √
3t/2 is

removed from the fermionic part by rescaling ri → vF ri (not
τ ) and ψ → ψ/vF . Real-valued components of the phonon
field Aμ, μ = 1,2, are obtained via

b† → −A1 − iA2√
2α

, b → −A1 + iA2√
2α

, (7)

i.e., by changing from the U(1) to the O(2) representation of
the phonon sector. It is important to stress that in contrast
to gauge fields, our Aμ are massive fluctuations of the

lattice, which cannot be constrained by gauge fixing. Formally
however, the classical equation of motion of the field A has
approximately the form of the Lorenz gauge condition; cf.
Appendix A.

The coupling parameter g in Eq. (6) is related to the
electron-phonon coupling α in (4) through 2g = α2/(v2

F γ ).
Finally, the slow lattice dynamics (∼∂τAμ) is neglected
in comparison to the much faster electron dynamics. In-
tegrating out the phonon fields Aμ yields an interaction
term for the fermions (g/4)(ψ̄γμψ)2. This resembles the
standard Thirring current-current interaction [18–23] with one
crucial difference, though, that we have only two spatial
currents here. Due to the anticommutativity of the Grass-
mann field, this interaction can be rewritten as the usual
repulsive Hubbard interaction (g/2)(ψ†ψ)2. Throughout the
subsequent calculations, we implement a large but finite
UV-cutoff regularization scheme with only spatial components
of the frequency-momentum vector being regularized, while
the integration over the Matsubara frequencies stretches
to infinity, hence only considering the T = 0 case here.
Figure 1 suggests the appropriate energy cutoff to be

0∼3.2t∼105 K.

III. PHONON THEORY

After integrating the fermions in Eq. (6), we obtain an
effective action in terms of the phonon fields A,

S[A] =
∫

A2
μ

2g
d3x − tr log

[
/∂ + m + i

Aμγμ√
2

]
, (8)

where the functional trace tr consists of the three-dimensional
integration and the trace with respect to the Dirac space. Next
we expand the tr log term of Eq. (8) up to second order in the
fields Aμ [18–20]:

−tr log

[
/∂ + m + i√

2
Aμγμ

]

∼ −tr log[/∂ + m] − i√
2

tr[/∂ + m]−1Aμγμ

−1

4
tr[/∂ + m]−1Aμγμ[/∂ + m]−1Aνγν. (9)

The linear term in this expansion is traceless, signaling that in
the classical approximation, we get Aμ = 0. Thus, Gaussian
fluctuations of the phonon field are relevant and lead to the
effective action

S[A] ∼ 1

2g

∫
d3xA2

μ − 1

4
tr[/∂ + m]−1Aμγμ[/∂ + m]−1Aνγν,

(10)

where higher-order terms can be neglected because they are
irrelevant in terms of a scaling analysis [36]. Since the Dirac
Hamiltonian is unbounded, some terms in the perturbative
expansion are plagued by ultraviolet divergences. Therefore,
the fermionic determinant should be properly regularized.
There exist many regularization schemes [19–23], but in our
case the spectrum is naturally bounded by the band of width
2
0 ∼ 6.5t . Therefore, all terms in the gradient expansion
acquire small corrections, e.g., of linear or quadratic order
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in m/
0 for the gradient expansion. Higher-order terms are
negligible, as the analysis of the conductivity tensor for the
full Haldane model in Ref. [28] has shown.

