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Abstract. We present a comparative analysis on the evolution of two coupled bosonic many-
body quantum systems. Considering photons in two coupled cavities and bosonic atoms in a
double-well potential, the effect of the boson-boson interaction on the spectral properties and
the dynamical behavior is studied. In particular, we analyze the evolution of a Fock state to
a N00N state, which is a superposition of two complementary Fock states. Such an entangled
state appears in the evolution only if tunneling and many-body interaction are balanced.

1. Introduction

The dynamics of isolated many-body quantum systems has been a subject of intense research in
atomic physics during recent years, in experiment [1] as well as in theory [2]. This interest has two
major aspects. One is to prepare the system in a well-defined initial state and, secondly, to study
its evolution for a period of time due to quantum tunneling and particle-particle interaction. The
preparation of the initial state as the groundstate of a certain Hamiltonian H0 and the evolution
with exp(−iHt) for a different Hamiltonian H involves a sudden change H0 → H, which is
usually called a quench. Such a quench can be realized in atomic systems by changing the
potential wells in which the atoms are trapped [3]. For instance, bosonic atoms are prepared in
a Fock state, where a definite number of atoms are localized in deep optical potential wells (right
picture in Fig. 1). Then the potential barrier between a pair of neighboring wells is suddenly
reduced such that the atoms can tunnel between these wells [4, 5]. From the theoretical point of
view the statistical properties of this problem have been studied intensively using the Hubbard
model and related models [6–9]. An essential element of the dynamical analysis is the evaluation
of the spectral weights with respect to the initial state [10, 11], which links directly the quantum
evolution with the spectral properties of the underlying Hamiltonian.

Besides systems of ultracold atoms an alternative approach of controllable bosons is based
on photons. Then the role of the potential wells is played by microwave or optical cavities
(left picture in Fig. 1). The experimental preparation of Fock states in a optical cavity has
been achieved recently [12, 13]. This is a crucial step towards a systematic study of correlated
many-body systems with photonic states. The interaction between the photons is indirectly
mediated by atoms inside the optical cavities, which interact directly with the photons [14–16].
Once a Fock state with N photons has been prepared inside an optical cavity, we can couple
the latter with another optical cavity by a waveguide or an optical fiber. Then the photons can
tunnel between the two optical cavities, leading to a quantum evolution of the initial Fock state
|N, 0〉 within the Hilbert space that is spanned by the eigenstates of the Hamiltonian of the new
system. This new Hamiltonian can be approximated, for instance, by the Hubbard Hamiltonian,
as suggested recently by several groups [17–20]. This type of system, including atomic degrees
of freedom, was studied within a Hartree-Fock approximation [21].
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Figure 1. Two optical cavities with two-level atoms are coupled by an optical fiber (left picture).
Bosonic atoms in a double-well potential present a similar system (right picture).

The evolution from the initial Fock state can, in principle, lead to an entangled state, such
as the N00N state (|N, 0〉 + exp(iφ)|0, N〉)/

√
2. The N00N state has attracted much attention

because it can be used for highly accurate interferometry and other precision measurements
[22–25] and for technological application such as optical lithography [26]. Various methods for
the creation of photonic N00N states have been suggested in the literature [27, 28] and indeed
experimentally created up to N = 5 photons [25]. This clearly indicates that the creation of
these entangled states is realistic. However, it still remains a problem to created N00N states for
large N . The author discussed recently the dynamical creation of a N00N state from ultracold
bosonic atoms in a double well [29], which shows that a balanced effect of inter-well tunneling and
intra-well interaction can produce such a state with moderate probability. Since photon-photon
interaction can also be mediated in a cavity by coupling the photons to atoms, we will analyze
in the following the dynamical creation of entangled (N00N) states for a pair of anharmonic
cavities, described by coupled Jaynes-Cummings models [30, 31], and compare the results with
those of the Hubbard model.

