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1. Introduction

The classical approach to randomly scattered particles leads to
diffusion, where random scattering originates either from parti-
cle–particle collisions (e.g., in a gas) or from collisions with (static)
impurity scatterers. In quantum systems, however, diffusion
appears only for weak disorder whereas it is destroyed due to
Anderson localization at stronger randomness [1,2]. This effect is
particularly strong in low-dimensional systems, such as two-
dimensional graphene sheets or the surface of topological insula-
tors. The scaling approach to generic random scattering [2] states
that diffusion is entirely suppressed by Anderson localization for
dimension dr2. On the other hand, it has been argued that
Anderson localization is prevented on the surface of topological
insulators due to suppressed backscattering [3,4].

Inspired by the recent observation of metallic behavior (i.e.
diffusive or even ballistic transport) in disordered two-dimensional
systems (graphene) [5,6], a general discussion of diffusion and
localization of quantum particle is required, which takes into
account a spinor structure of the wavefunction. Two possibilities
have been considered, namely ballistic transport for finite systems
[7,8] and diffusive transport for infinite systems [9]. Diffusion is
related to long ranged correlations, which is usually caused by

spontaneous symmetry breaking [9,10]. This behavior might be
restricted to the regime of weak scattering, since strong scattering
is capable to localize particles. The aspect of weak localization is
ignored here on purpose because it has its own problems [11,12].
This will be discussed in a separate paper. Instead, we will focus in
the following mostly on the case of strong scattering. This is
motivated by recent numerical studies, which have indicated that
there is a transition to a localized phase at sufficiently strong
disorder [13,14]. Here we will analyze details of the transition in
terms of the scaling behavior of the localization length for strips of
finite width. Moreover, the infinite system will be treated analyti-
cally within a strong scattering expansion. The latter provides a
rigorous proof for exponential localization, supporting the numerical
results at strong disorder. We study a random gap model with linear
spectrum (2D Dirac fermions), but our methods can be easily applied
to other systems as well.

2. Model

We consider the surface Hamiltonian of a topological insulator
with bulk inversion symmetry of momentum k [3,14–16]

H¼
hðkÞ 0
0 hnð�kÞ

!
; hðkÞ ¼ ℏ

CþM�ðDþδÞk2 vF ðkxþ ikyÞ
vF ðkx� ikyÞ C�M�ðD�δÞk2

0
@

1
A ð1Þ
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This Hamiltonian consists of a pair of massive Dirac Hamiltonians
hðkÞ, hnð�kÞ. It should be noticed that this Hamiltonian reads in
coordinate space

H ¼ h 0
0 hT

� �

with the matrix transposition T. We include disorder by a random
variable M with mean m. For our numerical transfer-matrix
calculation we use a box distribution with width W. For simplicity
we choose the Dirac point, where C¼0 and D¼0. The main feature
is that there are two bands that touch each other at a spectral node
k¼0 if M¼0, whereas Ma0 opens a gap Δ¼ 2jMj. Thus, a random
M creates a random gap. Our aim is to calculate the localization
length Λ of the eigenstate ψ at energy E¼0 which satisfies hψ ¼ 0
and the transition probability of a moving particle. The two block
Hamiltonians hðkÞ, hnð�kÞ act on two separate spaces with the
same localization properties. Therefore, it is sufficient to study just
one of them.

2.1. Localization length

The localization length Λ of the eigenstates of Hamiltonian (1)
can be calculated numerically within a transfer-matrix approach.
For this purpose the continuous Hamiltonian must be discretized
in space (cf. Appendix A). Then the transfer-matrix Tl of the
eigenvalue problem ψ lþ1 ¼ hYψ lþhDψ l�1 (cf. Eqs. (27) and (28))
reads

T l ¼
hY hD

1 0

!
; ð2Þ

which enables us to evaluate the Lyapunov exponents of the
wavefunction [17,18]. With the initial values ψ0 and ψ1 the iteration
of Eq. (28) provides the wavefunction ψL at site L by applying the
product matrix

ML ¼ ∏
L

l ¼ 1
T l: ð3Þ

For a random Hamiltonian this is a product of random matrices
that satisfies Oseledec's theorem [19]. The latter states that there
exists a limiting matrix

