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Path-following primal-dual interior-point methods for
shape optimization of stationary flow problems

H. Antil1, R.H.W. Hoppe1,2, and Chr. Linsenmann1,2

1Department of Mathematics, University of Houston, U.S.A.
2Institute of Mathematics, University of Augsburg, Germany

Abstract - We consider shape optimization of Stokes flow in channels where the objective is to
design the lateral walls of the channel in such a way that a desired velocity profile is achieved. This
amounts to the solution of a PDE constrained optimization problem with the state equation given by
the Stokes system and the design variables being the control points of a Bézier curve representation
of the lateral walls subject to bilateral constraints. Using a finite element discretization of the
problem by Taylor-Hood elements, the shape optimization problem is solved numerically by a
path-following primal-dual interior-point method applied to the parameter dependent nonlinear
system representing the optimality conditions. The method is an all-at-once approach featuring an
adaptive choice of the continuation parameter, inexact Newton solves by means of right-transforming
iterations, and a monotonicity test for convergence monitoring. The performance of the adaptive
continuation process is illustrated by several numerical examples.

Keywords: PDE constrained optimization, shape optimization, Stokes flow, primal-dual interior-

point methods, central path, continuation methods

1. Introduction

Structural optimization problems with constraints given by the Stokes equations can be
written as follows

minimize J(u, p, α) (1.1a)

over (u, p, α) ∈ V ×Q×K ,

subject to: S(u, p, α) = g . (1.1b)

Here, J : V × Q × U → R denotes the objective functional which depends on the state
variables u and p (the velocity and the pressure) in the state space V × Q and the design
variables α in the design space U . The equation (1.1b) corresponds to the Stokes equations,
whereas K ⊂ U refers to the set of admissible design variables.
We note that simplified problems in structural optimization have already been addressed by
Bernoulli, Euler, Lagrange and Saint-Venant. However, it became its own discipline during
the second half of the last century when the rapidly growing performance of computing plat-
forms and the simultaneously achieved significant improvement of algorithmic tools enabled
the appropriate treatment of complex problems (cf. [1, 2, 3, 13, 14, 25, 24, 28, 33, 35, 36, 39]
and the references therein). The design criteria in structural optimization are determined
by a goal oriented operational behavior of the devices and systems under consideration and
typically occur as a nonlinear, often non convex, objective functionals which depend on the
state variables describing the operational mode and the design variables determining the
shape and the topology. The state variables have to satisfy differential equations or systems

1The first author acknowledges support by the Texas Learning and Computation Center TLC2. The

second and third authors acknowledge support by the NSF under Grant No. DMS-0411403 and Grant No.

DMS-0511611 as well as by the DFG within the Priority Program SPP 1253’PDE Constrained Optimization’.
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thereof representing the underlying physical laws. Technological aspects are taken into ac-
count by constraints on the state and/or design variables which may occur both as equality
and inequality constraints in the model.
The discretization of such structural optimization problems typically gives rise to equality
and inequality constrained nonlinear programming problems. If Newton’s method is applied
to the KKT conditions, each Newton step requires the solution of a linear algebraic system
representing the optimality conditions of a related quadratic programming (QP) problem.
Hence, Newton methods can be interpreted in the framework of sequential quadratic pro-
gramming (SQP) which is the most successful method for solving constrained nonlinear
optimization problems [4, 5, 6, 7, 8, 9, 21, 22, 34]. As far as the appropriate treatment of
the inequality constraints is concerned, a local optimum can be approximated from within
the feasible set, which is the idea behind interior-point methods. The so-called interior-point
revolution in continuous optimization started in the eighties of the last century with Kar-
markar’s polynomial-time linear programming algorithm. It was immediately found that
there is a close relationship to barrier functions which had been used long time before for
inequality constrained nonlinear programming problems. Nowadays, interior-point meth-
ods are well established tools for constrained nonlinear optimization problems (cf., e.g.,
[12, 15, 17, 18, 19, 20, 26, 27, 29, 30, 31, 32, 40, 41, 43, 44, 45]). In terms of the barrier para-
meter, we are faced with a parameter dependent nonlinear system whose solution is referred
to as the central path. For the parameter-dependent nonlinear system, continuation meth-
ods along the central path are the methods of choice. Such continuation methods have been
studied extensively in the literature. A good reference both for theoretical and algorithmic
aspects is the recent textbook [16]. The most widely used techniques are path-following
predictor-corrector strategies.

In this paper, we consider path-following primal-dual interior-point methods for the shape
optimization of stationary flow problems as described by the Stokes system. In particular,
we consider Stokes flow in channels where the objective is to design the lateral walls in
such a way that a desired velocity profile is obtained. The design variables are chosen as
the control points of a Bézier curve representation of the lateral walls. The discretization
of the problem is done by Taylor-Hood elements with respect to a shape regular family of
simplicial triangulations of the computational domain. The resulting optimality conditions
for the discretized problem are solved by an adaptive continuation method in the spirit of
[16] applied to the parameter dependent nonlinear system representing the central path. For
the computation of the derivatives occurring in the KKT conditions and the Hessian, we
use automatic differentiation [23].