The paper is organized as follows: In Sect. 2 we introduce the basic quantities for the
dynamics of our systems and discuss the return probability, the transition probability and their
relation with entangled states. As an example for non-interacting bosons we analyze two coupled
harmonic cavities in Sect. 3. Then we discuss briefly the Jaynes-Cummings model for a single
cavity with a two-level atom (Sect. 4.1) and derive an effective Hamiltonian for two coupled
cavities (Sect. 4.2). After a brief review on bosonic atoms in a double-well potential (Sect. 5),
the recursive projection method for calculating spectra and the dynamics of coupled systems is
described in Sect. 6. The results of this approach for coupled anharmonic cavities and bosonic
atoms in a double-well potential are discussed and compared with the results of the coupled
harmonic cavities in Sect. 7. Finally, we summarize the work in Sect. 8.

2. Spectral density and the evolution of isolated systems

We consider a system which is isolated from the environment. In terms of photonic states
this can be realized by an ideal optical cavity. With the initial state |Ψ0〉 we obtain from the
time evolution |Ψt〉 = e−iHt|Ψ0〉 the evolution of the return probability |〈Ψ0|Ψt〉|2 with the
return amplitude 〈Ψ0|Ψt〉 = 〈Ψ0|e−iHt|Ψ0〉. A Laplace transformation relates the return and
the transition amplitude to another state |Psi1〉 with the resolvent through the identities

〈Ψ0|Ψt〉 =
∫

Γ
〈Ψ0|(z −H)−1|Ψ0〉e−iztdz, 〈Ψ1|Ψt〉 =

∫

Γ
〈Ψ1|(z −H)−1|Ψ0〉e−iztdz , (1)

where the contour Γ encloses all the eigenvalues Ej (j = 0, 1, ..., N) of H, assuming that the
underlying Hilbert space is N + 1 dimensional. With the corresponding eigenstates |Ej〉 the
spectral representation of the resolvent is a rational function of z:

〈Ψ0|(z −H)−1|Ψ0〉 =
N
∑

j=0

|〈Ψ0|Ej〉|2
z − Ej

=
PN (z)

QN+1(z)
, QN+1(z) =

N
∏

j=0

(z −Ej) , (2)
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where PN (z), QN+1(z) are polynomials in z of order N , N +1, respectively. These polynomials
can be evaluated by the recursive projection method [32].

The expression in Eq. (2) suggests the introduction of the spectral density ρ0,0(E) as the
imaginary part of the resolvent:

ρ0,0(E) = lim
ǫ→0

1

π
Im〈Ψ0|(E−iǫ−H)−1|Ψ0〉 = lim

ǫ→0

ǫ

π

N
∑

j=0

|〈Ψ0|Ej〉|2
ǫ2 + (E − Ej)2

=
N
∑

j=0

|〈Ψ0|Ej〉|2δ(E−Ej) ,

(3)
where |Ψ0〉 is a reference state. In other words, ρ0,0(E) is the diagonal element of the density
matrix with respect to |Ψ0〉. Then the return amplitude can be written as the Fourier transform
of the spectral density

〈Ψ0|Ψt〉 =
∫

ρ0,0(E)e−iEtdE =
N
∑

j=0

|〈Ψ0|Ej〉|2e−iEjt . (4)

We can also evaluate other elements of the density matrix, such as the off-diagonal element

ρ1,0(E) =
1

π
lim
ǫ→0

Im〈Ψ1|(E − iǫ−H)−1|Ψ0〉 =
∑

j

〈Ψ1|Ej〉〈Ej |Ψ0〉δ(E − Ej) , (5)

whose Fourier transforms gives the transition amplitude between the states |Ψ0〉 and |Ψ1〉:

〈Ψ1|Ψt〉 =
∫

ρ1,0(E)e−iEtdE =
N
∑

j=0

〈Ψ1|Ej〉〈Ej |Ψ0〉e−iEjt . (6)

To characterize the entangled state |Ψt〉 = c0|Ψ0〉+c1|Ψ1〉 that may appear during the evolution,
we need to evaluate the amplitudes (4), (6) and count how often they realize certain values c0,
c1 simultaneously during a long period of time. After normalization, this defines the conditional
probability Pt(c0, c1) for having 〈Ψ0|Ψt〉 = c0 and 〈Ψ1|Ψt〉 = c1 at a given time t.