Γ ¼ lim
L-1

ðM†
LMLÞ1=2L: ð4Þ

The eigenvalues of Γ are usually written as a diagonal matrix with
exponential functions expðγiÞ, where γi is the Lyapunov exponent
(LE). Adapting the numerical algorithm described in Ref. [18], the
whole Lyapunov spectrum can be calculated and the smallest LE is
identified with the inverse localization length 1=Λ [17]. Λ increases
with the system width M according to a power law ΛpMα , where
α41 (αo1) in the regime of extended (localized) states, and α¼ 1
in the critical regime. For the exponentially localized regime we
expect Λpconst. According to the one-parameter scaling theory
by MacKinnon [20], the normalized localization length ~Λ ¼ Λ=M,
being a function of disorder strength W and system width M,
depends only on a single parameter

~ΛðM;WÞ ¼ f ðξðWÞ=MÞ; ð5Þ

where ξ is a characteristic length of the system generated by
disorder. Thus, any change of disorder strength W can be compen-
sated by a change of the system width M. If there is a scale-
invariant point Wc we can expand ~Λ in its vicinity by assuming a
power law with critical exponent ν of the correlation length as

ξ¼ jW�Wcj� ν. Then we have [18]

ln ~Λ ¼ ln ~Λcþ ∑
S

s ¼ 1
AsðjW�WcjM1=νÞs ¼ ln ~Λcþ ∑

S

s ¼ 1
As

ξ

M

� �� s=ν

:

ð6Þ

2.2. Transition probability

The motion of a quantum particle from site r′ to site r during
the time t is described by the transition probability

Prr′ðtÞ ¼ j〈rjexpð� iHtÞjr′〉j2: ð7Þ
If we assume that Prr′ðtÞ describes diffusion, we can obtain the
mean square displacement with respect to r′¼ 0 from the diffu-
sion equation

〈r2k〉¼∑
r
r2kPr;0ðtÞ ¼Dt; ð8Þ

which, after applying a Laplace transformation, becomes

∑
r
r2k

Z 1

0
Pr;0ðtÞe� εt dt ¼ D

ε2
: ð9Þ

Using the Green's function Grr′ðzÞ ¼ ðH�zÞ�1
rr′ , we obtain for large

distances jr�r′j and ε� 0Z 1

0
Prr′ðtÞe� εt dt �

Z EF

E0
〈jGrr′ðEþ iεÞj2〉d dE¼

Z EF

E0
〈Grr′ðEþ iεÞGr′rðE� iεÞ〉d dE;

ð10Þ
where 〈…〉d is the average with respect to disorder that is causing
scattering. E0 is the lower band edge and Tr4ð…Þ is the trace with
respect to the 4 spinor components. The second equation is due to
the fact that the Hamiltonian is Hermitean. Then we get with r′¼ 0
from Eq. (10) for the diffusion coefficient at the energy E

DðEÞ � lim
ε-0

ε2∑
r
r2k〈Gr0ðEþ iεÞG0rðE� iεÞ〉d ð11Þ

with D¼ R EF
E0

DðEÞ dE in Eq. (9).
According to Eq. (9), diffusion requires a long range correlation for

small ε in Eq. (10). Anderson localization, on the other hand, is
characterized by an exponentially decaying correlation. A natural
approach to study the latter for strong randomness would be a
hopping expansion in Eq. (11). Unfortunately, such an expansion is
plagued by poles on both sides of the real axis. This problem can be
avoided if we focus on the most relevant contributions of the
randomly fluctuating product of Green's functions Gr;r′ðiεÞGr′;rð� iεÞ.
They are associated with the underlying chiral symmetry. These
fluctuations have been studied previously in Ref. [21], where the
large scale behavior was found to be associated with the Grassmann
integral

Krr′ ¼ 〈Gr0ðEþ iεÞG0rðE� iεÞ〉d � K0

Z
φrφ

′
r′JD½φ;φ′� ð12Þ

with D½φ;φ′� ¼∏r dφ dφ′ and with the Jacobian

J ¼ 1

detgðH0þ iεþ iηÛ
2Þ
; H0 ¼ 〈H〉; Û r ¼

1þ2φrφ
′
r �2φrs1

�2φ′
rs1 1�2φrφ

′
r

!
:

ð13Þ
The Jacobian appears since we have restricted the integration over
randomness to those degrees of freedom which are associated with a
global symmetry of the system. It is written in terms of a graded
determinant detg, where the latter is expressed by conventional
determinants in the relation

detg
A Θ

Θ B

� �
¼ detðAÞ
detðBÞdetð1�ΘB�1ΘA�1Þ:

The parameter η is the scattering rate, which can be considered as an
external parameter that is either calculated in self-consistent Born

                                        173



approximation [22] or is taken from experimental measurements [23].
In any case, the scattering rate increases with increasing disorder.