The paper is organized as follows: In section 2, we formulate the shape optimization
problem along with its finite element discretization and set up the optimality conditions.
Section 3 is devoted to the primal-dual approach featuring parameterized minimization sub-
problems in terms of logarithmic barrier functions that take care of the bilateral constraints
on the design variables. The optimality conditions lead to a parameter dependent nonlinear
system whose solution is known as the central path. This system is solved by a path-following
predictor-corrector type continuation method with an adaptive choice of the continuation
parameter (barrier parameter) and a monotonicity test for convergence monitoring. At each
continuation step, the Newton increments are computed by means of an iterative scheme
based on right-transforming iterations whose construction essentially takes advantage of the
specific structure of the associated Hessian. The final section 4 contains a detailed docu-
mentation of numerical examples illustrating the performance of the adaptive continuation
method.
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2. The shape optimization problem

2.1 Setting of the problem

We consider Stokes flow in a channel occupying bounded domain Ω(α) ⊂ R
2 with boundary

Γ(α) = Γin(α)∪Γlat(α)∪Γout(α), where Γlat(α) := Γbot(α)∪Γtop(α), depending on a design
variable α = (α1, · · · , αm)T ∈ R

m (cf. Fig. 1).

-

-Ω(α)
Γin(α)

Γtop(α)

Γbot(α)

Γout(α)

Fig. 1: Stokes flow in a channel with a backward facing step

Denoting the velocity and the pressure by u := (u1, u2)
T and p, respectively, and given a

velocity and pressure profiles ud, pd, the objective is to design the geometry of the domain in
such a way that ud, pd are attained as closely as possible. This amounts to the minimization
problem

inf
u,p,α

J(u, p, α) , J(u, p, α) :=
λ1

2

∫

Ω(α)

|u − ud|2 dx +
λ2

2

∫

Ω(α)

|p− pd|2 dx (2.1)

subject to the PDE constraint (Stokes flow)

− ν∆u + ∇p = f in Ω(α) , (2.2a)

∇ · u = 0 in Ω(α) , (2.2b)

n · u =







uin on Γin(α)
uout on Γout(α)
0 on Γlat(α)

, (2.2c)

t · u = 0 on Γ(α) , (2.2d)

and subject to the bilateral constraints on the design variable α

α ∈ K := {αi | αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m}, (2.3)

where λi ≥ 0, 1 ≤ i ≤ 2, λ1 + λ2 > 0, are weighting factors, ν is the viscosity, f refers
to a forcing term, n, t denote the unit outward normal and unit tangential vector on
Γ(α), uin, uout stand for a inflow/outflow profiles satisfying the compatibility condition
∫

Γin(α)
uinds =

∫

Γout(α)
uoutds, and αmin, αmax ∈ R

m. Note that uout := n · u on Γout(α)

is then determined by means of (2.2b). The state equations (2.2a)- (2.2d) have to be un-
derstood in a weak sense. We adopt standard notation from Lebesgue and Sobolev space
theory. In particular, we set

V := {v ∈ H1(Ω(α))2 | v satisfies (2.2c), (2.2d)} , Q := L2
0(Ω(α)) .
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We denote by V∗ and Q∗ the duals of V and Q, and we introduce A(α) : V → V∗ and
B(α) : V → Q∗ as the operators associated with the bilinear forms

a(v,w;α)) := ν

∫

Ω(α)

∇v · ∇w dx , v ∈ V,w ∈ H1
0 (Ω(α))2 , (2.4a)

b(v, q;α) := −
∫

Ω(α)

∇ · vq dx , v ∈ V , q ∈ L2(Ω(α)) . (2.4b)

We further introduce the state space Y := V × Q and the operator S : Y × K → Y∗

according to

S(y, α) :=

(
A(α) B∗(α)
B(α) 0

)(
u
p

)

, y = (u, p)T ∈ Y , α ∈ K . (2.5)

We note that S(·, α) : Y → Y∗, α ∈ K, is the Stokes operator. Then, the state equations
(2.2a)-(2.2d) can be written in operator form according to

S(y, α) = g . (2.6)

where g := (f , 0)T . The design variables αi, 1 ≤ i ≤ m, are chosen as the Bézier control
points in a Bézier representation of Γ(α) as a globally continuous composition of polynomial
curve segments of some polynomial degree. We choose α̂ ∈ K as a reference design and
refer to Ω̂ := Ω(α̂) as the associated reference domain. Then, the actual domain Ω(α) can
be obtained from the reference domain Ω̂ by means of an isomorphism

Ω(α) = Φ(Ω̂;α) , (2.7)

Φ(x̂;α) = (Φ1(x̂;α),Φ2(x̂;α))T , x̂ = (x̂1, x̂2)
T

with continuous components Φi, 1 ≤ i ≤ 2. We assume:

(A): The functions Φi, 1 ≤ i ≤ 2, are subdifferentiable in x̂ ∈ Ω̂ with uniformly bounded
subdifferentials ∂Φi and twice continuously differentiable in αi, 1 ≤ i ≤ m.

