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Instability of insulating states in optical lattices due to collective phonon excitations
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The effect of collective phonon excitations on the properties of cold atoms in optical lattices is investigated.
These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions
correlating the atoms, and they do not arise without such interactions. These collective excitations should not be
confused with lattice vibrations produced by an external force. No such force is assumed. But the considered
phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites,
due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of
atoms’ being localized. The states that would be insulating in the absence of phonon excitations can become
delocalized when these excitations are taken into account. This concerns long-range as well as local atomic
interactions. To characterize the region of stability, the Lindemann criterion is used.

DOI: 10.1103/PhysRevA.91.023628 PACS number(s): 67.85.Hj, 05.30.Jp, 67.80.de, 64.60.De

I. INTRODUCTION

Cold atoms in optical lattices are usually considered in the
frame of the Hubbard model (see, e.g., reviews in [1–4]). The
periodic potential of an optical lattice is imposed by external
laser beams. This potential is fixed in space, prescribing a
lattice formed by the lattice sites ai . We do not assume the
existence of external fields that would move the lattice.

If atomic interactions between sites are neglected, the
individual properties of atoms in each potential well are
completely prescribed by the given optical lattice. However, as
soon as the intersite atomic interactions are taken into account,
the low-energy positions of the atoms are not exactly those of
the potential minima of the optical lattice. In other words, an
atom in a potential well experiences an oscillational motion
due to the interaction with the other atoms. These oscillations,
due to the interaction effect, can be characterized as collective
phonon excitations.

It is these collective excitations that are considered in our
paper. As is well known, collective excitations in many cases
can essentially influence the system stability. Our aim is to
study the role of such phonon excitations for atoms in optical
lattices. We use the standard method of taking into account
collective excitations, by considering small deviations from
equilibrium values.

It is important to stress the necessity of intersite atomic
interactions, without which phonon excitations cannot exist.
The situations of externally shaking the lattice and of the
existence of self-organized collective excitations in a system
of correlated atoms are principally different and should not be
confused. In the former case, vibrations should be produced by
an external field and would exist without any intersite atomic
interactions. But in the latter case, there is no external shaking
field and the collective excitations do not exist in the absence
of intersite atomic interactions.

It is the aim of the present paper to study the properties of
insulating atomic states in optical lattices, taking into account
the arising phonon excitations and their influence on the
stability of the insulating states.

It turns out that phonon excitations can essentially influence
the properties of atomic states in optical lattices. Such

excitations play an important role in defining the boundary
of the region where atoms can be localized. The presence
of phonons can provoke an instability of an insulating
state, triggering atomic delocalization, often destroying the
insulating state that would exist without these excitations.
This delocalization effect can occur for both types of atomic
interactions, long-range as well as local.

Throughout the paper, the system of units is employed,
where the Planck and Boltzmann constants equal to 1 (� =
1, kB = 1).

II. MAIN DEFINITIONS AND NOTATIONS

In this section, we give the main definitions and notations
that are used in the following sections. We consider a
fixed optical lattice described by the spatial points {ai}
corresponding to NL lattice sites enumerated by the index
i = 1,2, . . . ,NL. The elementary lattice cell is characterized
by the set of vectors a = {aα}, where the spatial components
are enumerated by the index α = 1,2, . . . ,d. For the sake of
generality, we consider a d-dimensional space, which makes
it straightforward to analyze the particular cases of one-, two-,
and three-dimensional lattices.

The lattice contains N atoms, whose ratio to the number of
sites NL defines the filling factor

ν ≡ N

NL

= ρad , (1)

in which ρ is the average atomic density and a is the mean
interatomic distance, given by the expressions

ρ ≡ N

V
, a ≡

(
V

NL

)1/d

, (2)

with V being the system volume. The filling factor can be an
arbitrary positive number.

The optical lattice, formed by laser beams, is characterized
by the lattice potential

VL(r) =
d∑

α=1

Vα sin2
(
kα

0 rα

)
, (3)
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where kα
0 = π/aα . The recoil energy, playing the role of a

characteristic kinetic energy, is denoted as

ER = k2
0

2m

(
k2

0 ≡ 1

d

d∑
α=1

π2

a2
α

)
, (4)

with m being atomic mass. The Schrödinger lattice Hamilto-
nian is

HL(r) = − ∇2

2m
+ VL(r), (5)

with the lattice potential, (3).
The extended Hubbard Hamiltonian is derived in the usual

way. One starts with the standard Hamiltonian of atoms with
pair interactions �(r), expands the field operators over the
Wannier functions w(r − ai), and restricts the consideration
to the lowest energy band. In what follows, we need the
notations for the matrix elements over the Wannier functions:
the hopping term

Jij ≡ −
∫

w∗(r − ai)HL(r)w(r − aj )dr, (6)

the intersite interaction

Uij ≡
∫

|w(r − ai)|2�(r − r′)|w(r′ − aj )|2drdr′, (7)

the momentum squared

p2
j ≡

∫
w∗(r − aj )(−∇2)w(r − aj )dr, (8)

and the average lattice parameter

VL ≡
∫

w∗(r)VL(r)w(r)dr. (9)

With these notations, one obtains the extended Hubbard
Hamiltonian

Ĥ = −
∑
i �=j

Jijc
†
i cj +

∑
j

(
p2

j

2m
+ VL

)
c
†
jcj

+ U

2

∑
j

c
†
jc

†
jcjcj + 1

2

∑
i �=j

Uijc
†
i c

†
jcjci, (10)

in which U ≡ Ujj . The constant term VL in Hamiltonian (10)
can be omitted. In the hopping term, it is customary to consider
only the nearest neighbors, denoting as J the value of Jij

related to these nearest neighbors. Neglecting the last term in
Eq. (10), describing intersite atomic interactions, would reduce
the Hamiltonian to the standard Hubbard model. This omission
can be motivated by the fact that usually the value of Uij for
i �= j is smaller than the on-site interaction U . However, for
the treatment of phonon excitations, the intersite interactions
are crucial, even when they are small.

The atomic interactions, generally, contain two parts,

�(r) = �loc(r) + �non(r), (11)

the local interactions, described by a δ function,

�loc(r) = �dδ(r), (12)

and nonlocal long-range interactions �non(r), such as dipolar
interactions [5–8]. The parameters of the local and nonlocal

interactions can be connected, but to a large extent, the
two types of the interactions can be treated as independent.
Moreover, the strengths of these interactions can be varied
over a wide range. Respectively, the interaction term, (7), is
the sum of two parts,

Uij = U loc
ij + U non

ij , (13)

corresponding to local interactions,

U loc
ij = �d

∫
|w(r − ai)|2|w(r − aj )|2dr, (14)

and to nonlocal interactions,

U non
ij =

∫
|w(r − ai)|2�non(r − r′)|w(r′ − aj )|2drdr′.