The relation between the correlation function Krr′ and the integral
in Eq. (12) is based on two facts. Firstly, we have a large freedom to
choose a distribution of the random Green's function with the same
expectation value. Secondly, by choosing a proper distribution we find
a saddle-point approximation for the corresponding integration. This
procedure was described in detail in Refs. [21,22], leading eventually
to Eq. (12). As a result we have been able to avoid the spurious
singularities, which appear when we apply a hopping expansion and
integrate with respect to the random term of the Hamiltonian.

The expression in Eq. (13) enables us to rewrite J for weak
scattering (η51) as

J ¼ 1=detg½1þ iηðĤ0þ iεÞ�1Û
2� � 1=detgð1þ iηĜ0Û

2Þ ð14Þ
and for strong scattering (ηb1) as

J ¼ 1=detg 1þ 1
iη
ðĤ0þ iεÞÛ �2

� �
ð15Þ

since detgðÛ2Þ ¼ 1. These expressions can be used to employ an
expansion in powers of η or 1=η. The expression in Eq. (14) has
been treated previously. It leads to diffusion, where the correlation
function is a diffusion propagator [9]. In Section 4 we will extend
the previous work to the regime of strong scattering, employing an
expansion in powers of 1=η for the expression (15).

3. Numerical results: scaling of the localization length

Now we return to the method described in Section 2.1 and
calculate the localization length Λ. Our calculation for strong
randomness (i.e. large W) provides a critical value Wc, where the
system is delocalized (localized) forWoWc (W4Wc). Around the
critical value Wc we observe one-parameter scaling behavior for
the normalized localization length Λ, as described in Section 2.1.
Some results are depicted in Fig. 1 and the results of the fitting
procedure are listed in Table 1. This behavior is indicative of an
Anderson transition.

4. Analytic results: strong scattering expansion

Eq. (12) is a convenient starting point to study transport
properties with the Jacobian

J ¼ exp �Trg log 1þ 1
iη
ðĤ0þ iεÞÛ �2

� �� �� �
; ð16Þ

where the graded trace Trg is with respect to the four-dimensional
spinor space and the position r. It is related to the conventional
trace by

Trg
A Θ

Θ B

� �
¼ Tr A�Tr B:

The integral representation of the correlation function Krr′ in Eq.
(12) with the Jacobian in Eq. (16) enables us to study the regime of
strong scattering (i.e. ηb1) by applying a 1=η expansion. This
allows us to rewrite the correlation function as

Krr′ � K0

Z
φrφ

′
r′exp �Trg log 1þ 1

iη
ðĤ0þ iεÞÛ �2

� �� �� �
D½φ;φ′�

¼ K0
∂
∂α

Z
exp αφrφ

′
r′�Trg log 1þ 1

iη
ðĤ0þ iεÞÛ �2

� �� �� �
D½φ;φ′�jα ¼ 0

ð17Þ

and to expand the exponential function as

¼ K0
∂
∂α

∑
lZ0

1
l!

Z
αφrφ

′
r′�Trg log 1þ 1

iη
ðĤ0þ iεÞÛ �2

� �� �� �l

D½φ;φ′�jα ¼ 0

¼ K0
∂Z
∂α

�����
α ¼ 0

: ð18Þ

Here we have used the expression

Z ¼ ∑
lZ0

1
l!

∑
j
Aj

 !l* +
;

where ∑j Aj is the expansion of αφrφ
′
r′�Trg log 1þ 1

iηðĤ0þ
	h

iεÞÛ �2Þ�:

∑
j
Aj ¼ αφrφ

′
r′þ ∑

jZ1

ð�1Þj
jðiηÞj

Trgð½ðĤ0þ iεÞÛ �2�jÞ

and the average is with respect to the normalized integral

〈…〉¼ 1
N
Z

…D½φ;φ′�:

Using the fact that the factors of the product Aj1Aj2⋯Ajl can be
reorganized as products of connected clusters fBkg (cf. Appendix B),
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Fig. 1. Numerical evidence for a localization transition in two dimensions. The scaling behavior of the normalized localization length Λ as a function of increasing disorderW
is plotted here for m ¼ 0:8 and δ¼ 0:5. Left panel: fit to Eq. (6) near the critical point. Right panel: rescaled normalized localization length Λ near the critical point.

