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Abstract. We calculate the transport properties of three-dimensional Weyl fermions in a disordered envi-
ronment. The resulting conductivity depends only on the Fermi energy and the scattering rate. First we
study the conductivity at the spectral node for a fixed scattering rate and obtain a continuous transition
from an insulator at weak disorder to a metal at stronger disorder. Within the self-consistent Born approxi-
mation the scattering rate depends on the Fermi energy. Then it is crucial that the limits of the conductivity
for a vanishing Fermi energy and a vanishing scattering rate do not commute. As a result, there is also
metallic behavior in the phase with vanishing scattering rate and only a quantum critical point remains as
an insulating phase. The latter turns out to be a critical fixed point in terms of a renormalization-group
flow.

1 Introduction

Since the discovery of the fascinatingly robust transport
properties of graphene [1–4], there has been an increas-
ing interest in other two-dimensional systems with similar
spectral properties, such as the surface of topological in-
sulators [5–9]. In all these systems the transport is dom-
inated by a band structure, in which two bands touch
each other at nodes. If the Fermi energy is exactly at or
close to these nodes, the point-like Fermi surface and in-
terband scattering lead to particular transport properties,
such as a robust minimal conductivity. Based on these
results, an extension of the nodal spectral structure to
three-dimensional (3D) systems is of interest [10–30]. In
3D the Fermi surface is a sphere with radius |EF | rather
than the circular Fermi surface in 2D, which is either oc-
cupied by electrons (EF > 0) or by holes (EF < 0). For
EF = 0 the conductivity vanishes in the absence of im-
purity scattering in contrast to the minimal conductivity
of the 2D system. On the other hand, sufficiently strong
impurity scattering leads to a conductivity at the node
EF = 0. Thus, an important difference between 2D and
3D Weyl fermions is that there exists a metal-insulator
transition in the latter, which is driven by increasing dis-
order [27,29–33]. This transition is similar to the metal-
insulator transition caused by decreasing random gap fluc-
tuations in a system of 2D Dirac fermions [34–36]. On the
other hand, it is quite different from an Anderson transi-
tion from a metallic state at weak scattering to an insulat-
ing state at strong scattering, which is caused by Anderson
localization at strong scattering [37,38].
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There is agreement between the various approaches,
based on self-consistent, perturbative and numerical meth-
ods, on the existence of a transition from a 3D Weyl
semimetal at weak scattering to a diffusive metallic behav-
ior at stronger random scattering [10–33]. This transition
can be characterized by a vanishing density of states at
the Weyl node (i.e., the scattering rate or the imaginary
part of the self-energy) and a nonzero density of states in
the diffusive phase. However, the transport properties for
the weak scattering regime are still under discussion. In
particular, a recent study indicates that there is a metal-
metal transition rather than a insulator-metal transition
for 3D Weyl fermions with a critical point [30]. We will
address this problem in the subsequent calculation, using
a weak scattering approach (WSA).

Calculations of quantum transport consist usually of
two steps: determining the scattering time (or scattering
rate) within a self-consistent solution of the Dyson equa-
tion, also known as the self-consistent Born approxima-
tion (SCBA), and determining the conductivity by a self-
consistent solution of the Bethe-Salpeter equation (BSE).
This approach, in particular the solution of the BSE, is
rather complex due to the existence of many modes. Not
all of them are relevant for the transport properties be-
cause some decay quickly. From this point of view it is
easier to project at the beginning only onto those modes
which do not decay quickly but control the transport prop-
erties on large scales. For a system with spectral nodes in
a disordered environment these modes are a result of a
spontaneously broken chiral symmetry [39–42]. We will
employ this idea here to 3D Weyl fermions in order to cal-
culate the conductivity. For this purpose it is important
to identify the underlying symmetries of the two-particle
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Green’s function. Then spontaneous symmetry breaking is
characterized by its non-vanishing order parameter which
is the scattering rate. There is a metallic phase with long
range correlations (i.e. diffusion), whereas in the insulat-
ing phase the symmetry remains unbroken.