3. Two coupled harmonic cavities

The Hamiltonian of two uncoupled harmonic cavities is Hhc = ω0
∑

j=1,2 a
†
jaj, where the index

j = 1, 2 refers to the two cavities with the photonic creation (annihilation) operators a†j (aj).
The eigenstates of this Hamiltonian are product Fock states |N−k, k〉 ≡ |N−k〉|k〉 (k = 0, .., N).
Coupling two cavities by an optical fiber is described by the tunneling Hamiltonian

HHC = −J(a†1a2 + a†2a1) + ω0(a
†
1a1 + a†2a2) (7)

with eigenstates |N − k; k〉. Here we assume that N is even and calculate the overlap of the
eigenstates |N − k; k〉 with the initial Fock state |N, 0〉 [16]:

〈N, 0|N − k; k〉 = 2−N/2

(

N

k

)1/2

, (8)

which is non-zero for all eigenstates. The density-matrix elements with respect to |Ψ0〉 = |N, 0〉
and |Ψ1〉 = |0, N〉 are

ρ0,0(E) = 2−N
N
∑

k=0

(

N

k

)

δ(E+J(2k−N)), ρ1,0(E) = 2−N
N
∑

k=0

(

N

k

)

(−1)kδ(E+J(2k−N)) . (9)
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Thus, there is a binomial distribution for the spectral weight |〈N, 0|N − k; k〉|2, with a maximal
overlap for an equal number of photons in each cavity. For large N the binomial distribution
becomes a Gaussian distribution, where the width of the envelope is related to the energy level
spacings ∆E = 2J . The Gaussian result resembles the Central Limit Theorem for independent
photons. Such a behavior was also found previously for freely expanding bosons from an initial
Fock state [33]. A Fourier transformation reveals a periodic behavior of the return and transition
amplitudes as

〈N, 0|e−iHt|N, 0〉 = cosN (Jt), 〈0, N |e−iHt|N, 0〉 = (−i)N sinN (Jt) . (10)

Thus the evolution of the Fock state is periodic with period 2π/J but leads to a N00N state
c0|N, 0〉+cN |0, N〉 only with a probability that decays exponentially with N . For larger values of
N the probability P (c0, cN ) indicates an anti-correlation: P (c0, cN ) vanishes as soon as both c0
and cN become nonzero. Therefore, the overlap of |Ψt〉 with a N00N state is strongly suppressed.
This is a consequence of the fact that for an increasing N the photons disappear in the (N +1)–
dimensional Hilbert space because there is no constraint due to interaction.

4. Cavities with two-level atoms

4.1. Single cavity with a two-level atom

An anharmonicity in a cavity can be created by adding an atom which interacts with the photons
[14, 15, 34]. In the case of a single two-level atom we can describe the absorption and emission
of photons by the atom approximately with the Jaynes-Cummings (JC) model [30, 31], whose
Hamiltonian reads

HJC = ω0a
†a+ (ω0 +∆)c†c− g(a†c+ c†a) . (11)

∆ is the detuning between the atomic excitation energy and the photon energy, c† (c) is the
creation (annihilation) operator of the atomic excitation, and g is the coupling strength between
the photons and the atom. The eigenvalues of this Hamiltonian are [30, 31]

En,± = ω0(n+ 1/2) ±
√

∆2 + 4g2(n+ 1), n = 0, 1, 2, ... , (12)

where the eigenstates |n,±〉 are linear combinations of the two Fock states |n : 1〉 and |n+1 : 0〉
with n and n+1 photons and an atomic state with j = 0 (atomic groundstate) and j = 1 (excited
atom). The dynamics is characterized by the energy difference En,+−En,− = 2

√

∆2 + 4g2(n+ 1)
which creates Rabi oscillations between the two Fock states |n : 0〉 and |n− 1 : 1〉 with the Rabi
frequency ΩR =

√

∆2 + 4g2(n+ 1).
The JC model describes an extreme case of Hilbert-space localization, where the system is

constraint to a two-dimensional subspace. It is enforced by the fact that the eigenstates of
the JC model are linear combinations of only two Fock states. In other words, if this system is
initially prepared in a Fock state, it will never escape from the related two-dimensional subspace.
The drawback of the extreme localization in Hilbert space is that we are not able to create
dynamically entangled Fock states whose difference in photon numbers is larger than 1. In a
more general case, however, the eigenstates of the Hamiltonian may be a superposition of many
Fock states. Then the overlap of the eigenfunctions with the initial Fock state plays a crucial
role.