Table 1
Critical values for δ¼ 0:5 obtained from fitting the data to Eq. (6).

Average gap m 0 0.2 0.8

Exponent ν 1.29970.066 1.39770.069 1.45170.024
Critical disorder Wc 7.66870.008 7.62970.015 7.72770.01
Disorder range 7:35rWr7:8 7:1rWr8:0 6:6rWr8:4
System sizes 30rMr80 20rMr80 20rMr80
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we obtain from the Linked Cluster Theorem

∂Z
∂α

¼ Z
∂log Z
∂α

¼ Z
∂
∂α

∑
k
〈Bk〉: ð19Þ

Thus only those expressions 〈Bk〉 contribute that contain α. These
contributions form random walks from site r to site r′ with the
discrete hopping term of Eqs. (21) and (22) (cf. Fig. 2). They can be
estimated as

∂
∂α

∑
k
〈Bk〉

�����
�����
α ¼ 0

r ∑
lZ jr� r′j

1
ηl
jTr4½ðĤ

l
0Þr;r′� rconst:ð4=ηÞjr� r′j�� ;

����� ð20Þ

where the factor 4 is due to the two dimensional random walk.
Thus, we need η44 (in units of ℏvF=a with lattice constant a) in
order to have an absolutely convergent series and an exponential
decay of the correlations. The latter describes Anderson localization,
according to our discussion in Section 2.2.

5. Discussion and conclusion

Our analytic calculation supports the numerical result of a
localized phase at sufficiently strong disorder. Here it should be
noticed that the calculations are based on different quantities,
namely the localization length Λ and the exponential decay of the
average transition matrix Krr′. Since the localization length is self-
averaging according to Eq. (4), it is expected that this quantity
should be very robust in a real system. On the other hand, the
localization length is difficult to measure directly in an experi-
ment. Therefore, the transition matrix is more accessible because
it is related to the conductivity by the Einstein relation

sxx � ε2
e2

h
∑
r
x2Kr0;

where x is the direction of the position r, in which the external
electric field is applied. In the DC limit ε-0 the conductivity
vanishes when Kr0 decays exponentially. This is in stark contrast to
the weak scattering case where the expansion in powers of η gives
a diffusion propagator [22]

~K qp
1

εþDq2

with the diffusion coefficient D. After Fourier transformation q-r
this expression gives a correlation function that decays like
� r�1=2. Moreover, it gives a finite non-vanishing DC conductivity,
since

∑
r
x2Kr0 ¼ �∂ ~K q

∂q2x
q ¼ 0p

2D
ε2

:

����
On the surface of a typical topological insulator we expect substantial
scattering due to disorder [3]. Our results indicate that the suppressed
backscattering may not be able to prevent the localization of surface

states. Therefore, it might be crucial for the appearance of a metallic
behavior to reduce the disorder on the surface. In this case it could
even be possible to observe an Anderson transition from extended to
localized states, as our results indicate. Our calculation gives a rough
estimate for the localized behavior in which the scattering rate must
be larger than the bandwidth of the systemwithout disorder. A similar
transition was also observed in a numerical study of the conductivity
in disordered graphene by Zhang et al. [29]. However, we cannot
confirm their interpretation as a Kosterlitz–Thouless transition
because we find a power law for the localization length.

In conclusion, we have studied a model for surface states on a
topological insulator. Contrary to the assumption that suppressed
backscattering may always create a metallic phase, we have found
that the surface states are localized for strong scattering by
disorder. For weak scattering, however, there is a metallic behavior
and a phase transition from a delocalized to a localized phase
when the disorder strength is increased. The transition is char-
acterized by one-parameter scaling of the normalized localization
length with a non-universal exponent.

Appendix A. Numerical transfer-matrix calculation

A numerical treatment of the Dirac Hamiltonian requires a
discretization in space. However, the naive discretization through
replacing the differential operator by a difference operator leads to
additional new nodes, which is often called fermion doubling or
multiplication [24]. In real space there are two methods to
circumvent this problem [25–27]. One that we will adopt in this
section goes back to an idea of Susskind. We start with discretizing
the differential operator in an anti-symmetric way

∂xf ðxÞ �
1
2Δ

ðf lþΔ� f l�ΔÞ; ð21Þ

where Δ is the lattice constant which we set to one in the
following. The discrete Dirac equation for m¼0 and with ℏvF ¼ 1
a then takes the form