The advantage of using the reference domain Ω̂ is that finite element approximations of
(2.1) can be performed with respect to that fixed domain without being forced to remesh.
We denote by (Th(Ω̂))N a shape regular family of simplicial triangulations of Ω̂. By means
of (2.7), these triangulations induce an associated family (Th(Ω(α)))N of simplicial triangu-
lations of the actual physical domains Ω(α).
We use Taylor-Hood P2/P1 elements (cf., e.g., [11]) for the discretization of the velocity
u ∈ V and the pressure p ∈ Q denoting the associated trial spaces by Vh and Qh with
dim Vh = n1 and dim Qh = n2, respectively. This gives rise to an objective functional
Jh : R

n × R
m, n := n1 + n2, by means of

Jh(uh, ph, α) :=
λ1

2
(uh − ud

h)T I1,h(α)(uh − ud
h) +

λ2

2
pT

h I2,h(α)ph , (2.8)

where Iν,h(α), 1 ≤ ν ≤ 2, are the associated mass matrices and ud
h ∈ R

n1 , ph ∈ R
n2 result

from the L2-projections of ud, pd onto Vh and Qh, respectively. The discretized shape
optimization problem can be stated as

inf
uh,ph,α

Jh(uh, ph, α) (2.9)

subject to the algebraic saddle point problem

Sh(yh, α) :=

(
Ah(α) BT

h (α)
Bh(α) 0

) (
uh

ph

)

=

(
g1,h

g2,h

)

, (2.10)
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representing the Taylor-Hood approximation of the Stokes system (2.5).

Due to the dependence of the domain on the design parameters αi, 1 ≤ i ≤ m, the
objective functional Jh is nonconvex. Therefore, there may exist a multitude of local minima.
Throughout the following, we assume that (y∗

h, α
∗) ∈ R

n × K is a strict local solution of
(2.9), i.e., there exists a neighborhood U(y∗

h, α
∗) ⊂ R

n ×K such that

Jh(y∗

h, α
∗) < J(yh, α) , (yh, α) ∈ U(y∗

h, α
∗) \ {(y∗

h, α
∗)} . (2.11)

For notational convenience, in the sequel we will drop the discretization index h.

2.2 Optimality conditions

We introduce Lagrange multipliers λ := (λu, λp)
T ∈ R

n1 × R
n2 and σ := (σ1, σ2)

T , σk ∈
lRm

+ , 1 ≤ k ≤ 2. The saddle point formulation of the minimization problem (2.9) is

inf
y,α

sup
λ,σ

L(y, α,λ, σ) . (2.12)

Here, the Lagrangian L is given by

L(y, α,λ, σ) := J(u, p, α) + λ
T (S(y, α) − g) + σT

1 (αmin − α) + σT
2 (α− αmax) . (2.13)

Denoting by x := (y, α)T the primal variables, the first order necessary optimality conditions
are given by

Ly(x,λ,σ) = 0 , (2.14a)

Lα(x,λ,σ) = 0 , (2.14b)

Lλ(x,λ,σ) = 0 , (2.14c)

Lσ1
(x,λ,σ) = αmin − α ≤ 0 , (2.14d)

(σ1)
T (αmin − α) = 0 ,

Lσ2
(x,λ,σ) = α− αmax ≤ 0 , (2.14e)

(σ2)
T (α− αmax) = 0 .

In particular, we find

Lu(· · · ) = λ1I1(α)(u − ud) + A(α)λu + BT (α)λp = 0 , (2.15a)

Lp(· · · ) = λ2I2(α)p + B(α)λu = 0 , (2.15b)

Lα(· · · ) = ∇αJ(u, p, α) + ∇α〈A(α)u +BT (α)p− f ,λu〉 + (2.15c)

+ ∇α〈B(α)u, λp〉 − σ1 + σ2 = 0 ,

Lλu

(· · · ) = A(α)u + BT (α)p − f = 0 , (2.15d)

Lλp
(· · · ) = B(α)u = 0 . (2.15e)

Theorem 1. Let (y∗, α∗) ∈ R
n ×K be a strict local solution of (2.9) and assume that the

constraints are qualified in the sense of the linear independence constraint qualification (cf.,
e.g, [10]). Then, there exist multipliers λ

∗ = (λ∗

u, λ
∗

p) ∈ R
n and σ∗ = (σ∗

1 , σ
∗

2), σ∗

k ∈ R
m
+ , 1 ≤

k ≤ 2, such that (y∗, α∗,λ∗, σ∗) satisfies the KKT system (2.14a)-(2.14e).