4.2. Two coupled cavities with two-level atoms

Now we prepare the anharmonic cavity of Sect. 4.1 in the eigenstate of the JC Hamiltonian
|N,+〉 and connect it with another anharmonic cavity which is in the state |0,+〉. After the
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connection the photons start to tunnel between the two cavities. This system is now described
by the Hamiltonian

H2JC = −J(a†1a2 + a†2a1) +
∑

j=1,2

[ω0a
†
jaj + ω0c

†
jcj − g(a†jcj + c†jaj)] , (13)

where the first term describes the tunneling of photons between the cavities with rate J and
the second term represents the cavity levels as well as the absorption and emission of photons
by the two-level atom inside each cavity. Here we have assumed no detuning: ∆ = 0. For the
initial state we choose a product of JC eigenstates |N,σ; 0, σ′〉 ≡ |N,σ〉|0, σ′〉.

The probability for a dynamically changing of the atomic levels during the photonic tunneling
process is characterized by the ratio [35]

〈k − 1,−|a†|k,+〉
〈k − 1,−|a†|k,−〉 =

√
k + 2−

√
k + 1√

k + 2 +
√
k + 1

≈ 0 . (14)

Thus, for sufficiently many photons k the change of the atomic level is strongly suppressed.
With these approximations we decouple the dynamics of ± states into states where the atomic
level is fixed. Then we are left with states |k,N − k〉, |N − k, k〉 which only depend on the
number of photons in each cavity. The dynamics is described by a Hubbard-like model, where
the n2j interaction is replaced by a

√
nj photon-photon interaction [35]:

Heff = −J(a†1a2 + a†2a1) + ω0(a
†
1a1 + a†2a2)± 2g(

√

a†1a1 +
√

a†2a2) . (15)

The sign of the coupling depends on whether both atoms are in the ground state (-) or in the
excited state (+). This Hamiltonian has a two-fold degeneracy for J = 0 due to the equivalence
of the two cavities. The interaction is weaker than the n2j interaction of the corresponding
Hubbard model in Eq. (16). This indicates that the properties of the coupled JC models
may resemble the behavior of the Hubbard model in a double well [29], with less pronounced
interaction features though.

5. Bosonic atoms in a double-well potential

Another interesting realization of coupled quantum systems are bosonic atoms which are trapped
in a double-well potential. This has also been considered as a Josephson junction for ultracold
gases. The main advantage of such a system is based on the fact that the trapping potential,
including the barrier between the wells, is easy to control by external Laser fields. The dynamics
has been studied experimentally in great detail [36–38] and has revealed several regimes, either
dominated by tunneling or by the many-body interaction. From the theoretical point of view
the physics is described by the Hubbard-Hamiltonian

HDW = −J(a†1a2 + a†2a1) + g[(a†1a1)
2 + (a†2a2)

2] , (16)

in contrast to the effective photon-photon interaction in Eq. (15). This indicates a strong many-
body interaction for atoms. Some aspects can be described by a mean-field (Gross-Pitaevskii)
approximation, other aspects are of genuine quantum nature. The formation of entangled states,
such as a N00N state, belongs to the latter. Of particular interest for entanglement is the
intermediate regime, where tunneling and many-body interaction are strongly competing, which
restricts the available Hilbert space for the dynamical formation of new states but also mixes
different regions of the space [29, 38].
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6. Recursive projection method

The evaluation of the resolvents as rational functions presented in Eq. (2) can be performed
analytically within the recursive projection method. This method is based on the idea that we
divide the N+1–dimensional Hilbert space (N even) into two-dimensional subspaces spanned by
the states |k,N − k〉, |N − k, k〉 (k = 0, ..., N/2), since we are interested in matrix elements with
respect to the two states |0, N〉 and |N, 0〉. Then the recursive projection method is constructed
as a directed walk through all subspaces, beginning with k = N/2 and terminating with k = 0.
For this purpose we define

aN/2 = 〈N, 0|(z −H)−1|N, 0〉 = 〈0, N |(z −H)−1|0, N〉 (17)

and
bN/2 = 〈0, N |(z −H)−1|N, 0〉 = 〈N, 0|(z −H)−1|0, N〉 . (18)