The paper is organized as follows: in Section 2 we de-
fine the model and discuss the symmetry properties of the
two-particle Green’s function. Then the DC conductivity
is calculated within a weak scattering approach (Sect. 3),
using an expansion in powers of the scattering rate η. This
provides us a formula for the DC conductivity, which is
discussed in Section 4 at the node (Sect. 4.1) and away
from the node (Sect. 4.2). Our discussion includes a com-
parison with the results of the Boltzmann approach and
with results from an approach based on the SCBA and
BSE of references [26,30].

2 Model

The three-dimensional Weyl Hamiltonian for electrons
with momentum p is expanded in terms of Pauli matrices
τj (j = 0, 1, 2, 3) as

H = vF τ · p − Uτ0 with τ = (τ1, τ2, τ3) (1)

with Fermi velocity vF . U is a disorder term, represented
by a random potential with mean 〈U〉 = EF (Fermi en-
ergy) and variance g. The average Hamiltonian 〈H〉 gener-
ates a spherical Fermi surface with radius |EF |, and with
electrons (holes) for EF > 0 (EF < 0). Physical quantities
are expressed in such units that vF � = 1.

The electronic conductivity, obtained as the response
to a weak external field with frequency ω ∼ 0 [4,43,44]

σ(ω) = − e2

2h
ω2

∑

r

r2
kAr0(ω), (2)

is given by the correlation function of the Green’s func-
tions (H ± z)−1

Arr′(ω) = lim
ε→0

〈Tr2[(H + z)−1
rr′(H − z)−1

r′r]〉 (3)

with
z = ω/2 + iε,

where 〈. . .〉 represents disorder average and Tr2 is the
trace with respect to the Pauli matrix structure. This ex-
pression, often called the two-particle Green’s function,
has two different energies ±z for the same Hamiltonian H
to create two independent Green’s functions (H ± z)−1.
Now we represent this two-particle Green’s function by
two different Hamiltonians and one energy: we define the
pair of Hamiltonians

H± = p1τ1 + p2τ2 ± (p3τ3 − Uτ0), (4)

where H+ = H . The matrix transposition T relates H+

and H− through the identity

τ1H
T
±τ1 = −H∓, (5)

since pT
j = −pj. This allows us to write for the correlation

function (3)

Arr′(ω) = − lim
ε→0

〈
Tr2[(H+ + z)−1

rr′τ1(HT
− + z)−1

r′rτ1]
〉
.

(6)
Instead of two different energies ±z and the same
Hamiltonian H , the two-particle Green’s function has now
the same energy z but different Hamiltonians, namely H+

and HT− . The relation (5) and the representation (6) re-
veals an internal structure of the model which leads to the
Hamiltonian

Ĥ =

⎛

⎜⎝

H+ 0 0 0
0 H− 0 0
0 0 HT

− 0
0 0 0 HT

+

⎞

⎟⎠. (7)

The Green’s functions (H++z)−1 and (HT
−+z)−1 in equa-

tion (6) are just the first and the third diagonal element
of the Green’s function (Ĥ + z)−1. This indicates that
the transport properties of the original Hamiltonian H ,
which requires two different energies ±z, are related to
the transport properties of the extended Hamiltonian Ĥ
at the same energy z.

The extended Hamiltonian Ĥ , its symmetries and
its relation to diffusive transport were studied previ-
ously [39–42,45]. In particular, it was found, together with
property (5), that the matrix

Ŝ =

⎛

⎜⎝

0 0 ϕ1τ1 0
0 0 0 ϕ2τ1

ϕ′
1τ1 0 0 0
0 ϕ′

2τ1 0 0

⎞

⎟⎠ (8)

with scalar variables ϕj , ϕ
′
j anticommutes with Ĥ :