(15)
The strength of the local interaction potential �d depends

on the system dimensionality and setup geometry. Considering
a system with atomic dynamics in d dimensions, we can keep in
mind the realistic situation, when 3 − d directions are confined
to the ground state of a harmonic oscillator, with a frequency
ω⊥, to a size l⊥ ≡ 1/

√
mω⊥. Then we will have quasi-one-

dimensional or quasi-two-dimensional systems [9,10].
For example, in three dimensions, the local-potential

strength is

�3 ≡ �0 = 4π
as

m
,

where as is the s-wave scattering length. For quasi-two-
dimensional bosons [11], one has

�2
∼= �0√

2π l⊥ − as ln[(2π )3/2ρl⊥as]
.

And for quasi-one-dimensional bosons [12], one gets

�1
∼= �0

2πl⊥(l⊥ − 0.46as)
.

If the scattering length is much shorter than the length of the
transverse confinement, then the above equations reduce to the
formula

�d = �0

(
√

2π l⊥)3−d

(
as

l⊥

 1

)
.

All the cases considered above can be summarized in the
form

�d = �eff

(
√

2π l⊥)3−d
, (16)

in which the effective strength

�eff = 4π
aeff

m
(17)

is expressed through the effective scattering length. The latter
in the quasi-one-dimensional case reads as

aeff = as

1 − 0.46as/l⊥
(d = 1); (18)

in the quasi-two-dimensional case, it is

aeff = as

1 − (as/
√

2π l⊥) ln[(2π )3/2ρl⊥as]
(d = 2); (19)
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and in three dimensions, it reduces to

aeff = as (d = 3). (20)

Above, we have listed the expressions that we need in what
follows. The derivation of these formulas can be found in the
cited literature. Typical expressions for the system parameters
for an insulating state, such as the hopping term and intersite
interactions, are given in Appendix A.

III. VIBRATIONAL COLLECTIVE EXCITATIONS

As is well known, collective excitations can essentially
influence the system properties, defining the stability bound-
aries of different physical states [13]. Thus, the stability of an
insulating state can depend on the existence of phonon exci-
tations. These collective excitations can modify the properties
of many-body systems, even when particle interactions are
rather small. In particular, phonon excitations can destabilize
the system, leading to particle delocalization destroying an
insulating state. As examples of systems where phonon
excitations can strongly influence the region of stability, we
can mention ferroelectrics [14,15] and atoms in double-well
potentials [16,17]. Here, we consider the effect of phonons on
the stability of insulating states in optical lattices. Here and in
what follows, speaking about insulating states, we keep in mind
the states typical of Mott insulators. In such states, atoms are
well localized. But the notion of localization is more general
and essentially depends on atomic interactions. We employ the
term ”localization” in this general sense.

Collective excitations are usually introduced by considering
small deviations from equilibrium values. Taking account of
phonon excitations can be done in the traditional way [18,19]
by considering vibrating atoms characterized by vectors rj ,
oscillating around the related lattice sites aj , and introducing
the deviations uj according to the rule

rj = aj + uj , (21)

requiring the validity of the conditions for the averages

aj ≡ 〈rj 〉, 〈uj 〉 = 0, (22)

where 〈· · · 〉 = Tr[· · · e−βH ]/Tr[e−βH ] is an average with
respect to the total Hamiltonian including all thermal and
quantum fluctuations. A vanishing average uj is based on
the condition that the system is in stable equilibrium, where
aj is the definition of the lattice vectors prescribed by the
given equilibrium optical lattice. The deviation uj can become
nonzero at points of instability, such as the Peierls instability.

The quantities U (rij ) and J (rij ) depend on the difference
of the spatial variables

rij ≡ ri − rj = aij + uij , (23)

where we use the notation

uij ≡ ui − uj , aij = ai − aj . (24)

It is worth mentioning the main difference between the optical
lattice, whose periodicity and lattice vectors ai are strictly
prescribed by the imposed laser beams, and a self-organized
crystal, whose lattice vectors ai are defined self-consistently
through the minimization of a thermodynamic potential.

In a localized state, atomic deviations from the lattice sites
are supposed to be small, which justifies the expansion of the
interaction potentials in powers of the deviations. As usual,
restricting such an expansion by the second order, we have

U (rij ) 
 Uij +
∑

α

Uα
iju

α
ij − 1

2

∑
αβ

U
αβ

ij uα
iju

β

ij ,

(25)

J (rij ) 
 Jij +
∑

α

J α
iju

α
ij − 1

2

∑
αβ

J
αβ

ij uα
iju

β

ij ,

where we use the notations

Uij ≡ U (aij ), Jij ≡ J (aij ),

Uα
ij ≡ ∂Uij

∂aα
i

, J α
ij ≡ ∂Jij

∂aα
i

, U
αβ

ij ≡ ∂2Uij

∂aα
i ∂a

β

j

,

J
αβ

ij ≡ ∂2Jij

∂aα
i ∂a

β

j

.

As usual, to close the system of equations, it is necessary to
decouple the high-order products of operators. These higher-
order operator products, involving the variables of different
nature, can be decoupled. Thus, we decouple the atomic and
vibrational degrees of freedom involving the second-order
vibrational variables:

uα
iju

β

ijc
†
i c

†
jcjci = 〈

uα
iju

β

ij

〉
c
†
i c

†
jcjci + uα

iju
β

ij 〈c†i c†jcjci〉
− 〈

uα
iju

β

ij

〉〈c†i c†jcjci〉,
uα

iju
β

ijc
†
i cj = 〈

uα
iju

β

ij

〉
c
†
i cj + uα

iju
β

ij 〈c†i cj 〉 − 〈
uα

iju
β

ij

〉〈c†i cj 〉,
p2

jc
†
jcj = 〈

p2
j

〉
c
†
jcj + p2

j 〈c†jcj 〉 − 〈
p2

j

〉〈c†jcj 〉. (26)

Such a decoupling is motivated by the different physical nature
of the atomic and deviation operators. Keeping in mind the
lattice periodicity, the filling factor can be represented as

ν ≡ N

NL

= 1

NL

∑
j

〈c†jcj 〉 = 〈c†jcj 〉. (27)

Employing the above decouplings in the Hamiltonian, we
meet the combination of terms, for which it is convenient to
introduce the following notations. Thus, we define the effective
hopping term