Then aN/2 and bN/2 are obtained from the iteration of the recurrence relation (for details cf.
Ref. [29])

ak+1 =
z − f̃k+1 − J2ak(N/2 + k + 1)(N/2 − k)

[

z − f̃k+1 − J2ak(N/2 + k + 1)(N/2 − k)
]2

− J4b2k(N/2 + k + 1)2(N/2− k)2
(19)

bk+1 =
J2bk(N/2 + k + 1)(N/2 − k)

[

z − f̃k+1 − J2ak(N/2 + k + 1)(N/2 − k)
]2

− J4b2k(N/2 + k + 1)2(N/2 − k)2
(20)

with initial values b0 = 0, a0 = 1/(z − f̃0). The term f̃k+1 depends on the interaction of the
model:

f̃k+1 =







g[(N/2 + k + 1)2 + (N/2− k − 1)2] Hubbard model in Eq. (16)

±2g[
√

N/2 + k + 1 +
√

N/2− k − 1] coupled JC model of Eq. (15)
. (21)

The recurrence relation terminates after N/2 steps, giving us aN/2 and bN/2 in the form of ratios
of polynomials PN (z)/QN+1(z), as described in Eq. (2) .

7. Results

The properties of two coupled anharmonic cavities in Sect. 4.2 and the bosonic atoms in the
double-well potential in Sect. 5 are characterized by tunneling between the subsystems and by
a many-body interaction. The iteration of Eqs. (19), (20) gives us the following four matrix
elements of the resolvent

〈N, 0|(z −H)−1|N, 0〉, 〈0, N |(z −H)−1|0, N〉, 〈0, N |(z −H)−1|N, 0〉 = 〈N, 0|(z −H)−1|0, N〉 ,
(22)

which allows us to evaluate the spectral density ρ0,0(E) in Eq. (3) and the off-diagonal element
ρ1,0(E) of the density matrix in (5). After a Fourier transformation we obtain the return
amplitude 〈Ψ0|Ψt〉 and the transition amplitude 〈Ψ1|Ψt〉 from Eqs. (4), (6) as functions of time.

Here it should be noticed that there exists an invariance of the recurrence relation under the
following simultaneous sign changes in Eqs. (19) and (20)

z → −z, g → −g, aj → −aj, bj → −bj . (23)

This implies that a change from g → −g in the initial states results in a mirror image with
respect to energy of ρ0,0(E, g) and ρN,0(E, g):

ρ0,0(E, g) = ρ0,0(−E,−g), ρN,0(E, g) = ρN,0(−E,−g) . (24)
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This relation enables us to evaluate both atomic states of the coupled JC models with the
same recurrence relation. Moreover, the density-matrix elements are invariant with respect to
the harmonic frequency ω0 of the cavities, except for a global energy shift. This reflects an
important universality of the density matrix that allows us to separate the harmonic from the
anharmonic properties of the cavities.

In the absence of tunneling (J = 0) the spectrum two harmonic cavities is completely
degenerate for harmonic cavities

EN−k,k = ω0(N − k) + ω0k = ω0N

but is only two-fold degenerate for anharmonic cavities

EN−k,k = ω0N ± g(
√
N − k +

√
k)

or for bosonic atoms in a double-well potential:

EN−k,k = g[(N − k)2 + k2] .

After connecting the subsystems by a tunneling term the degeneracies are completely lifted. For
harmonic cavities an equidistant spectrum appears with level spacing ∆E = 2J according to Eq.
(9). Tunneling also lifts the two-fold degeneracies of the anharmonic cavities and the bosons in
the double well, as depicted in Fig. 2. However, the levels are more irregularly distributed and
their spacing is smaller than 2J for pairs of levels. Here it should be noticed that the spectrum
of the bosonic atoms indicates a spectral fragmentation with an almost two-fold degenerate
high energy part and a non-degenerate low energy part, which cannot be seen in the photonic
spectrum.