� i
2
s1 ψ lþ1;n�ψ l�1;n

 �� i

2
s2 ψ l;nþ1�ψ l;n�1

 �¼ Es0ψ l;n ð22Þ

with lattice points given by the integer coordinates (l,n). Fourier

transformation leads to eigenvalues E¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ðkxÞ2þ sin ðkyÞ2

q
which have four Dirac cones in the Brillouin zone corresponding
to four Dirac fermions. In order to open a gap at three of them we
introduce a lattice operator which acts on a wave function as [28]

B̂ψ l;n ¼ 1
2 ψ lþ1;nþψ l�1;nþψ l;nþ1þψ l;n�1

 �

: ð23Þ
The discretized form of the Hamiltonian (1) for uniform gap now
reads

h¼ sin ðkxÞs1� sin ðkyÞs2þ½mþδð cos ðkxÞþ cos ðkyÞ�2Þ�s3; ð24Þ
which gives hðkÞ of Eq. (1) in the continuum limit and has the
dispersion

E¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ðkxÞ2þ sin ðkyÞ2þðmþδ cos ðkxÞþδ cos ðkyÞ�2δÞ2

q
: ð25Þ

For m¼ 0; δa0 there is a node at kx ¼ ky ¼ 0 and three additional
nodes, for m¼ 0; δ¼ 0 at kx; ky ¼ 7π. Using this model node
degeneracy can be lifted via the parameter δ.

We absorb the index nwith the help of matrix representation and
write for the wave function

ψ lþ1 ¼ hYψ lþhDψ l�1: ð26Þ
Each spinor component is now a M-component vector, where M is
the width of a strip and thus n¼ 1;2;…;M. The matrices hY, hD read

hYn;n ¼ 2S�1½Es0þð2δ�mÞs3� hYn;nþ1 ¼ S�1½is2�δs3�

r

r’

B1

B2

B3

B4

B5

Fig. 2. Typical contribution to the 1=η expansion of Z. There are five connected
clusters B1,…,B5 which are disconnected of each other. In particular, there is a
random walk B3 from site r to site r′, the only contribution to the correlation
function Krr′ in Eq. (19).
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hYn;n�1 ¼ �S�1½is2þδs3� hD
n;n ¼ �S�1½is1þδs3� ð27Þ

with S¼ � is1þδs3 and where hY has periodic boundary conditions
in the y-direction. This matrix structure allows us to construct a
transfer matrix Tl through Eq. [18]

ψ lþ1

ψ l

!
¼ hY hD

1 0

!
ψ l

ψ l�1

!
� T l

ψ l

ψ l�1

!
: ð28Þ

Appendix B. Linked cluster theorem

Wemust organize the 1=η expansion in order to extract the spatial
decay of the correlation function Krr′. For this purpose we employ the
Linked Cluster Theorem [30]. The latter can be formulated for the
expression

1
l!
〈ð∑

j
AjÞl〉¼

1
l!

∑
j1 ;j2 ;…;jl

〈Aj1Aj2⋯Ajl 〉: ð29Þ

The product of the AiAj is called disconnected (unlinked) if the two
factors do not share any Grassmann variable. This would lead to
〈AiAj〉¼ 〈Ai〉〈Aj〉. Otherwise they are called connected (linked) and we
would have 〈AiAj〉a 〈Ai〉〈Aj〉. In the sum (29) we combine for a given
set j1; j2;…; jl all connected factors in products fBkg such that

〈Aj1Aj2⋯Ajl〉¼ 〈Bk1〉〈Bk2 〉⋯〈Bkn 〉 ðnr lÞ; ð30Þ
where the new indices k1;…; kn refer to the indices j1;…; jl of the
combined factors Aj. Now we must reorganize the summation.
A permutation of the j1; j2;…; jl gives the same expression for
Eq. (30). Therefore, the summation with respect to the permutations
contributes only a factor l!. On the other hand, we allow also a
permutation of the k1; k2;…; kn, which would also leave the expres-
sion (30) invariant. Consequently, we must divide the summation
with respect to these n permutations by n!. This gives us eventually

Z ¼ ∑
lZ0

1
l!
〈ð∑

j
AjÞl〉¼ ∑

nZ0

1
n!
ð∑
k
〈Bk〉Þn ¼ expð∑

k
〈Bk〉Þ;

which is the Linked Cluster Theorem, since the Bk are connected
according to our construction.
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