Proof. The proof follows from standard results of optimization theory (cf., e.g., [10]).

For the second order derivatives of the Lagrangian L with respect to the primal variables
y we obtain

Luu(· · · ) = λ1I1(α) , Lup(· · · ) = 0 , (2.16a)

Lpu(· · · ) = 0 , Lpp(· · · ) = λ2I2(α) . (2.16b)



6

Consequently, the Hessian Lxx has the form

Lxx(· · · ) =

(
I(α) Lyα

Lαy Lαα

)

, (2.17)

where

I(α) =

(
λ1I1(α) 0

0 λ2I2(α)

)

, (2.18a)

Lαy = (Lαu Lαp) , Lyα = (Luα Lpα)T . (2.18b)

Note that

Luα : lRm → R
n1 , Lαu : R

n1 → lRm , (2.19a)

Lpα : lRm → R
n2 , Lαp : R

n2 → lRm , (2.19b)

Luα = L∗

αu , Lpα = L∗

αp , (2.19c)

so that Lxx(· · · ) is symmetric. The second order sufficient optimality requires positive
definiteness of Lxx(· · · ) at optimality:

Theorem 2. Let (x∗,λ∗, σ∗) ∈ R
n ×K × R

n × (Rm
+ )2 satisfy the KKT conditions (2.14a)-

(2.14e) and suppose that Lxx(x∗,λ∗, σ∗) is positive definite, i.e.,

wTLxx(x∗,λ∗, σ∗)w > 0 , w ∈ R
n ×K \ {0} . (2.20)

Then, (x∗,λ∗, σ∗) is a strict local solution of (2.1).

Proof. We refer to [10].

3. The primal-dual interior-point approach

3.1 The central path

We couple the inequality constraints (2.3) by logarithmic barrier functions with a barrier
parameter β = 1/µ > 0, µ → ∞, resulting in the following parameterized family of mini-
mization subproblems

inf
y,α

B(µ)(y, α) (3.1)

subject to (2.6), where

B(µ)(y, α) := J(y, α) − 1

µ

m∑

i=1

[ln(αi − αmin
i ) + ln(αmax

i − αi)] . (3.2)

The dual aspect is to couple the PDE constraint (2.6) by a Lagrange multiplier λ =
(λu, λp)

T ∈ V ×Q which gives rise to the saddle point problem

inf
y,α

sup
λ

L(µ)(y,λ, α) , (3.3)

where the Lagrangian L(µ) is given by

L(µ)(y,λ, α) = B(µ)(y, α) + 〈S(y, α) − g,λ〉 . (3.4)

The central path µ 7−→ x(µ) := (y(µ),λ(µ), α(µ))T is given as the solution of the nonlinear
system

F (x(µ), µ) =






L
(µ)
y (y,λ, α)

L
(µ)

λ
(y,λ, α)

L
(µ)
α (y,λ, α)




 = 0 , (3.5)
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which represents the first order necessary optimality conditions for (3.1).
Setting yd := (ud, pd), the derivatives of the Lagrangian are given by

L(µ)
y (y,λ, α) = I(α)(y − yd) + S(λ, α) , (3.6a)

L
(µ)

λ
(y,λ, α) = S(y, α) − g , (3.6b)

L(µ)
αi

(y,λ, α) = ∂αi
J(u, p)+ < ∂αi

S(y, α),λ > − 1

µ (αi − αmin
i )

+
1

µ (αmax
i − αi)

. (3.6c)

Theorem 3. Let (y∗, α∗,λ∗, σ∗) ∈ Y × K × R
n × (Rm

+ )2 satisfy the first order necessary
optimality conditions (2.14a)-(2.14e) with strict complementarity in (2.14d),(2.14e) and the
second order sufficient optimality condition (2.20). Moreover, assume that the linear in-
dependence constraint qualification holds true. Then, there exists µmin > 0 such that for
all µ > µmin the minimization subproblems (3.1) admit unique solutions (y(µ),λ(µ), α(µ))
satisfying (3.5) and converging to (y∗,λ∗, α∗) as µ→ ∞.

Proof. We refer to [43].

3.2 Adaptive path-following continuation method

For the solution of the parameter-dependent nonlinear system (3.5) we use an adaptive
path-following predictor-corrector strategy along the lines of [16].