ŜĤ = −ĤŜ. This relation implies a non-Abelian chiral
symmetry [39–41]:

eŜĤeŜ = Ĥ (9)

which is a symmetry relation for the extended
Hamiltonian Ĥ in equation (7). The term proportional
to z in the Green’s function Ĝ(z) breaks this symmetry
due to eŜ �= 1, and therefore, limz→0[Ĝ(z)− Ĝ(−z)] plays
the role of an order parameter for spontaneous symmetry
breaking:

Ĝ(z)−Ĝ(−z) = −2zĜ(z)Ĝ(−z) = −2z(Ĥ2−z2)−1. (10)

Since the diagonal elements of this expression are pro-
portional to the density of states at the node when we
take the limit z → 0, a non-vanishing density of states
indicates spontaneous symmetry breaking. The role of a
non-vanishing density of states at the node as an order pa-
rameter for a diffusive metallic phase was also discussed
in references [24,29,31].

Following the recipe of references [40,41] the correla-
tion function (6) can be expressed as a diffusion propaga-
tor. This is used in the next section, where we focus on
the long-range behavior of Arr′(ω) to calculate the con-
ductivity σ(ω).
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3 Weak-scattering approach

The scattering rate η is defined by

η =
i

2
Tr[〈(H + iε)−1〉 − 〈(H − iε)−1〉]
Tr[〈(H + iε)−1〉〈(H − iε)−1〉] . (11)

This definition is motivated by the assumption of a com-
plex self-energy for the average one-particle Green’s func-
tion 〈(H + iε)−1〉, whose imaginary part is the scattering
rate (cf. Appendix A). The corresponding scattering time
τ is τ = �/η. η can either be calculated, for instance,
within the SCBA [4,31,32] or it can be taken from ex-
perimental measurements. As discussed in the previous
section, a non-vanishing scattering rate indicates sponta-
neous symmetry breaking. Since the broken symmetry is
continuous, there exists a massless mode. The latter is
reflected by the relation
∑

r′
Arr′(ω) = Tr2〈[(H + ω/2)−1(H − ω/2)−1]rr〉

= − 1
ω

Tr2[〈(H + ω/2)−1
rr 〉 − 〈(H − ω/2)−1

rr 〉]
(12)

which diverges for a vanishing symmetry breaking term
ω ∼ 0 due to long-range correlations. For the correlation
function (6) a similar but more elaborate analysis yields
a diffusion propagator [34,35], whose Fourier components
read

Ãq(ω) ≈ −η

g

1
iω/2 + Dq2

. (13)

This agrees with (12) for q = 0 when we use the self-
consistent approximation 〈(H + iε + ω/2)−1

rr 〉 ≈ −Σ/g of
Appendix A. This is not an accident but a consequence
of the fact that the self-consistent approximation repre-
sents the saddle point of the corresponding functional in-
tegral [40,41]. The prefactor of the q2 term is the diffusion
coefficient

D =
gη

2

∫

k

Tr2

(
∂(〈H〉 + iη)−1

∂kl

∂(〈H〉 − iη)−1

∂kl

)
. (14)

Thus, the DC limit ω → 0 of the conductivity formula
in (2) and the correlation function (13) reproduce the
Einstein relation

σ =
e2

h

2η

g
D, (15)

which gives with the right-hand side of equation (14) for
3D Weyl fermions the integral

σ(η, EF ) = 2
e2

h
η2

×
∫ λ

0

(η2 + k2)2 + E2
F (2η2 + 2k2/3 + E2

F )
[(η2 − E2

F + k2)2 + 4η2E2
F ]2

× k2dk

2π2
(16)

with momentum cut-off λ. Thus, the conductivity depends
on the disorder strength g only through the scattering
rate η.

A diffusion propagator can also be calculated from
the BSE, as demonstrated recently for 3D Weyl
fermions [26,30]. However, the derivation of the propaga-
tor (13) from the symmetry (9) has the advantage that it
is simpler and that we obtain the diffusion coefficient D
in equation (14) directly as a quadratic form of Green’s
functions.