J̃ij ≡ Jij − 1

2

∑
αβ

J
αβ

ij

〈
uα

iju
β

ij

〉
(28)

and the effective atomic interactions

Ũij ≡ Uij − 1

2

∑
αβ

U
αβ

ij

〈
uα

iju
β

ij

〉
, (29)

whose values are renormalized by the presence of atomic
vibrations. These atomic vibrations are correlated with each
other through the effective interaction matrix

�
αβ

ij ≡ U
αβ

ij 〈c†i c†jcjci〉 − 2J
αβ

ij 〈c†i cj 〉. (30)

Atoms produce the effective deformation force

F α
ij ≡ −Uα

ijc
†
i c

†
jcjci + 2J α

ijc
†
i cj , (31)
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caused by atom-vibration correlations. It is also important to
note that for a function f (aij ), depending on the difference
aij , the following properties are valid:

∑
j

∂f (aij )

∂aα
i

= ∂

∂aα
i

∑
j

f (aij ) = 0,

(32)∑
j

∂2f (aij )

∂aα
i ∂a

β

j

= − ∂

∂aα
i

∑
j

∂f (aij )

∂a
β

ij

= 0.

These properties are used in the final presentation of the system
Hamiltonian.

Accomplishing the described procedure for Hamiltonian
(10), we obtain

Ĥ = EN + Ĥat + Ĥvib + Ĥint. (33)

Here the first term is the nonoperator quantity,

EN = 1

4

∑
i �=j

∑
αβ

�
αβ

ij

〈
uα

iju
β

ij

〉 − ν
∑

j

〈
p2

j

2m

〉
. (34)

Atoms are described by the renormalized Hamiltonian,

Ĥat = −
∑
i �=j

J̃ijc
†
i cj + U

2

∑
j

c
†
jc

†
jcjcj

+ 1

2

∑
i �=j

Ũijc
†
i cjcjci +

∑
j

〈
p2

j

2m

〉
c
†
jcj . (35)

Collective vibrational degrees of freedom are characterized by
the Hamiltonian

Ĥvib = ν
∑

j

p2
j

2m
− 1

4

∑
i �=j

∑
αβ

�
αβ

ij uα
iju

β

ij . (36)

And the last term Ĥint corresponds to local deformations
caused by the correlations between atomic and vibrational
degrees of freedom,

Ĥint = −1

2

∑
i �=j

∑
α

F α
iju

α
ij . (37)

Passing from the relative deviations uij to the single-site
deviations uj , and using the above properties, the vibrational
Hamiltonian part can be represented as

Ĥvib = ν
∑

j

p2
j

2m
+ 1

2

∑
i �=j

∑
αβ

�
αβ

ij uα
i u

β

j . (38)

The effective deformation force, (31), enjoys the property

F α
ji = −F α

ij (i �= j ). (39)

Therefore the deformation term, caused by the correlations
between atomic and vibrational degrees of freedom, can be

rewritten as

Ĥint =
∑
i �=j

∑
α

F α
iju

α
j . (40)

Thus, all terms of the Hamiltonian Ĥ are defined.
Let us stress that the vibrational collective excitations

appear only when there exist intersite atomic interactions
correlating atoms. In the presence of these interactions, atoms
move in an effective potential composed of an optical lattice
and a self-organized field formed by intersite interactions. The
optical lattice does not correlate atoms, prescribing only their
individual properties. However, intersite atomic interactions
do collectivize the atoms, whose collective vibrations play the
role of collective phonon excitations.

IV. QUANTIZATION OF PHONON VARIABLES

Quantized phonon variables are introduced so as to diag-
onalize the part of the Hamiltonian containing atomic devia-
tions. In our case, the difference from the standard introduction
of phonon operators is due to the existence of the linear in the
deviation term, (40). Dealing with such linear terms requires us
to slightly modify the corresponding canonical transformation
[20]. In this case, the phonon operators are introduced by
means of the nonuniform transformation

uj = ��j + 1√
2N

∑
ks

√
ν

mωks

eks(bks + b
†
−ks)e

ik·aj ,

(41)

pj = − i√
2N

∑
ks

√
mωks

ν
eks(bks − b

†
−ks)e

ik·aj ,

in which eks are the polarization vectors, with s being the
polarization index. The phonon frequencies are given by the
eigenproblem

ν

m

∑
j (�=i)

∑
β

�
αβ

ij eik·aij e
β

ks = ω2
kse

α
ks, (42)

with the effective interaction matrix, (30). Diagonalizing the
phonon part of the Hamiltonian yields

�α
i =

∑
j (�=i)

∑
β

γ
αβ

ij F
β

j , (43)

where we use the notation

γ
αβ

ij ≡ ν

N

∑
ks

eα
kse

β

ks

mω2
ks

eik·aij (44)

and where the effective deformation force, acting on an atom,
is

F α
i =

∑
j (�=i)

F α
ij . (45)

The presence of the term ��j in the canonical transformation,
(41), distinguishes the latter from the standard canonical
transformation in the quantization of phonon variables.

It is easy to see that variables (41) satisfy the usual
commutation relations,[

uα
i , p

β

j

] = iδijδαβ .
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Conditions (22) are valid, since

〈 ��i〉 = 0. (46)

Then Hamiltonian (33) results in the sum

Ĥ = EN + Ĥat + Ĥph + Ĥind. (47)

Here the first term is the same as in Eq. (34). The atomic
Hamiltonian is given by Eq. (35). The phonon Hamiltonian is
diagonal,

Ĥph =
∑
ks

ωks

(
b
†
ksbks + 1

2

)
. (48)

And the last term is the Hamiltonian of effective multiatomic
interactions, induced by atomic vibrations,

Ĥind =
∑
i �=j

∑
αβ

F α
i γ

αβ

ij F
β

j . (49)

Using properties (32), it is straightforward to check that the
average force, (45), is 0; that is, 〈F α

j 〉 = 0. Hence, the induced

term, (49), in the mean-field approximation is 0, 〈Ĥind〉 = 0,
since 〈

F α
i F

β

j

〉 ∼= 〈
F α

i

〉〈
F

β

j

〉 = 0.

Moreover, the induced term, (49), is much smaller compared
to the atomic term, (35). This implies that the induced term
(49) does not influence much the properties of atoms.