Performing a gradient expansion up to second order in the
momenta (cf. Appendix B), we obtain for the effective action
three terms as

S[A] ∼ S�[A] + SCS[A] + SM [A], (11)

with the mass term

S�[A] = �

∫
d3xA2

μ, (12)

where

� ∼ 1

2g
− 
0

16π
, (13)

and 
0 denotes the UV cutoff. The second term is the standard
Chern-Simons term,

SCS[A] ∼ − sεμν

16π

∫
d3P

(2π )3
p0Aμ,P Aν,−P , (14)

where εμν denotes the antisymmetric tensor, s = sgn(m)
and P = (p0,p1,p2)T , arising due to the energy gap in the
spectrum of (2+1)-dimensional Dirac fermions. We have
neglected corrections O(m2/
2

0) in the prefactor of this term
(cf. Appendix B), assuming that the gap (fermion mass) is
much smaller than the cutoff momentum [18,19]. The third
term is a Maxwell-like term,

SM [A] ∼
∫

d3P

(2π )3
Aμ,P

P 2δμν − pμpν

48π |m| Aν,−P , (15)

although its structure is somewhat different from the usual
Thirring model [18–21]. As a consequence of the missing
gauge invariance of the phonon field, it cannot be written as
a product of Maxwell field tensors Fμν = ∂μAν − ∂νAμ. The
detailed derivation of Eqs. (12)–(15) is given in Appendix B.
The presence of the term (15) in the effective phonon action
makes this action different from the otherwise similar Chern-
Simons-Proca action [37].

Obviously, the phonon energy gap in Eq. (13) can become
negative, signaling an instability in the functional integral. This
instability is due to the transition into another phase [17,29].
With the values 
0 ∼ 3.2t and m ∼ 0.75t , which we have used
for Fig. 1, this instability is irrelevant at t = 1 for sufficiently
small electron-phonon coupling:

α2 � 8π

3
γ v2

F . (16)

This inequality is valid in the low-energy approximation given
by the action (8).

IV. PHONON PROPAGATOR

The Gaussian action in Eqs. (11)–(15) enables us to
calculate the correlations of the phonon fields Aμ without
making any additional assumptions. The calculation of the
phonon propagator is straightforward and yields

〈Aν(P )Aμ(−P )〉 = 1
2�νμ(P ), (17)
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FIG. 2. Left panel: Phonon modes from Eq. (19) normalized by
ε−(∞) depicted vs the momentum in units of the phonon mass; see
the discussion in the main text. Right panel: The phonon spectral
density given by Eq. (29) calculated for the same parameter set.

where

�(P ) = 1

a2
[
p2

0 + ε2+(p)
][

p2
0 + ε2−(p)

]
×

(
� + a

(
p2

0 + p2
1

)
sbp0 + ap1p2

−sbp0 + ap1p2 � + a
(
p2

0 + p2
2

)
)

. (18)

Here, b = 1/16π denotes the Chern-Simons and a =
1/(48π |m|) the Maxwell weight factors. Large (small) values
of |m| favor the Chern-Simons (Maxwell-like) term. The
elementary excitations of phonons are given by two gapped
modes shown in Fig. 2, where the dispersion relations
read

ε±(p) =
√

f (p) ± t(p), (19)

with

f (p) = 1

2

(
p2 + 2

�

a
+ b2

a2

)
, (20)

t(p) = 1

2

√(
p2 + b2

a2

)2

+ 4
�

a

b2

a2
, (21)

and p2 = p2
1 + p2

2. While for p 	 2� both modes grow
∼p2, at p 
 2� the features of the noninteracting model are
recovered (cf. Fig. 2): the lower mode approaches the finite
value,

ε−(p → ∞) =
√

�

a
+ b2

2a2
, (22)

while the upper mode crosses over into the linear regime of
Dirac electrons, ε+(p ∼ ∞) ∼ p. In order to understand the
role of the Chern-Simons term in the structure of elementary
excitations, we can formally set b = 0. In this limit, we
obtain

ε+(p) =
√

p2 + �

a
, ε−(p) =

√
�

a
, (23)
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which means that the ε− mode has a flat band and the energy
gap between both modes disappears. Going even further and
setting � = 0 leaves us with the linear mode of an acoustic
phonon.