4 Results and discussion

In the following we present and discuss the results which
are obtained from the conductivity σ(η, EF ) in equa-
tion (16). This expression is subtle in the limit of a van-
ishing scattering rate η, since the latter appears as η2 in
front of an integral that diverges for η → 0. This makes
the conductivity very sensitive to the order of the limits
EF → 0 and η → 0 in the case when the scattering rate
vanishes at the node. Since the conductivity depends on η
and EF separately, we consider first properties exactly at
the node EF = 0, where results are simple, and then the
more complex results when η depends on EF . For the sec-
ond part we employ the SCBA to determine the function
η(EF ) and calculate the corresponding conductivity.

4.1 Transport at the spectral node

At the node (EF = 0) the DC conductivity in equa-
tion (16) is reduced to the expression

σ = 2
e2

h
η2

∫ λ

0

k2

(η2 + k2)2
dk

2π2

=
e2η

2π2h

[
arctan(1/ζ) − ζ

1 + ζ2

]
(ζ = η/λ), (17)

which becomes for λ � η

σ ∼ e2

4πh
η. (18)

In contrast to the 2D case, where σ = e2/πh, the 3D
case gives a linearly increasing behavior with respect to
the scattering rate. This result was derived directly (i.e.,
without using Eq. (16)) by Fradkin some time ago [10].
With a disorder dependent scattering rate he also obtained
a transition for a critical disorder strength gc, where the
conductivity vanishes for g ≤ gc and increases linearly for
g > gc.

The linear behavior indicates an unconventional trans-
port because in the classical Boltzmann approach for one-
band metals the conductivity decreases with increasing
scattering rate: σB = ne2/m�η (n: electron density, m:
electron mass) [46]. This remains true when we include the
band structure of the Weyl fermions in the Boltzmann ap-
proach: σB is nonzero at the node for any scattering rate
and even diverges with vanishing disorder as [30]

σB =
1
2π

e2v2
F �

g
, (19)
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Fig. 1. The conductivity of 3D Weyl fermions (16) as a func-
tion of the scattering rate η at Fermi energy EF = 0. It de-
scribes the crossover from the quantum regime for η < 0.6 to
the classical Boltzmann regime for η > 0.6.

where g is related to the density of impurities ni and the
impurity potential u0 by the equation g = niu

2
0 [30]. The

disagreement between the expressions in (17) and (19) can
be explained by interband scattering, caused by particle-
hole creation processes, which has been ignored in the
Boltzmann approach. On the other hand, the increasing
behavior of (17) for small η turns into a decreasing behav-
ior for larger η, as one can see in Figure 1, indicating a
crossover from quantum transport for weak scattering to
conventional Boltzmann transport for stronger scattering.

In this context it is also interesting to study the finite-
size effects of the conductivity by considering a cubic sys-
tem of finite length L. The β-function β = ∂ ln σ/∂ ln L
describes the finite-size scaling of the conductivity. It can
be calculated from equation (16) by replacing the lower in-
tegration boundary with 1/L, which assumes non-periodic
boundary conditions. Then σ(η, L) in equation (17) is a
monotonically increasing function for increasing size L
with

σ(η, L) ∼ σ∗ − e2

h

η

(Lη)2
(20)

for Lη � 1, where σ∗ is the expression (18). The corre-
sponding β-function reads

β ∼ 2[1 − σ(η, L)/σ∗], (21)

which vanishes at the η-dependent fixed point σ∗. This
differs from the 2D case only by different fixed points σ∗,
where in 2D it is a universal constant σ∗ = e2/πh [47] and
in 3D it is the η-dependent expression (18).