The properties of phonons depend on their frequency, for
which we have the equation

ω2
ks = ν

m

∑
j (�=i)

∑
αβ

�
αβ

ij eα
kse

β

kse
ik·aij . (50)

The deviation correlation function becomes〈
uα

i u
β

j

〉 = δij

ν

2N

∑
ks

eα
kse

β

ks

mωks

coth

(
ωks

2T

)
. (51)

And the average kinetic energy per atom is〈
p2

j

2m

〉
= 1

4νN

∑
ks

ωks coth

(
ωks

2T

)
. (52)

An important quantity, characterizing the width of atomic
vibrations, is the mean-square deviation r0 defined by the
equation

r2
0 ≡

d∑
α=1

〈
uα

i uα
i

〉
. (53)

This quantity should not be confused with l0, which defines the
width of a wave packet at a lattice site: r0 is the mean deviation
of this wave packet oscillating around the lattice site.

In the case of a d-dimensional cubic lattice, the frequency
is the same for all polarizations, which can be described by the
relation

ω2
k = 1

d

d∑
s=1

ω2
ks . (54)

The latter results in the equation for the phonon frequency

ω2
k = − ν

m

∑
j (�=i)

Dije
ik·aij , (55)

with the dynamical matrix

Dij ≡ − 1

d

d∑
α=1

�αα
ij = 1

d

d∑
α=1

∂2�ij

∂aα
i ∂aα

i

. (56)

For a cubic lattice, the mean-square deviation, (53), reads
as

r2
0 = νd

2mρ

∫
B

1

ωk

coth

(
ωk

2T

)
dk

(2π )d
, (57)

with the integration over the Brillouin zone. Taking into
account only the nearest-neighbor interactions leads to the
effective phonon dispersion

ω2
k = 4ν

m
D0

∑
α

sin2

(
kαa

2

)
, (58)

where aα = a and D0 is Dij for the nearest neighbors. In the
long-wave limit, Eq. (58) reduces to the acoustic spectrum

ωk 
 c0k

(
k2 ≡

d∑
α=1

k2
α → 0

)
, (59)

with the sound velocity

c0 =
√

ν

m
D0a2. (60)

The value of the mean-square deviation, (57), describes the
properties of the localized state and defines the region where
it can exist. As is clear, to be treated as localized, the state
has to enjoy a mean-square deviation that is much smaller
than the mean interatomic distance. This is the essence of the
Lindemann criterion of stability that is considered in the next
section.

V. POSSIBILITY OF PHONON INSTABILITY

One of the most important characteristics of a localized
solid-like state is the mean-square deviation, (53) or (57). A
localized state can exist only when this deviation r0 is much
smaller than the distance a between the nearest neighbors. This
statement is the well-known Lindemann criterion of lattice
stability (see, e.g., [18,19,21]). According to this criterion,
the majority of solids become unstable and melt when the
Lindemann ratio r0/a surpasses 0.2. This criterion is valid for
anharmonic crystals as well [22]. Even for such a strongly
anharmonic quantum crystal as 3He the Lindemann ratio is
0.3, which is measured experimentally [23]. In the weakest
form, the Lindemann criterion [24] states that, for the stability
of a localized solid-like system, it is necessary that

r0

a
< 1. (61)

The meaning of the Lindemann criterion is evident: if the
mean-square deviations of neighboring atoms were compara-
ble to their mean interatomic distance, the system could not be
considered localized.

023628-5



V. I. YUKALOV AND K. ZIEGLER PHYSICAL REVIEW A 91, 023628 (2015)

In the long-wave limit, the phonon spectrum is acoustic,
as shown in Eq. (59). This tells us that, in calculating the
mean-square deviation, (57), the limit of small wave vectors
can produce infrared divergence, depending on the system
dimensionality and temperature. In order to study when and
how this happens, we can employ the standard procedure of
limiting integral, (57), from below by introducing the minimal
wave vector kmin, which is assumed to tend to 0. Equivalently,
it is possible to define the minimal wave vector as kmin = π/L,
where L = aN

1/d

L is the length of the lattice. As is clear, for
a large lattice, with the number of lattice sites NL → ∞, the
minimal wave vector tends to 0.

Considering integral (57) at finite temperatures T > 0 for
a low dimensionality, d < 2, shows that the mean-square
deviation diverges as

r2
0 
 T N

2/d−1
L d

2dπ2(2 − d)νD0
(d < 2, T > 0),

where D0 is the dynamical matrix, as in Eq. (58), and
NL → ∞. In particular, for one-dimensional space (d = 1),
the divergence is linear at the number of sites NL,

r2
0 
 T NL

2π2νD0
(d = 1, T > 0). (62)

And for two-dimensional space (d = 2), the divergence is
logarithmic in NL,

r2
0 
 T ln NL

(2π )2νD0
(d = 2, T > 0). (63)

This means that at finite temperatures the localized state is
unstable in dimensions d = 1 and d = 2 for asymptotically
large lattices, where NL → ∞, although the lattice could exist
for such NL that would be large, but finite, at the same time
satisfying the Lindemann criterion (61).

Let us note that the dynamical matrix D0, of course,
depends on the parameters of the optical lattice. This is shown
below by explicit equations. However, the infrared divergence,
considered above, is a feature typical of low-dimensional sys-
tems. Recall that, according to the Mermin-Wagner theorem
[25–27], continuous symmetry at a finite temperature cannot
be broken in spaces of dimensionality lower than 3 (d � 2),
irrespective of the strength of their interactions, provided that
the latter are of the short-range type. This low-dimensional
infrared instability is a purely dimensional effect. However,
this low-dimensional effect is not of great danger in a real
world that is three-dimensional. Actually, dealing with optical
lattices, one always deals with three-dimensional systems,
which can be reduced to quasi-one-dimensional or quasi-two-
dimensional by integrating out some degrees of freedom.

It is generally accepted that for solid states the De-
bye approximation gives a quite accurate description
[18,19,21–23]. In this approximation, the integration over the
Brillouin zone is replaced by the integration over the Debye
sphere, ∫

B

dk
(2π )d

→ 2

(4π )d/2
(d/2)

∫ kD

0
kd−1dk, (64)

limited by the Debye radius kD , which is defined by the
normalization condition∫

B

dk
(2π )d

= NL

V
= ρ

ν
, (65)

where ρ is the average density

ρ ≡ N

V
= ν

ad
. (66)

This gives the Debye radius

kD =
√

4π

a

[
d

2



(
d

2

)]1/d

. (67)

The spectrum is taken to be isotropic, with the frequency

ωk = c0k (0 � k � kD), (68)

whose upper limit defines the Debye temperature

TD ≡ c0kD. (69)

With the notation for the Debye radius, (67), the replacement,
(64), takes the form∫

B

dk
(2π )d

→ d

(kDa)d

∫ kD

0
kd−1dk. (70)

Below, we study in more detail the Lindemann criterion,
employing the Debye approximation.