Predictor Step: The predictor step relies on tangent continuation along the trajectory of
the Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) . (3.7)

Given some approximation x̃(µk) at µk > 0, compute x̃(0)(µk+1), where µk+1 = µk +∆µ
(0)
k ,

according to

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) , (3.8a)

x̃(0)(µk+1) = x̃(µk) + ∆µ
(0)
k δx(µk) . (3.8b)

We use ∆µ
(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1 the predicted

step size ∆µ
(0)
k is chosen by

∆µ
(0)
k :=

( ‖∆x(0)(µk)‖
‖x̃(µk) − x̃(0)(µk)‖

√
2 − 1

2Θ(µk)

)1/2

∆µk−1 , (3.9)

where ∆µk−1 is the computed continuation step size, ∆x(0)(µk) is the first Newton correction
(see below), and Θ(µk) < 1 is the contraction factor associated with a successful previous
continuation step.

Corrector step: As a corrector, we use Newton’s method applied to F (x(µk+1), µk+1) = 0
with x̃(0)(µk+1) from (3.8) as a start vector. In particular, for ℓ ≥ 0 and jℓ ≥ 0 we compute
∆x(jℓ)(µk+1) according to

F ′(x̃(jℓ)(µk+1), µk+1) ∆x(jℓ)(µk+1) = − F (x̃(jℓ)(µk+1), µk+1) (3.10)

and ∆x
(jℓ)

(µk+1) as the associated simplified Newton correction

F ′(x̃(jℓ)(µk+1), µk+1) ∆x
(jℓ)

(µk+1) = − F (x̃(jℓ)(µk+1) + ∆x(jℓ)(µk+1), µk+1) . (3.11)

We monitor convergence of Newton’s method by means of

Θ(jℓ)(µk+1) := ‖∆x(jℓ)
(µk+1)‖/‖∆x(jℓ)(µk+1)‖ .
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In case of successful convergence, we accept the current step size and proceed with the next
continuation step. However, if the monotonicity test

Θ(jℓ)(µk+1) < 1 (3.12)

fails for some jℓ ≥ 0, the continuation step has to be repeated with the reduced step size

∆µ
(ℓ+1)
k :=

(
√

2 − 1

g(Θ(jℓ))

)1/2

∆µ
(ℓ)
k , g(Θ) :=

√
Θ + 1 − 1 (3.13)

until we either achieve convergence or for some prespecified lower bound ∆µmin observe

∆µ
(ℓ+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.

3.3 Inexact Newton method by right-transforming iterations

As inner iterations we use an inexact Newton method featuring right-transforming iterations
(cf., e.g., [29, 30, 31]). To this end, we introduce the slack variables

z
(1)
i :=

1

µ (αi − αmin
i )

, z
(2)
i :=

1

µ (αmax
i − αi)

, 1 ≤ i ≤ m . (3.14)

In the slack variable formulation of the KKT system, a Newton step in the increments

∆x := (∆u,∆p,∆λu,∆λp,∆α,∆z
(1),∆z(2))T

reads as follows (for notational convenience, in the following the upper index (µ) in the
Lagrangian will be dropped):

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

λ1I1(α) 0 | A(α) BT (α) | Lu,α | 0 0
0 λ2I2(α) | B(α) 0 | Lp,α | 0 0

−− −− | −− −− | −− | −− −−
A(α) BT (α) | 0 0 | Lλu,α

| 0 0

B(α) 0 | 0 0 | Lλp,α | 0 0
−− −− | −− −− | −− | −− −−
Lα,u Lα,p | L

α,λu

Lα,λp | Lα,α | −I I

−− −− | −− −− | −− | −− −−
0 0 | 0 0 | Z1 | D1 0
0 0 | 0 0 | −Z2 | 0 D2

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

∆u

∆p

−−
∆λu

∆λp

−−
∆α

−−

∆z(1)

∆z(2)

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

= −g,

where

g := (g1, g2, g3, g4, g5,D1Z1e− µ−1e,D2Z2e− µ−1e)T

with appropriate gi, 1 ≤ i ≤ 5, e := (1, · · · , 1)T and

D1 := diag(αi − αmin
i ) , D2 := diag(αmax

i − αi) , Zν := diag(z
(ν)
i ) , 1 ≤ ν ≤ 2 .

Since Dν , Zν , 1 ≤ ν ≤ 2, are diagonal matrices, the slack variables can be easily eliminated
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by condensation (block Gaussian elimination) which leads to the condensed Hessian system













λ1I1(α) 0 | A(α) BT (α) | Lu,α

0 λ2I2(α) | B(α) 0 | Lp,α

−− −− | −− −− | −−
A(α) BT (α) | 0 0 | Lλu,α

B(α) 0 | 0 0 | Lλp,α

−− −− | −− −− | −−
Lα,u Lα,p | Lα,λu

Lα,λp
| L̃α,α

























∆u
∆p
−−
∆λu

∆λp

−−
∆α













= (3.15)

=







I(α) S | Lv,α

S 0 | Lλ,α

−− −− | −−
Lα,v Lα,λ | L̃α,α













∆v
∆λ

−−
∆α







= −







h1

h2

−−
h3







,

with appropriate hi, 1 ≤ i ≤ 3,v := (u, p)T , λ := (λu, λp)
T and

S :=

(
A(α) BT (α)
B(α) 0

)

,

L̃αα := Lαα + D−1
1 Z1 + D−1

2 Z2 .

Denoting by S̃−1 an approximate inverse of S (approximate Stokes solver), an approximate
inverse Ã−1 of the first diagonal block A of the condensed Hessian K is given by

A =

(
I(α) S
S 0

)

=⇒ Ã−1 =

(
0 S̃−1

S̃−1 −S̃−1I(α)S̃−1

)

.