It should be noticed that σ∗ is not a critical point
because it is an attractive fixed point. But since for 3D
Weyl fermions σ∗ depends on the scattering rate η, we
have a line of fixed points for η ≥ 0. Thus, the endpoint
σ∗ = 0 for η = 0 has the feature of a critical point because
any change of η drives us away from this endpoint, as
illustrated in Figure 2. It indicates a transition from an
insulator (η = 0) to a metal (η > 0). The transition is

β = ∂ ln σ
∂ ln L

σ

Fig. 2. The β-function for different scattering rates, where
the arrows indicate the flow toward the fixed points. The β-
function increases with η and creates a line of fixed points
σ∗ ∼ ηe2/4hπ. This plot is based on an approximation near
the fixed points according to equation (21).

driven by increasing disorder, since the scattering rate is a
monotonic function of the disorder strength g. η is also the
order parameter for spontaneous symmetry breaking (10),
which can be calculated from equation (11) within SCBA.
From the solution of the self-consistent equation (A.6) we
get for γ = g/2π2 and η ∼ 0 the linear behavior

η ∼ 2λ

π
(λγ − 1)Θ(λγ − 1) (γ = g/2π2) (22)

with the step function Θ. For γ ≤ γc = 1/λ we have no
spontaneous symmetry breaking. Thus, η as well as the
DC conductivity vanish strictly. When we approach γc

from above there is linear behavior for the scattering rate,
which agrees with the numerical calculation of Kobayashi
et al. [29]. At the critical point itself we obtain from the
Einstein relation (15) a finite diffusion coefficient

D(gc) ≈ gce
2

4π
.

The results of the DC conductivity from previous self-
consistent studies, based on a combination of SCBA and a
self-consistent solution of the BSE [26,30], are summarized
and compared with our results of the WSA in Table 1. For
sufficiently large scattering rates the Boltzmann approach,
the solution of the BSE and the result of the WSA agree
reasonably well, reflecting a rather conventional transport.
This indicates that quantum effects, such as particle-hole
pair creation, are dominated by impurity scattering. On
the other hand, for smaller values of the scattering rate
the conductivity exhibits a larger variety of results: the
Boltzmann conductivity has a simple 1/g behavior, which
is also found with the solution of the BSE in reference [26],
with a different constant prefactor though. In contrast,
the approximative analytic solution of the BSE in refer-
ence [30] has a characteristic dip down to zero at a critical
gc and increases for g > gc and for g < gc:

σ = σ1|1/g − 1/gc|, σ1 = σ̄

{
1 for g < gc

3 for g > gc.
(23)

When we compare this result with the WSA conductiv-
ity in equation (17) it should be noticed that the latter
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Table 1. The scattering rate η and the conductivity at the node calculated with three different methods. The translation from
reference [30] is g = niu

2
0 and the SCBA coefficient σ1 is given in equation (23).

At the node Boltzmann approach [30] SCBA & BSE [26] SCBA & BSE [30] SCBA & WSA
Scattering rate η 0 0 2(g/gc − 1)/π 2(g/gc − 1)/π
Conductivity σ e2v2

F �/2πg 4e2v2
F /gh σ1e

2/4πh Eq. (17), Fig. 1
Away from the node g < gc

Scattering rate η ∝ E2
F �gE2

F /8πv3
F EF gc/(gc − g) Eq. (24)

Conductivity σ σB(0)(1 + 6E2
F /E2

0) 4e2v2
F /gh ∝EF gc/(gc − g) Fig. 4
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Fig. 3. The conductivity (16) as a function of the Fermi energy
EF at fixed scattering rates η = 0.02 (full curve), η = 0.05
(dashed curve) and η = 0.1 (dotted curve).

was obtained by sending EF → 0 first and then η → 0. As
mentioned at the beginning of this section the value of the
conductivity depends on the way we take these two limits.
Although nothing has been said in reference [30] about the
order of the two limits to get (23), we will study in Sec-
tion 4.2 the case when EF and η go to zero simultaneously
in equation (16). Then we obtain a result similar to (23).