At zero temperature, the mean-square deviation becomes

r2
0 = d2

2(d − 1)mTD

(T = 0). (71)

The Lindemann criterion of stability, (61), yields

TD >
d2

2(d − 1)ma2
(T = 0). (72)

The meaning of the latter inequality is very transparent: a
localized state can be formed only when the effective potential
energy is higher than the kinetic energy of atoms. As Eq. (72)
demonstrates, no localized state can exist at zero temperature
for d = 1.

At high temperatures, the mean-square deviation is given
by the expression

r2
0 
 T d2

(d − 2)mT 2
D

(T � TD). (73)

Then the Lindemann stability criterion gives

TD >

√
T d2

(d − 2)ma2
(T � TD). (74)

This tells us that, at such temperatures, there can be no
localized state for d = 2. At these temperatures, only a
three-dimensional localized state can exist, provided that

TD >

√
9T

ma2
(T > TD, d = 3). (75)

To simplify the consideration, for a well-localized insulat-
ing state, one can use the averages 〈c†i cj 〉 = δijν and

〈c†i c†jcjci〉 = 〈c†i ci〉〈c†jcj 〉 = ν2 (i �= j ). (76)
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As a result, the interaction matrix, (30), reduces to

�
αβ

ij = ν2U
αβ

ij . (77)

An interesting question is how atomic vibrations influence
a localized state due to local interactions. For such a case,
considering a cubic lattice, taking account of only the nearest
neighbors, and involving the formulas from Appendix A, we
get

Uij = U exp

(
−a2d

2l2
0

)
, (78)

where the equality a2
ij = a2d is used and U = Uloc is defined

in Appendix A. The dynamical matrix, (56), becomes

D0 =
(

νa

l2
0

)2

U exp

(
−a2d

2l2
0

)
. (79)

The sound velocity, (60), reads as

c0 = νa2

l2
0

√
ν

m
U exp

(
−a2d

4l2
0

)
, (80)

which can also be represented in the form

c0 = 4νJa2

(π2 − 4)V0l
2
0d

√
ν

m
U, (81)

through the parameters of the optical lattice.
For a cubic lattice at zero temperature, the Lindemann

criterion of stability, (61), can be written as

16(2π )1/4ν3/2J

(π2 − 4)V0d

[
d

2



(
d

2

)]1/d (
a

l0

)3
√

aeff

l3−d
⊥ ld−2

0

>
d2

d − 1
.

(82)

Consequently, the system stability essentially depends on
the lattice parameters, space dimensionality, and atomic
interactions.

At zero temperature, only two- and three-dimensional
localized states can arise. Considering the two-dimensional
case (d = 2), we have

�2 = �eff√
2πl⊥

, kD =
√

4π

a
,

(83)

U = �eff

(2π )3/2l⊥l2
0

(d = 2).

The Debye temperature, (69), becomes

TD = 2(2π )1/4 νa

ml3
0

√
νaeff

l⊥
exp

(
− a2

2l2
0

)
. (84)

The Lindemann criterion, (72), is equivalent to the inequality

ma2TD > 2,

which gives

ν3/2

(
a

l0

)3 √
aeff

l⊥
exp

(
− a2

2l2
0

)
> 0.632. (85)

Comparing the ratio Uloc/J , given in Appendix A, with
criterion (85), we see that the atomic state can be insulating
when no phonon degrees of freedom are taken into account and

U is much larger than J . But as soon as phonon excitations are
included, the stability condition, (85), for the same parameters
may not be valid, which means that atoms delocalize.

For the three-dimensional case (d = 3), we get

�3 = �0, kD = (6π2)1/3

a
,

(86)

U = �0

(2π )3/2l3
0

(d = 3).

The Debye temperature, (69), becomes

TD = 3.482
νa

ml3
0

√
νas

l0
exp

(
−3a2

4l2
0

)
. (87)

At zero temperature, the Lindemann criterion, (72), takes the
form

ma2TD >
9

4
,

which yields

ν3/2

(
a

l0

)3 √
as

l0
exp

(
−3a2

4l2
0

)
> 0.648. (88)

Again, the system can be insulating without phonons, but
becomes delocalized in the presence of the latter.

Using the formulas in Appendix A, localization conditions
(85) and (88) can be represented in another form by taking
into account the expressions for the hopping rate,

J = 2.935V0 exp

(
− a2

2l2
0

)
(d = 2),

J = 4.402V0 exp

(
−3a2

4l2
0

)
(d = 3).

Then Eq. (85) yields

aeff

l⊥
>

3.441

ν3

(
V0

J

)2 (
l0

a

)6

(d = 2), (89)

while criterion (88) gives

as

l0
>

8.137

ν3

(
V0

J

)2 (
l0

a

)6

(d = 3). (90)

This shows that the Lindemann criterion of stability requires
that atomic interactions, and hence the scattering length,
be sufficiently large. If these conditions are not valid, the
insulating state can be destroyed by phonon vibrations.

In order to better understand the physics of the phonon
instability, we need to analyze how the occurrence of atomic
vibrations influences the values of the hopping parameter and
interaction matrix.

VI. RENORMALIZATION OF ATOMIC PARAMETERS

Phonon excitations renormalize atomic parameters accord-
ing to Eqs. (28) and (29). The renormalized quantities are
shifted, because of the phonon existence, resulting in

J̃ij = Jij + �Jij , Ũij = Uij + �Uij , (91)
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where, taking into account that〈
uα

iju
β

ij

〉 = 2(1 − δij )
〈
uα

i u
β

j

〉
,

we have

�Jij = −
∑
αβ

J
αβ

ij

〈
uα

j u
β

j

〉
, �Uij = −

∑
αβ

U
αβ

ij

〈
uα

j u
β

j

〉
. (92)

In the Debye approximation, we find〈
uα

j u
β

j

〉 = δαβ

r2
0

d
, (93)

which gives

�Jij = − r2
0

d

∑
α

J αα
ij , �Uij = − r2

0

d

∑
α

Uαα
ij . (94)

In the tight-binding approximation, where l0 
 a, the
hopping parameter shift is

�Jij = a2r2
0

4l4
0

Jij , (95)

which shows that the hopping parameter increases due to
collective phonon excitations. At zero temperature, the relative
shift is

�Jij

Jij

= a2d2

8(d − 1)ml4
0TD

. (96)

For a two-dimensional lattice (d = 2), this gives

�Jij

Jij

= 0.079
a

νl0

√
l⊥

νaeff
exp

(
a2

2l2
0

)
= 0.074

aV0

ν3/2l0J

√
l⊥
aeff

,

(97)

and for a three-dimensional lattice (d = 3), the relative shift is

�Jij

Jij

= 0.054
a

νl0

√
l0

νas

exp

(
3a2

4l2
0

)
= 0.237

aV0

ν3/2l0J

√
l0

as

.