V. HALL CONDUCTIVITY

A physical quantity, which can be directly evaluated and
also experimentally measured, is the Hall conductivity. It is
calculated from the Kubo formula [25],

σμν = 2π

ω

∫
d3xe−iωτ 〈(ψ̄γμψ)x(ψ̄γνψ)0〉, (24)

for μ �= ν, where 〈·〉 denotes the normalized functional integral
with the action of Eq. (6). Then in terms of the phonon field,
the correlation function in Eq. (24) becomes

σμν = − 4π

ωg2

∫
d3xe−iωτ 〈Aμ,xAν,0〉. (25)

Some details of this mapping are shown in Appendix C. With
the help of Eq. (18), we obtain the Hall conductivity as

σμν = sεμν

a2g2

2πb

[ω2 + ε2+(0)][ω2 + ε2−(0)]
. (26)

Being mainly interested in the behavior of the dc Hall
plateaus, we send ω → 0. Since the parameter s = sgn(m)
allows values ±1, there are two plateaus at positive and
negative mass value for each combination of μ and ν. In the
noninteracting case, the distance between the plateaus is 2m.
From ε2

+(0)ε2
−(0) = �2/a2, we obtain, for the system with

electron-phonon interaction,

σdc
μν = sεμν

8g2�2
, (27)

where the definition of b has been used. For weak interaction
(or large mass), we approximate � ∼ 1/2g and reproduce the
Hall conductivity of noninteracting massive Dirac fermion gas

[25,27,28],

σH = s

2

e2

h
. (28)

For a finite bandwidth, we have g2�2 ≤ 1/4, such that the
dc plateaus are shifted away from each other by the electron-
phonon interaction.

VI. PHONON SPECTRAL DENSITY

The spectral density

Sνμ(ω) = −Im
∫

d2p

(2π )3
�νμ(p0 → iω + η) (29)

is experimentally accessible in neutron or Bragg scattering
experiments. Below we discuss the diagonal component Sνν .
The excitation modes shown in Fig. 2 give a plausible hint to
the expected shape of the spectral function: It must comprise
two separate structures, corresponding to the two bands and
the separation by the gap of size ε+(0) − ε−(∞). Moreover, it
must reveal an additional energy gap up to ε−(0). By retaining
only terms which are resonating at positive frequencies, we
obtain

Sνν(ω) = 1

a2
Im

∫
d2p

(2π )3

×
{

A

ω − ε+ − iη
+ B

ω − ε− − iη

}
, (30)

where the coefficients of the decomposition read

A = −� − a(ε2
+ − 0.5p2)

2ε+(ε2+ − ε2−)
, (31)

B = � − a(ε2
− − 0.5p2)

2ε−(ε2+ − ε2−)
. (32)

Below we evaluate the spectral function for two extreme
parametric regimes, corresponding to the very small and very
large fermionic mass m.
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FIG. 3. Left panel: The spectral function given by Eq. (29) close to the Chern-Simons regime. Blue (dashed) peak on the left shows the
remnants of the resonance at ε− which disappears as a → 0. It is positioned at ω ∼ √

�/a. Right panel: The spectral function close to the
Maxwell-like regime. The flat band and continuum contributions are shown in blue (dotted line) and red (solid line). The black (dashed) curve
is the superposition of both contributions.
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Chern-Simons regime. For large fermionic mass, the Chern-
Simons contribution is dominant. Then, for very small a, we
may approximate A and B as

lim
a→0

A

a2
= 1

2b
, lim

a→0

B

a2
= 0. (33)

After an integration over p2, we obtain

SCS
νν = 1

8πa
�

(
ω − b

a

)
. (34)

Since b/a = 3|m|, the effect of the Chern-Simons term can
be detected as an excitation continuum with frequencies larger
than 3|m|. Remarkably, this contribution is indifferent to the
value of the phonon gap �. For comparison, we show in
Fig. 3 the full numerical evaluation of Sνν(ω) in the parametric
regime close to Eq. (34). Actually, the excitation continuum in
Eq. (34) is cut off at a scale related to the bandwidth 
0. This
is not included here.