4.2 Transport away from the spectral node

The conductivity as a function of the Fermi energy is plot-
ted at fixed scattering rates in Figure 3. As we increase the
scattering rate the effect of the node is washed out and the
conductivity becomes flatter. This is similar to the behav-
ior in Figure 1. In other words, impurity scattering sup-
ports transport near the node whereas it suppresses it fur-
ther away. Thus, we can distinguish a regime close to the
node, where the conductivity increases with the scattering
rate, and a more conventional regime further away from
the node, where the conductivity decreases with the scat-
tering rate, as also described by the Boltzmann approach.

So far we have considered the case that η and EF are
independent. However, in general the scattering rate de-
pends on γ and EF . For instance, the self-consistent calcu-
lation in Appendix A, based on the SCBA or saddle-point
approximation, creates a scattering rate in equation (A.4)
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Fig. 4. The conductivity (16) as a function of the disorder
parameter Δ = γλ − 1 with a self-consistent scattering rate
η(Δ) for different values the Fermi energy EF . The curves tend
to reach the critical point Δ = 0 by a sharp cusp as the Fermi
energy approaches the node EF = 0. Further away from the
critical point the conductivity is much less sensitive to a change
of EF .

that depends on the Fermi energy:

η = Re

[
(γλ − 1)

γπ
+

√
(γλ − 1)2

γ2π2
− 2iEF

γπ

]
. (24)

The behavior of the conductivity in (16) is affected by this
result, since the limits η → 0 and EF → 0 are not inde-
pendent anymore. Equation (24) has two typical regimes,
namely η ∝ EF near the critical point γλ = 1, which
leads to σ ∝ EF , and η ∝ E2

F for γλ � 1, which leads
to a non-vanishing conductivity for EF → 0. This implies
that the conductivity vanishes only for γλ ∼ 1, whereas
it nonzero above and below γλ ∼ 1. Thus, there is no in-
sulating phase but only an insulating point for γλ = 1, in
agreement with the analytic result of reference [30]. The
behavior of the conductivity as a function of γλ−1 is plot-
ted for different values of the Fermi energy in Figure 4. It
should be noticed, though, that the transport behavior is
determined by the EF dependence of the scattering rate
of the special form in equation (24). Using another form
of the scattering rate as a function of the Fermi energy
can lead to a substantially different behavior of the con-
ductivity near the node. An example was observed in ref-
erence [30] within a numerical solution of the SBCA and
the BSE, where the scattering rate is exponentially small
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for γ < γc. In this case a vanishing conductivity was found
at the node also for γ < γc.

5 Conclusions

We have studied the DC conductivity of 3D Weyl fermions
in the presence of random scattering. The relevant param-
eters in the conductivity (16) are the scattering rate η,
which is an order parameter for spontaneous chiral sym-
metry breaking, and the Fermi energy EF . Exactly at the
node EF = 0 there is a metal-insulator transition with a
diffusive metal for η > 0 and an insulator for η = 0. The
conductivity is linearly increasing with η up to a maxi-
mal value and decreases for stronger scattering rates, as
illustrated in Figure 1. This non-monotonic behavior is in
contrast to the constant conductivity in the correspond-
ing 2D system. It reflects the fact that the increased phase
space of the 3D Weyl fermions suppresses the conductivity
for weak scattering but also that stronger scattering im-
plies a screening of the node such that the Boltzmann ap-
proach eventually becomes applicable. Further away from
the node the behavior depicted in Figure 3 agrees quali-
tatively with that of the 2D system [42], which was also
obtained in a quasiclassical approach [48]. The latter di-
verges as one approaches the node, which indicates that
the full quantum approach is necessary near the node.