(98)

The increase in the hopping parameter can be rather noticeable.
Thus, for r0/l0 ∼ 0.3 and l0/a ∼ 0.1, shift (95) is of the order
of Jij .

The shift of the interaction matrix with the local interaction
potential reads as

�Uij = a2r2
0

l4
0

Uij , (99)

which means that the interaction matrix increases. At zero
temperature, this yields

�Uij

Uij

= a2d2

2(d − 1)ml4
0TD

. (100)

The increase in the effective interaction matrix Uij , caused
by collective phonon excitations, can be sufficiently large,
even in the case of the local atomic interactions. For instance,
if r0/l0 ∼ 0.3 and l0/a ∼ 0.1, then shift (99) is of the order of
Uij . Thus, the phonon vibrations can essentially renormalize
the atomic Hamiltonian parameters. A simple example of
temperature dependence is given in Appendix B.

In this way, collective phonon excitations lead to an
increase in the hopping parameter and in the interaction
matrix corresponding to the interactions of atoms at different
lattice sites. However, note that the on-site atomic interaction
parameter U in Hamiltonian (35) remains unchanged.

VII. PHYSICS OF PHONON INSTABILITY

Now it is straightforward to understand why collective
phonon excitations can lead to the instability of an insulating
state. To this end, keeping in mind low temperatures, let us
compare the energy of the system described by the Hamilto-
nian without phonon degrees of freedom with the energy of the
system including phonon excitations. These energies are given
by the average values of the related Hamiltonians. The energy
of the system with phonons is defined as the average Ẽ ≡ 〈Ĥ 〉
of Hamiltonian (33), while the energy E of the system without
phonons can be defined as the average of Hamiltonian (10).
So, we need to consider the difference � ≡ Ẽ − E.

As explained above, analyzing the interaction Hamiltonian,
(40), we find that its average value is small, 〈Ĥint〉 ≈ 0.
Appendix A shows that the intersite term Uij , with i �= j ,
is much smaller than the on-site term U . Thus, we obtain the
energy difference

�E ≈ −
∑
i �=j

�Jij 〈c†i cj 〉.

In the previous section, it is shown that the hopping parameter
shift is positive. Thus, the existence of phonons increases the
hopping parameter and, consequently, decreases the system
energy. Since the system with phonons prefers a lower energy,
it is more stable than the system without these excitations.

A localized state is metastable, since in order to destroy it,
atoms have to penetrate through the barrier V0 created by the
optical lattice. Such a penetration requires some time, which
characterizes the lifetime of the metastable state. This lifetime
can be estimated [28–32] as

tmet = τ0 exp

(
VB

εN

)
,

where VB is the barrier height, εN is the characteristic energy
of noise, which is defined by the characteristic kinetic energy,
and τ0 is the period of atomic oscillations at the bottom of
the well. For classical systems the characteristic noise energy
εN coincides with the temperature T , which results in the
Arrhenius formula. For quantum systems, the characteristic
kinetic energy is defined by the energy, which, in our case,
is the recoil energy ER . And the barrier height for an optical
lattice is V0. With the oscillation period τ = 2π/ω0, we have
the lifetime

tmet = 2π

ω0
exp

(
V0

ER

)
.

As an illustration of the above consideration, let us study
some experiments where the insulating state in an optical
lattice has been observed. For example, let us consider the
experiment by Greiner et al. [33], where a three-dimensional
cubic lattice was created and loaded with 87Rb atoms, with
the filling number close to 1. Varying the optical-lattice
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parameters, both localized insulating and delocalized super-
fluid states were realized. The lattice was formed by laser
beams of wavelength λ = 0.852 × 10−4 cm, which makes
the lattice parameter a = λ/2 = 0.426 × 10−4 cm. With mass
m = 1.443 × 10−22 g, the recoil energy is ER = 2.093 ×
10−23 erg. At lattice depth V0 = 13ER = 2.721 × 10−22 erg,
atoms are localized in a Mott state. Under these parameters,
the effective frequency ω0 = 1.509 × 10−22 erg, which gives
the wave packet width l0 = 0.715 × 10−5 cm. Since l0/a =
0.168, the tight-binding approximation is applicable. With the
scattering length as = 0.545 × 10−6 cm, we have the ratio
as/l0 = 0.076.

At the same time, for V0 = 13ER numerical calculations
[33] give U = 0.35ER and J = U/36 = 0.97 × 10−2ER .
Then the Lindemann criterion, (90), requires that as/l0 be
larger than 330. According to this criterion, the localized
insulating state is unstable if the phonon degrees of freedom
are taken into account. Therefore, the experimentally observed
localized states of atoms interacting through local δ-function
forces are not absolutely stable equilibrium states but, rather,
are metastable states.

The oscillation time of an atom in a well is τ = 2π/ω0 =
0.44 × 10−3 s. Therefore, the lifetime of a metastable insulat-
ing state under V0 = 13ER is tmet ≈ 200 s. This is quite a long
time, allowing for its easy observation. Moreover, this time is
longer than the typical lifetime of atoms in a trap, which is of
the order of seconds or tens of seconds [34,35]. Therefore, it is
very feasible to create long-lived metastable insulating states
of trapped atoms in optical lattices.

VIII. ATOMS WITH DIPOLE INTERACTIONS

In the case of nonlocal long-range atomic interactions
�non(r), such as dipolar interactions, atoms in an optical lattice,
where l0 
 a, can be described [5–8] by the extended Hubbard
model with the effective interactions

Uij = CD

a3
ij

(i �= j ), (101)

in which CD ∝ μ2
0, with μ0 being the magnetic (or electric)

atomic dipole. Since dipole interactions are of the hard-core
type, each lattice site can host only a single atom; that is, the
filling factor is 1, ν = 1. For interactions of form (101), one
has

Uα
ij = −3Cd

aα
ij

a5
ij

, U
αβ

ij = 3Cd

a5
ij

(
δαβ − 5aα

ija
β

ij

a2
ij

)
.

The shift of the effective interactions due to phonon excita-
tions, according to Eq. (94), reads as

�Uij = 3(5 − d)

d
r2

0
CD

a5
ij

. (102)

Taking into account only nearest neighbors yields

�Uij = 3(5 − d)

d2

( r0

a

)2
Uij . (103)

Again, we see that the presence of phonons increases effective
interactions. This increase is not large, since, for r0 
 a,
Eq. (103) shows that the shift is much smaller than Uij .