Maxwell-like regime. The contribution from the Maxwell-
like term is dominant for a small fermionic mass. Then,

lim
b→0

A

a2
= 1

4a

√
p2 + �

a

, lim
b→0

B

a2
= 1

4
√

a�
, (35)

and the energy modes reduce to the expressions in Eq. (23).
Due to the flat band ε−, the integration requires some care.
In particular, one needs to keep η nonzero, which ultimately
leads to

SM
νν(ω) = 1

8
√

a�


2
0

(2π )2

η

(ω − √
�/a)2 + η2

− 1

16πa
�(

√
�/a − ω), (36)

where the first sharply peaked contribution is a consequence
of the flat band; cf. Fig. 3. Again, the � function which cuts
off the excitation continuum at the scale ∼ 
0 is not shown in
Eq. (36).

VII. DISCUSSION AND CONCLUSIONS

Our analysis of massive Dirac particles which are coupled
to optical in-plane phonons has revealed an effective phonon
model with a Chern-Simons term in Eq. (14) and a Maxwell-
like term in Eq. (15). These two terms compete, where
the former is favored for a large Dirac mass. The optical
phonon dispersion, which is flat without coupling to the
Dirac particles, has two branches and becomes parabolic for
small momenta (cf. Fig. 2). For large momenta, one branch
is linear and the other is flat. The spectral density of the
two modes is shown for large Dirac mass (Chern-Simons
regime) and for small Dirac mass (Maxwell-like regime)
in Fig. 3. These results indicate a separation of the two
modes which is obviously caused by the Chern-Simons term.
This phenomenon should be observable in inelastic x-ray or
neutron-scattering experiments in solid-state realizations or by
laser-assisted tunneling experiments on ultracold fermions in
optical lattices. In terms of transport, the Hall conductivity
clearly indicates the well-known plateaus ±e2/2h for small
electron-phonon interaction. For an increasing interaction,

though, the plateaus are shifted away from each other. This
is a sign that the phonons increase the Hall conductivity.

A natural question to ask is whether or not the physics we
discussed above is related to the fractional quantum Hall effect
(FQHE), where the Chern-Simons field theory gives a simple
and elegant explanation of the phenomenon [18,38,39]. Within
the Ginzburg-Landau approach to FQHE, the Chern-Simons
term,

SCS[a] = πν

2φ0

∫
d3xεαβλaαi∂βaλ, (37)

of the internal statistical electromagnetic field a with the flux
quantum φ0 = 2π in chosen units and filling factor ν appears in
the action in order to impose the constraint which links a to the
particle density. The bosonic Ginzburg-Landau action should
be equivalent to a fermionic action, since it is assumed that
the quasiparticles are fermions. This requires a statistical field
with an odd denominator for the corresponding filling factor,

ν = 1

2k + 1
, (38)

i.e., with integer k. Including Eq. (37) into the FQHE effective
action ultimately leads to the quantized Hall conductivity
[38,39],

σH = ν
e2

h
, (39)

where the SI units are restored. In Eq. (37), the Chern-Simons
term appears in a general gauge. It is easy to see that the partic-
ular gauge choice a0 = 0 brings it to the form of Eq. (14), with a
different prefactor though. Clearly, Eqs. (28) and (39) are anal-
ogous upon interchanging ν and s/2. This fact suggests that,
at least in the large mass limit, the phonon field in our model
plays a role similar to the statistical vector potential a of FQHE.
However, the finite band gap of the effective action leads to
the corrections of the Hall conductivity given in Eq. (27).