The critical behavior at the node describes an uncon-
ventional phase transition for γ = γc which is driven by
quantum fluctuations: in contrast to a conventional tran-
sition the symmetry broken phase with η > 0 is charac-
terized by robust diffusion whereas the phase with unbro-
ken symmetry (η = 0) has a subtle behavior in terms of
the conductivity because it is very sensitive to the limit
EF → 0. Thus, it is possible that we either have an insu-
lating phase with vanishing conductivity when the scat-
tering rate vanishes slowly with EF or a metallic phase
when the scattering rate vanishes sufficiently fast with EF .
In the case of an SCBA calculation for η there is only
a quantum critical point in the transport properties and
metallic behavior above and below this critical point. It
cannot be ruled out, though, that a different calculation
of η leads to a different behavior. Thus, our discussion of
the delicate limits η, EF → 0 clarifies some of the contra-
dicting results in the literature about the presence of a
metal-insulator transition for 3D Weyl fermions [26,30].
Moreover, the fact that the conductivity depends only
on η and EF allows us to determine η independently with
other approximations than the SCBA, and to insert the
result into the conductivity (16). A possible step in this
direction is a correction to the SCBA [32] or perturbative
renormalization-group approach in d − 2-expansion. The
latter gives η(E) ∝ E1.3 [29,31]. This result would lead to
a vanishing conductivity below the critical point.

In the regime 0 < γ < γc disorder may also affect
physical properties of Weyl fermions in another way. The
reason is the existence of non-uniform solutions of the
SCBA with an exponentially small contributions to η, sim-
ilar to Lifshitz tails in the density of states of disordered
systems [49]. In the case of 2D Weyl fermions this has

been discussed in reference [50]. The problem, however, is
always that the self-consistent equation is nonlinear and
has many non-uniform solutions. Under certain plausible
assumptions for the solutions η, the existence of exponen-
tially small contributions for γ < γc has been discussed
for 3D Weyl fermions in reference [24]. The correspond-
ing states might be localized then with no contribution to
the conductivity at T = 0. However, for T > 0 thermally
activated electrons may hop between patches of localized
states and provide a hopping conductivity [51]. Whether
or not resonant tunneling without spontaneous symmetry
breaking can occur in this case is an open question.

I am grateful to David Schmeltzer for an extended discussion
of Weyl fermions.

Appendix A: Self-consistent approximation

The first step is to study spontaneous symmetry break-
ing of the symmetry (9) by a non-zero scattering rate
within SCBA, following a similar approach as given in
reference [30]. The average one-particle Green’s function
then reads

〈(H + z)−1〉 ≈ (〈H〉 + z + Σ)−1, (A.1)

and the self-energy is given by

Σ = −g(〈H〉 + Σ + iε)−1. (A.2)

The imaginary part of the self-energy Σ is a scattering
rate η. Then the self-energy reads in our case with the
momentum cut-off λ

Σ =γα

[
λ−α

2
log

(
α+λ

α − λ

)]
(γ =g/2π2, α=EF +Σ).

(A.3)
For small EF near the node we expand equation (A.3) in
powers of α up to second order to obtain

Σ ∼ −EF +
i(γλ − 1)

γπ
+ i

√
(γλ − 1)2

γ2π2
− 2iEF

γπ
. (A.4)

The real part of Σ provides a shift of the Fermi energy:

Σ ∼ −EF + i

√

−2iEF

γπ
= −EF + eiπ/4

√
2EF

γπ
, (A.5)

where the sign is chosen such that we have a positive scat-
tering rate.

At the node EF = 0 the self-consistent equation (A.3)
reduces to η = ηI with

I = γ [λ − η arctan(λ/η)] .

There are two solutions, namely η = 0 and η �= 0 with

λγ =
1

1 − ζ arctan(1/ζ)
, ζ = η/λ. (A.6)
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A nonzero η reflects spontaneous symmetry breaking with
respect to equation (9). Such a solution exists for equa-
tion (A.6) only at sufficiently large γ. Moreover, η vanishes
continuously as we reduce γ. A nonzero η is proportional
to the density of states at the Fermi level. However, even
for η = 0 there can be a nonzero local density of states
due to localized energy levels, which are not counted in η
within the SCBA. For ζ ∼ 0 we obtain the linear behavior

ζ ∼ 2
π

(γλ − 1).
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