Hence, a right-transform KR of K can be obtained according to

KR :=







I 0 | −S̃−1Lλ,α

0 I | −S̃−1Lv,α + S̃−1I(α)S̃−1Lλ,α

−− −− | − −−−−−−−−−−−−
0 0 | I







.

The right transform KR provides a regular splitting of the condensed Hessian

KKR :=

0

B
B
@

I(α) S | Lv,α

S 0 | Lλ,α

−− −− | −−

Lα,v L
α,λ | L̃αα

1

C
C
A

0

B
B
@

I 0 | −S̃−1Lλ,α

0 I | −S̃−1Lv,α + S̃−1I(α)S̃−1Lλ,α

−− −− | − −−−−−−−−−−−
0 0 | I

1

C
C
A

=

0

B
B
@

I(α) S | 0
S 0 | 0
−− −− | −−

Lα,v L
α,λ | L̂αα

1

C
C
A

| {z }

=: M1

−

0

B
B
@

0 0 | (I − SS̃−1)(I(α)S̃−1Lλ,α
− Lv,α)

0 0 | (SS̃−1 − I)Lλ,α

−− −− | − −−−−−−−−−−−−−−
0 0 | 0

1

C
C
A

| {z }

=: M2 ≈ 0

.

where

L̂αα := L̃αα + L
α,λS̃

−1I(α)S̃−1Lλ,α
− Lα,vS̃

−1Lλ,α
− L

α,λS̃
−1Lv,α .
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Let ∆ϕ∗ := (∆v∗,∆λ
∗,∆α∗)T be the solution of K∆ϕ∗ = d. Then, there holds

K ∆ϕ∗ = d ⇐⇒ K KR
︸ ︷︷ ︸

= M1−M2

K−1
R ∆ϕ∗ = d .

The regular splitting KKR = M1 −M2 induces the iterative scheme

K−1
R δϕ(ν+1) = K−1

R δϕ(ν) + M−1
1 (d − K δϕ(ν)) ,

which results in the right transforming iteration

δϕ(ν+1) = δϕ(ν) + KR M−1
1 (d − K δϕ(ν)) . (3.16)

Let δϕ(0) := (δv(0), δλ(0), δα(0))T be given and compute δϕ(ℓ+1), k ≥ 0, by

δϕ(ℓ+1) = δϕ(ℓ) + KR M−1
1 (d − K δϕ(ℓ)) .

Step 1: Compute the residual r := d−Kδϕ(ℓ).

Step 2: Compute δψ = (δψ1, δψ2, δψ3)
T as the solution of

M1 δψ =







I(α) S | 0
S 0 | 0
−− −− | −−
Lα,v L

α,λ | L̂αα













δψ1

δψ2

−−
δψ3







=







r1
r2
−−
r3







.

Step 2.1: Compute (δψ1, δψ2)
T according to

(
δψ1

δψ2

)

=

(
I(α) S
S 0

)
−1 (

r1
r2

)

≈
(

0 S̃−1

S̃−1 −S̃−1I(α)S̃−1

) (
r1
r2

)

.

Step 2.2: Compute δψ3 as the solution of

L̂αα δψ3 = r3 − Lα,vδψ1 − Lα,λδψ2 .

As a termination criterion for the inexact Newton solves, we stop the inner iterations, if

θℓ :=
1 − δℓ+1

1 + δℓ

‖K−1
R δϕ(ℓ+1)‖

‖K−1
R δϕ(ℓ)‖

≤ 1

4
, (3.17)

where

δℓ+1 :=

√
εℓ

‖δϕ(ℓ)‖
with εℓ being a lower bound for ‖∆ϕ− δϕ(ℓ)‖. Note that

K−1
R δϕ(ℓ) =







I 0 | S̃−1Lλ,α

0 I | S̃−1Lv,α − S̃−1I(α)S̃−1Lλ,α

−− −− | − −−−−−−−−−−
0 0 | I













δv(ℓ)

δλ(ℓ)

−−−
δd(ℓ)