APPENDIX A: CLASSICAL EQUATION OF MOTION
OF THE PHONON FIELD A

Varying action (6) with respect to the phonon fields A, we
acquire

Aμ = − ig√
2
ψ̄γμψ = − ig√

2
Jμ, (A1)

where the conserved fermion current density Jμ = ψ̄γμψ

obeys the imaginary-time continuity condition,

∂μJμ = −i∂τ n, (A2)

with n = ψ̄γ0ψ representing the local electron density. The
combination of Eqs. (A1) and (A2) gives the classical equation
of motion (constraint condition) for the phonon field A coupled
to the Dirac fermions,

∂μAμ + ∂τϕ ∼ 0, (A3)

with ϕ = gn/
√

2, which approximately has the shape of the
Lorenz gauge condition. In this paper, we concentrate on
quantum fluctuations around this classical saddle point for
which the condition (A3) is not valid.
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APPENDIX B: EVALUATION OF THE PHONON LOOP

Below we perform the gradient expansion in the action given by Eq. (11), which leads to Eqs. (12), (14), and (15). The second
term from Eq. (11) reads

1

4
tr[/∂ + m]−1Aμγμ[/∂ + m]−1Aνγν =

∫
d3P

(2π )3
Aμ,P Aν,−P

1

4
Tr

∫
d3Q

(2π )3
G(Q)γμG(Q + P )γν, (B1)

with G(Q) = [−i /Q + m]−1. We evaluate the loop function by the method of Feynman parameter, using

1

AB
=

∫ 1

0
dx

1

[(1 − x)A + xB]2
. (B2)

This gives

1

4
Tr

∫
d3Q

(2π )3

[i /Q + m]γμ[i( /Q + /P ) + m]γν

[Q2 + m2][(Q + P )2 + m2]
= 1

4
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

[i /Q + m]γμ[i( /Q + /P ) + m]γν

[(1 − x)Q2 + x(Q + P )2 + m2]2
.

Shifting Q → Q − xP symmetrizes the denominator, and all terms containing odd powers of Q in the numerator vanish due to
angular integration. The remaining expression is

1

4
Tr

∫ 1

0
dx

∫
d3Q

(2π )3

−im /Pγμγν + m2γμγν − /Qγμ /Qγν + x(1 − x) /Pγμ
/Pγν

[Q2 + m2 + x(1 − x)P 2]2
. (B3)

Next we perform the trace. The Chern-Simons term appears from

−imTr{ /Pγμγν} = −impαTr(γαγμγν) = 2mp0εμν,

since μ,ν = 1,2. Next we have

−Tr( /Qγμ /Qγν) = −q2
0 Tr(γ0γμγ0γν) − qαqβTr(γαγμγβγν) → 2δμνq

2
0 − 1

2q2Tr(γαγμγαγν) = 2δμνq
2
0 ,

where we made use of the angular averaging
∫ 2π

0
dφ

2π
qαqβ = 1

2q2δαβ

∫ 2π

0
dφ

2π
, and of the fact that

∑
α=1,2 γαγμγαγν = γμγν |α=μ

−
γμγν |α �=μ

= 0. The last term simplifies to

Tr /Pγμ
/Pγν = −2p2

0δμν + pαpβTr(γαγμγβγν) = −2p2
0δμν + pαpβTr(δαμ + iεαμτ γτ )(δβν + iεβνηγη)

= −2p2
0δμν + 2pαpβ(−δαβδμν + δαμδβν + δανδβμ) = −2P 2δμν + 4pμpν. (B4)

Hence, prior to the momentum integration, we have

1

2

∫ 1

0
dx

∫
d3Q

(2π )3

(m2 + q2
0 )δμν + mp0εμν − x(1 − x)(P 2δμν − 2pμpν)

[Q2 + m2 + x(1 − x)P 2]2
, (B5)

and the gradient expansion can be easily performed. To the second order in momenta, it reads

1

2

∫
d3Q

(2π )2

{
δμν

(
m2 + q2

0

)
(Q2 + m2)2

+ εμνmp0

(Q2 + m2)2
−

∫ 1

0
dxx(1 − x)

[
2δμν

(
m2 + q2

0

)
P 2

(Q2 + m2)3
+ (P 2δμν − 2pμpν)

(Q2 + m2)2

]}

∼ δμν

16π


2
0√


2
0 + m2

+ sgn(m)εμνCp0 − (P 2δμν − pμpν)

[
1

48π |m| − O

(
m2


2
0

)]
, (B6)

where C = 1 − [1 + (
0
m

)
2
]
−1/2

, which gives the loop contributions to the phonon mass given by Eq. (12) and both momentum-
dependent terms (14) and (15). For 
2

0 
 m2, we get to Eqs. (11)–(15).