For a well-localized insulating state, the interaction matrix,
(30), leads to

�
αβ

ij = 3
Uij

a2
ij

(
δαβ − 5aα

ija
β

ij

a2
ij

)
, (104)

which defines the dynamical matrix, (56), as

Dij = 3(5 − d)

d

Uij

a2
ij

. (105)

Taking into account only nearest neighbors gives

D0 = 3(5 − d)

d7/2

CD

a5
. (106)

The sound velocity, (60), becomes

c0 =
[

3(5 − d)CD

ma3d7/2

]1/2

,

which, for the Debye temperature, (69), yields

TD = 2
√

3π (5 − d)

d7/2

[
d

2



(
d

2

)]1/d
√

CD

ma5
. (107)

In particular, for two and three dimensions, we find

TD = 3.162

√
CD

ma5
(d = 2),

(108)

TD = 1.396

√
CD

ma5
(d = 3).

It is convenient to introduce the dipole length

aD ≡ mCD

�2
, (109)

which is sometimes also called the effective dipole scattering
length. Then the Lindemann criterion, (61), for the stability of a
localized state can be written, depending on the dimensionality,
as

aD

a
> 0.4 (d = 2),

aD

a
> 2.6 (d = 3). (110)

This tells us that the effective atomic interaction, i.e., the dipole
length, has to be sufficiently strong for the stability of the
localized state.

In order to estimate the characteristic interaction param-
eters, let us consider the systems of cold trapped atoms of
52Cr [36], 168Er [37], and 164Dy [38]. We keep in mind that
the typical nearest-neighbor distance in an optical lattice is
a ∼ 10−5 cm.

The dipole magnetic moment of 52Cr is μ0 = 6μB , which
gives μ0 = 5.564 × 10−20 erg/G. The atomic mass is m =
0.863 × 10−22 g. The scattering length is as = 103aB . The
sound velocity is c0 ∼ 0.2 cm/s. The Debye frequency is
ωD ∼ 0.6 × 105 1/s. The Debye temperature is TD ∼ 0.7 ×
10−22 erg or TD ∼ 0.5 × 10−6 K. Taking CD ∼ μ2

0, we get
aD = 2.4 × 10−7 cm. This is much shorter than the typical
lattice distance a. That is, the stability criterion, (110), cannot
be satisfied.

For 168Er, the dipole moment is μ0 = 7μB , which
yields μ0 = 6.492 × 10−20 erg/G. The mass is m = 2.777 ×
10−22 g. Then the dipole length is aD = 1.052 × 10−6 cm.
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This is also shorter than the typical intersite distance a. Hence
the stability criterion, (110), is again not valid.

In the case of 164Dy, the dipole moment is μ0 = 10μB ,
which results in μ0 = 9.274 × 10−20 erg/G. The mass is m =
2.698 × 10−22 g. This gives the dipole length aD = 2.087 ×
10−6 cm, which, again, does not satisfy the stability criterion,
(110).

Thus, phonon excitations do not allow for the formation
of localized states for the above atoms with pure dipolar
forces. But there exist polar molecules for which magnetic (or
electric) moments can reach 100μB [7]. Such polar molecules,
with dipolar lengths several orders larger than those of the
above atoms, can satisfy the stability criterion and, hence, can
form localized states that are stable against phonon collective
excitations. And even when absolutely stable states are not
allowed, there can exist very long-lived metastable states.

IX. CONCLUSION

We have studied the influence of phonon collective ex-
citations on the possibility of cold atoms’ forming localized
states in optical lattices. The phonon excitations that appear are
self-organized atomic fluctuations, caused by intersite atomic
interactions collectivizing the atoms.

It turns out that such phonon excitations are very im-
portant even for atoms with local δ-function interactions.
Phonon oscillations can destroy the insulating state that
would exist without them. The physical mechanism by which
phonons can destabilize an insulating state is the fact that
phonons decrease the system energy by increasing the hopping
parameter.

The localized state can be stabilized by strong atomic
interactions. These conclusions are valid for both local and
long-range dipolar interactions. Taking into account collective
phonon excitations is necessary when studying whether cold
atoms in optical lattices can form localized insulating states in
equilibrium. Even though at absolute equilibrium a localized
state cannot exist, being unstable with respect to phonon
excitations, this does not prohibit the existence of metastable
localized states in optical lattices which live so long that they
can be easily observed and studied.

The reason why the conditions for the existence of localized
states for a pure Hubbard model without phonons and one
with phonon excitations are different is easy to understand. In
a pure Hubbard model, the state is localized when the width
l0 of the wave packet at a lattice site is narrow, such that it is
much smaller than the intersite distance a, or when k0l0 
 1.
The latter, since k0l0 = (ER/V0)1/4, implies that V0 � ER .
Exactly this condition is observed in experiments studying the
insulating Mott state in optical lattices [1–4,33].

However, the wave packet can be narrow but strongly oscil-
lating around a lattice site. Such oscillations are characterized
by the mean-square deviation r0. Then the localized state can
exist if these oscillating wave packets do not intersect with
each other, which is the meaning of the Lindemann criterion of
stability, requiring that r0/a be at least smaller than 1. The latter
imposes the condition that atomic interactions be sufficiently
strong, satisfying inequality (89) or (90), depending on the
space dimensionality. The condition l0 
 a does not directly
involve the parameters of intersite atomic interactions, while

the Lindemann criterion of instability strongly depends on the
parameters of such interactions. This is why these criteria are
principally different and do not need to coincide.
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APPENDIX A: HOPPING TERM AND INTERSITE
INTERACTION

In deriving the extended Hubbard Hamiltonian, one em-
ploys the basis of Wannier functions. It is known that this basis
is convenient because Wannier functions can be made well
localized [39–41], such that the tight-binding approximation
becomes applicable, when the Wannier functions are close to
harmonic wave packets,

w(r) =
d∏

α=1

wα(r), wα(r) =
(

mωα

π

)1/4

exp
(
−m

2
ωαr2

α

)
.

The wave packets are well localized in the sense that

lα

aα


 1

(
lα ≡ 1√

mωα

)
or, in other words, that

kα
0 lα 
 1

(
kα

0 aα = π
)
.

The value lα plays the role of the localization length,
or width, for the wave packet. The corresponding oscillator
frequency ωα can be found by minimizing the energy of the
whole atomic system [4], which takes into account atomic
interactions. When the packet width is mainly defined by the
optical potential, then

ωα =
√

2

m
Vαkα

0

(
kα

0 ≡ π

aα

)
.