.
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4. Numerical results

In the numerical examples, we consider Stokes flow with viscosity ν in channels Ω(α) ⊂ R
2

with reference domain Ω̂ := Ω(α0) whose boundaries Γ consist of the inflow and outflow
boundaries Γin,Γout and the lateral boundaries Γtop,Γbot (cf. Fig. 1). The inflow uin on
the inflow boundary Γin and the desired profiles ud, pd as well as the weighting factors
λi, 1 ≤ i ≤ 2, are given. We assume m1 Bézier control points αi, 1 ≤ i ≤ m1, on Γ̂top

and m2 = m − m1 Bézier control points αi,m1 + 1 ≤ i ≤ m, on Γ̂bot with given lower
and upper bounds αmin

i , αmax
i , 1 ≤ i ≤ m. We use a discretization by Taylor-Hood P2/P1

elements [11] with respect to a simplicial triangulation Th(Ω̂) of the reference domain Ω̂ with
n1 degrees of freedom (DOF) for each velocity component and n2 DOF for the pressure.
The derivatives occurring in the KKT conditions and the Hessians have been computed
by automatic differentiation [23]. We further refer to k ∈ N and ℓk ∈ N as the numbers
of the actual continuation step and the inexact Newton iteration, respectively. Moreover,
µ and ∆µ denote the barrier parameter and its increment, Θ stands for the parameter in
the monotonicity test (cf. (3.12)), ‖∆α‖2 and ‖α − α∗‖∞ are the Euclidean norm of the
Newton increment in the design variables and the maximum norm of the error in the design
variables (in case the optimal design α∗ is explicitly known), and J is the value of the
objective functional at the k-th continuation step. Finally, tolmin and tolnt refer to the
termination criteria of the continuation process and the inexact Newton solves, respectively,
and hmax denotes the maximal mesh width.

Example 1: The data of the first example are as follows

Ω̂ = Ω(α0) = (1, 5) × (−1,+1) with α0 = (+1,+1,+1,+1,−1,−1,−1,−1T ,

ud, pd according to ᾱ = (1.00, 1.28, 1.40, 1.24,−1.00,−1.05,−1.20,−1.13)T ,

ν = 1.0 , uin(x1, x2) = (6(1 + x2)(1 − x2), 0) ,

αmin = (0, 0, 0, 0,−5,−5,−5,−5)T , αmax = (5, 5, 5, 5, 0, 0, 0, 0)T .

The optimal solution (u∗, p∗, α∗) has been chosen as

u∗ = ud , p∗ = pd , α∗ = ᾱ ,

where ᾱ is the design associated with ud, pd. Hence, the value J∗ of the objective functional
at optimality is zero.

Table 1: Example 1: Discretization data and termination criteria

2n1 n2 m1 m2 µ0 ∆µ0 tolnt tolmin hmax

4998 646 4 4 100 200 4.0e-03 1.0e-06 0.15

Table 2: Example 1: Convergence history of the continuation method

k µ ∆µ corr. ℓk ‖∆α‖2 ‖α − α∗‖∞ J Θ

0 100.0 (200.0) – – – 4.0e-01 1.8e+00 –

1 100.0 163.3 no 1 6.9e-01 1.4e-03 1.1e-05 0.36

2 6.0e-06 1.4e-03 1.1e-05 0.33

2 263.3 459.8 no 1 1.9e-03 5.0e-04 1.5e-06 0.03

3 723.1 – – – – 4.0e-04 8.8e-07 –
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dotted line: optimal shape dotted line: desired shape
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Figure 1: Results for Example 1: Initial shape (top left), optimal shape after the third
iteration (top right), the optimal velocity field as an arrow plot (bottom left) and the L2

0-
gauged pressure field shown by equipotential lines (bottom right).

The data of the discretization, the initial value µ0 of the inverse of the barrier parameter
and its initial increment ∆µ0 as well as the termination criteria tolnt and tolmin are shown
in Table 1. Table 2 contains the convergence history of the adaptive path-following primal-
dual interior-point method. The algorithm was stopped by criterion tolmin after three
continuation steps and a computational time of 55 minutes (AMD Athlon, 1.8 GHz) with
the final design vector

α3 = (1.0000, 1.2797, 1.4001, 1.2399,−1.0000,−1.0496,−1.2000,−1.1297)T .

Due to our experience, a fast convergence of the algorithm requires initial parameters
µ0 and ∆µ0 that are not chosen too small. In particular, for too small ∆µ0 the algorithm
starts too ,,carefully” and does not achieve satisfactory progress within a reasonable number
of outer iterations.

Figure 1 displays the initial and optimal shape (top) and the associated velocity and pressure
field (bottom).

Example 2: This example has been constructed in such a way that the desired velocity
profile is outside the range of the admissible design variables. Consequently, the value J∗ of
the objective functional at optimality is greater than zero (cf. Table 4). It can be observed
that the upper computed Bézier curve tries to ,,mimic” the corresponding part of the shape
associated with the desired velocity (cf. Figure 2, bottom right). The data for αmin, αmax,
uin etc. are the same as in Example 1, except that the desired velocity field corresponds to
the following vector of design variables

ᾱ = (2.50, 1.65, 1.15, 0.90,−1.30,−0.85,−1.20,−1.35)T .
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After reaching the criterion µ > µmax = 15000, the computed optimal design turned out to
be

α8 = (1.0000, 0.5171, 0.0928, 0.0000,−1.0000,−0.6795,−1.2788,−1.0710)T .