APPENDIX C: KUBO FORMULA IN PHONON REPRESENTATION

The effective actions given by Eqs. (6) and (8) are equivalent to

S[ψ̄,ψ,A] = 1

2g

∫
d3x

[
Aμ + ig√

2
(ψ̄γμψ)

]2

+
∫

d3x

{
ψ̄[/∂ + m]ψ + g

4
(ψ̄γμψ)2

}
. (C1)
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The fermion average in the Kubo formula given by Eq. (24) can be rewritten as

〈(ψ̄ γμψ )x(ψ̄γνψ)0〉 = − 2

g2

〈(
−Aμ + Aμ + ig√

2
ψ̄ γμψn

)
x

(
−Aν + Aν + ig√

2
ψ̄ γνψ

)
0

〉

= − 2

g2

〈
Aμ,xAν,0 +

(
Aμ + ig√

2
ψ̄ γμψ

)
x

(
Aν + ig√

2
ψ̄ γνψ

)
0

〉

+ 2

g2

〈
Aμ,x

(
Aν + ig√

2
ψ̄ γνψ

)
0

+ Aν,0

(
Aμ + ig√

2
ψ̄ γμψ

)
x

〉
.

Keeping track on Eq. (C1) and assuming Aμ + ig√
2
(ψ̄γμψ) to be an independent integration variable, we realize that the mixed

terms with both phonons and fermions vanish for x �= 0, since action (C1) is diagonal in space. Then, the functional fermion
integration in (C1) can be performed, which yields for the only remaining part given by Eq. (25).
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Longhi, and A. Szameit, Phys. Rev. Lett. 105, 143902 (2010).

[14] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev,
Phys. Rev. A 84, 021806(R) (2011).

[15] J.-N. Fuchs and P. Lederer, Phys. Rev. Lett. 98, 016803 (2007).
[16] K. Ziegler, E. Kogan, E. Majernikova, and S. Shpyrko,

Phys. Rev. B 84, 073407 (2011).
[17] A. Politano, F. de Juan, G. Chiarello, and H. A. Fertig,

Phys. Rev. Lett. 115, 075504 (2015).
[18] G. V. Dunne, in Topological Aspects of Low Dimensional

Systems, edited by A. Comtet, T. Jolicoeur, S. Ouvry, and

F. David, Les Houches Summer School, (Springer, Berlin,
Heidelberg, 1999), Vol. 69, pp. 177–263.

[19] A. N. Redlich, Phys. Rev. Lett. 52, 18 (1984); Phys. Rev. D 29,
2366 (1984).

[20] E. Fradkin and F. Schaposnik, Phys. Lett. B 338, 253 (1994).
[21] K.-I. Kondo, Prog. Theor. Phys. 94, 899 (1995).
[22] T. Kimura, Prog. Theor. Phys. 92, 693 (1994).
[23] D. G. Barci, J. F. Medeiros Neto, L. E. Oxman, and S. P. Sorella,

Nucl. Phys. B 600, 203 (2001).
[24] G. Palumbo and J. K. Pachos, Phys. Rev. Lett. 110, 211603

(2013).
[25] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,

Phys. Rev. B 50, 7526 (1994).
[26] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[27] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[28] A. Hill, A. Sinner, and K. Ziegler, New J. Phys. 13, 035023

(2011).
[29] K. Ziegler and E. Kogan, Europhys. Lett. 95, 36003 (2011).
[30] T. Stauber and N. M. R. Peres, J. Phys.: Condens. Matter 20,

055002 (2008).
[31] H. Mousavi, Commun. Theor. Phys. 57, 482 (2012).
[32] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P.

Ordejón, Phys. Rev. Lett. 92, 075501 (2004).
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