In this approximation, the hopping term, (6), is

Jij =
d∑

α=1

[
ωα

8

(
aα

ij

lα

)2

− Vα

]
exp

{
−1

4

d∑
α=1

(
aα

ij

lα

)2
}

and the matrix element, (14), becomes

U loc
ij = �d

(2π )d/2

(
d∏

α=1

1

lα

)
exp

{
−1

2

d∑
α=1

(
aα

ij

lα

)2
}

,

with the notation

aij ≡ ai − aj = {
aα

ij

}
, a2

ij ≡ |aij |2 =
d∑

α=1

(
aα

ij

)2
.

For a cubic lattice, with Vα = V0, ωα = ω0, and lα = l0, the
hopping term simplifies to

Jij =
(

ω0a
2
ij

8l2
0

− V0d

)
exp

(
− a2

ij

4l2
0

)
,
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while the above intersite interaction becomes

U loc
ij = Uloc exp

(
− a2

ij

2l2
0

)
,

with the on-site interaction, due to the local potential, being

Uloc = �d

(2π )d/2ld0
.

For a cubic lattice, with the frequency ω0 defined by the
optical potential, we have

ω0 = 2
√

V0ER = π

a

√
2

m
V0

and

l0 ≡ 1√
mω0

= 1

(4m2V0ER)1/4
,

with ER = π2/2ma2. In the case of the nearest neighbors,
using the relations

ω0a
2
ij

8l2
0

= π2

4
V0d, l2

0 = a

π
√

2mV0
,

a2

l2
0

= π2

√
V0

ER

,

we find the hopping term

J = V0d

(
π2

4
− 1

)
exp

(
−a2d

4l2
0

)
and the on-site interaction, caused by the local potential,

Uloc = �d

πd/2
(m2V0ER)d/4 = 2ω0aeff√

2πl3−d
⊥ ld−2

0

.

The ratio of the on-site interaction to the hopping term reads
as

Uloc

J
= 4�d exp

(
a2d/4l2

0

)
(π2 − 4)(2π )d/2ld0 V0d

,

or it may be presented as

Uloc

J
= 4�d

(π2 − 4)d

(
m

2a2V 3
0

)d/4

exp

(
πd

4

√
2mV0

)
.

This shows that, for a sufficiently deep lattice and large
scattering length, the value of Uloc can be made much larger
than J , so that the system would be in a well-localized
insulating state.

APPENDIX B: MEAN-FIELD ILLUSTRATION
OF PHONON INSTABILITY

The conventional approach to determining the properties
of both phonons and atoms is based on a self-consistent
evaluation of the self-energy (Migdal approximation) [42].
The latter provides an effective (or renormalized) energy
and its imaginary part, an effective scattering rate. Such a
static approximation might be insufficient, since it does not
take into account thermal fluctuations. It is possible to treat
quantum and thermal fluctuations separately. To this end, we
can replace the phonon operators bks and b

†
ks in (41) with their

quantum averages: bks ≈ 〈bks〉 ≡ vks and b
†
ks ≈ 〈b†ks〉 ≡ v∗

ks .
In this approximation, we can keep thermal fluctuations but
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FIG. 1. Integrand of the last equation in Appendix B as a function
of temperature T (in units of the hopping energy), describing
the increase in phonon fluctuations with rising temperature, for√

h2
1 + h2

2 = 0.01, 0.8, and 1 (from bottom to top), d = 3, and
μ = 1.2.

ignore quantum fluctuations of the phonons. The atoms, on
the other hand, are studied in full quantum dynamics. This
reduces the grand-canonical ensemble at inverse temperature
β ≡ 1/kBT , defined by the generating function Tre−βH , to a
functional integral with respect to thermal fluctuations of the
lattice distortions uj and a trace with respect to the quantum
states of the atoms [43].

In order to illustrate how phonon instability can develop, we
consider a simplified model to show how phonon fluctuations
rise with temperature. For this purpose we choose as the
effective quasiatom Hamiltonian h a hopping term and a term
that describes the displacement of atoms at nearest-neighbor
sites. Assuming a bipartite lattice, the atomic Hamiltonian Ĥat

of Eq. (35) can be reduced to the effective form

h =
(

μ h1 − ih2

h1 + ih2 μ

)
,

h1 = (
Ĥat + Ĥ T

at

)/
2, h2 = i

(
Ĥat − Ĥ T

at

)/
2,

where μ is the effective chemical potential of atoms. Within
the mean-field approximation, this leads to a spatially uniform
displacement field u entering the action

S = βĤvib +
∫

ln
[
1 + e−2βμ − 2e−βμ cosh

(
β

√
h2

1 + h2
2

)]
× dk

(2π )d
,

with the phonon Hamiltonian of Eq. (38). Calculation of
the phonon free energy −β ln Z requires integration over the
atomic displacement field u, which can be performed in the
saddle-point approximation fixing the displacement field by
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the saddle-point equation

0 = ∂S

∂uα
= β

∂Ĥvib

∂uα
−

∫ sinh
(
β

√
h2

1 + h2
2

)
cosh(βμ) − cosh

(
β

√
h2

1 + h2
2

)
× h1∂h1/∂uα + h2∂h2/∂uα√

h2
1 + h2

2

dk
(2π )d

.

Phonon fluctuations around the saddle point are described by
the fluctuation matrix

∂2S

∂uα∂uβ

= β
∂2Ĥvib

∂uα∂uβ
− β2

∫ cosh
(
β

√
h2

1 + h2
2

)
cosh(βμ) − 1[

cosh(βμ) − cosh
(
β

√
h2

1 + h2
2

)]2

× (h1∂h1/∂uα + h2∂h2/∂uα)(h1∂h1/∂uβ + h2∂h2/∂uβ)

h2
1 + h2

2

× dk
(2π )d

.

The effect of the phonon fluctuations increases with decreasing
eigenvalues of the fluctuation matrix. The negative sign in
front of the positive integral reflects the fact that the phonon
fluctuations increase with increasing temperature and can
eventually lead to an instability of the atomic system. Thus,
the fluctuation matrix is related to the Lindemann criterion
in Sec. V. This behavior is depicted by the temperature
dependence of the integrand in Fig. 1. Eigenvalues can even
become negative, which indicates a phase transition. The latter
could be either a structural phase transition of the lattice
[44,45] or a melting transition [24].
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Molecules: Creation and Applications, edited by R. V. Krems,
B. Friedrich, and W. C. Stwalley (Taylor and Francis, London,
2009).

[8] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem.
Rev. 112, 5012 (2012).

[9] D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, J. Phys.
France IV 116, 5 (2004).

[10] Y. Castin, J. Phys. France IV 116, 89 (2004).
[11] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706

(2001).
[12] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[13] J. L. Birman, R. G. Nazmitdinov, and V. I. Yukalov, Phys. Rep.

526, 1 (2013).
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