Table 3: Example 2: Discretization data and termination criteria

2n1 n2 m1 m2 µ0 ∆µ0 tolnt tolmin hmax

2762 361 4 4 100 300 4.0e-03 1.0e-06 0.20

Table 4: Example 2: Convergence history of the continuation method

k µ ∆µ corr. ℓk ‖∆α‖2 J Θ

0 100.0 (300.0) – – – 2.4e+01 –

1 100.0 269.6 no 1 1.8e+00 4.0e+00 0.30

2 1.2e-02 3.9e+00 0.98

3 2.3e-01 1.9e+00 0.51

4 1.7e-01 7.0e-01 0.25

2 369.6 274.3 no 1 3.1e-02 6.8e-01 0.17

2 5.8e-03 6.7e-01 0.24

3 643.8 512.2 no 1 1.3e-03 6.7e-01 0.06

4 1156.0 1321.6 no 1 7.4e-04 6.7e-01 0.03

5 2477.6 3205.5 no 1 7.2e-04 6.7e-01 0.04

6 5683.1 1584.6 no 1 4.1e-04 6.7e-01 0.85

7 7267.7 9043.7 no 1 2.1e-04 6.7e-01 0.01

8 16311.4 (8077.4) no 1 1.3e-04 6.7e-01 0.54

Example 3: In this example, we consider a channel with a backward facing step (cf.
Figure 3, top left). Here, the three horizontal segments of the geometry are fixed and only
the segment that connects the two lower horizontal segments is variable. In this setting,
the function that describes the bottom segment of the geometry is a composite Bézier curve
consisting of three curves of degree 0, 4 and 0, respectively. Note that the composite curve
is only continuous. The data for this geometry are as follows

Ω̂ = Ω(α0) with α0 = (+1.0,−0.5,−0.5,−1.5,−1.5,−1.5)T ,

ud, pd according to ᾱ = (+1.0,−0.5,−0.55,−0.6,−0.6,−1.5)T ,

ν = 1.0 , uin(x1, x2) = (6(1 + x2)(1 − x2), 0) ,

αmin = (0,−5,−5,−5,−5,−5)T , αmax = (5, 0, 0, 0, 0, 0)T .

As in Example 1, the optimal solution (u∗, p∗, α∗) has been chosen as u∗ = ud, p∗ = pd

and α∗ = ᾱ. Table 5 provides information about the discretization and Table 6 displays the
convergence history of the adaptive path-following algorithm.

Table 5: Example 3: Discretization data and termination criteria

2n1 n2 m1 m2 µ0 ∆µ0 tolnt tolmin

2856 191 1 5 100 300 4.0e-03 1.0e-06
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fixed

Figure 2: Results for Example 2: Initial shape (left) and the optimal shape after 8 iterations
(right). Here, the first Bézier point of each curve (top and bottom) of the initial shape are
fixed and different from the corresponding points of the shape corresponding to the desired
velocity profile (dotted line).
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Figure 3: Results for Example 3: A scheme of the backward step geometry (top left) along
with the optimal pressure filed (top right), initial and optimal shape after 7 outer iterations
(bottom left and right).
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Table 6: Example 3: Convergence history of the continuation method

k µ ∆µ corr. ℓk ‖∆α‖2 ‖α − α∗‖∞ J Θ

0 100.0 (300.0) – – – 9.0e-01 2.6e+00 –

1 100.0 (300.0) yes 1 1.2e+00 1.7e-01 9.6e-01 0.58

2 8.8e-01 1.7e-01 1.3e-01 618.42

1 100.0 425.5 no 1 2.1e-01 3.3e-02 4.3e-04 0.11

2 525.5 417.1 no 1 1.2e-01 3.3e-02 2.3e-03 0.41

2 3.3e-02 2.5e-02 2.3e-03 0.58

3 1.6e-02 2.4e-02 2.0e-03 0.92

4 2.0e-02 2.9e-03 1.6e-05 0.43

5 5.7e-04 3.2e-03 2.5e-05 –

3 942.6 323.5 no 1 2.9e-03 3.6e-03 5.1e-05 0.34

4 1266.1 283.7 no 1 1.4e-03 3.5e-03 4.9e-05 0.27

5 1549.8 593.1 no 1 1.7e-04 2.9e-03 3.3e-05 0.05

6 2142.9 2265.3 no 1 1.3e-04 2.1e-03 1.7e-05 0.01

7 4408.2 – – – – 2.0e-04 1.9e-07 –
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