The difference between non-interacting and interacting systems is even more pronounced for
the dynamics of the return and transition amplitudes. While there is only a periodic behavior
with T = π/J in Eq. (10), anharmonic cavities have a more dynamic behavior (cf. Figs. 3,
4). In particular, on the time scale considered in Figs. 3, 4, there is no periodic behavior but
oscillations on much shorter scales than π/J ≈ 4. This is a consequence of the fact that the
individual energy levels Ek = J(2k−N) in Eq. (9) are invisible in the dynamics of the harmonic
cavities due to

N
∑

k=0

(

N

k

)

eiJ(2k−N)t = (eiJt + e−iJt)N ,
N
∑

k=0

(

N

k

)

(−1)keiJ(2k−N)t = (−eiJt + e−iJt)N . (25)

Such kind of interference effect is accidental for the non-interacting system and does not occur in
the presence of interaction. Therefore, we can distinguish the individual levels in the dynamics
only for the latter.

The return amplitude decays for both types of systems rapidly (cf. Fig. 3) but it recovers
much earlier for interacting systems, not to the full value though. Remarkable is also the
behavior of the transition amplitude. The time Tt it takes to reach the state |N, 0〉 from |0, N〉
for the first time is about the same for all three types of systems, indicating that Tt ≈ π/J must
be solely determined by the tunneling rate J . This provides a method to measure the tunneling
rate J in the dynamics of the system, regardless of the interaction.

Our main goal, the dynamical creation of an entangled state from a pure state, is also strongly
affected by Tt, since entanglement in terms of a N00N state is not possible for times shorter
than Tt. For times larger than Tt only the interacting systems can reach the state |N, 0〉 while
maintaining a non-zero overlap with the initial state (cf. Figs. 3, 4). On the other hand,
only for a small number of photons (e.g., N = 2) the harmonic cavities are capable to create
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Figure 2. Spectral density ρ0,0 for 100 bosons with tunneling rate J = 0.8. Left panel: Two
coupled cavities where the photons are coupled with two-level atoms with coupling strength
g ≈ 1.2. Right panel: Bosonic atoms in a double-well potential with Hubbard coupling constant
g = 0.02. All energies of the cavities are measured in units of the cavity frequency h̄ω0, the
energies of the bosonic atoms in units of the double-well potential.

a N00N state dynamically, as discussed in Sect. 3. For a discrete sequence of time steps we
have counted the occurrence of certain values of the return amplitude (〈N, 0|e−iHt|N, 0〉 and
the transition amplitude 〈0, N |e−iHt|N, 0〉) for interacting bosons. This yields the conditional
probability Pt(c0, cN ), which was defined at the end of Sect. 2. Examples are plotted in Fig. 6.
The plots demonstrate that the dynamical creation of a N00N state is feasible for anharmonic
cavities even for N = 100. However, in comparison with bosonic atoms in a double well with
Hubbard interaction this probability is quite small.

Phenomenological damping is described by an imaginary parameter iǫ in the complex energy
z = E + iǫ of Eq. (1), which produces exponential damping on the time scale T = h̄/ǫ. In Fig.
5 the effect of damping on the transition dynamics is plotted for coupled cavities. As expected,
the damping is crucial only on time scales larger that T . This implies that only strong damping
may play a role in the suppression of dynamically created entanglement.

8. Discussion and Conclusions

We have considered a pair of optical cavities, where the photons in each cavity couple to a
two-level atom and compared this system with bosonic atoms in a double-well potential. The
cavities are described as JC models, while the atomic system is described by a Bose-Hubbard
Hamiltonian. For a large number of photons the coupled JC models can be approximated by
an effective Hamiltonian that resembles the Bose-Hubbard Hamiltonian, where the interaction
term depends on the square root of the density.

After the initial preparation with all bosons in one subsystem the quantum system is allowed
to evolve due to tunneling between the two subsystems. We have found that the boson-boson
interaction plays a crucial role in terms of the spectral properties as well as for the dynamic
properties: While the spectral density and the dynamics are very regular for harmonic cavities,
the spectrum of the interacting systems are less regular with smaller level spacings, and the
corresponding dynamics is also quite irregular. For harmonic cavities (i.e. in the absence
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Figure 3. Return amplitude 〈ψ0|ψt〉 as a function of time for two coupled harmonic cavities
(dashed curve), for two coupled cavities with two-level atoms (full curve in the upper panel) and
for bosonic atoms in a double-well potential (full curve in the lower panel). The parameters are
the same as in the previous Figure, the time is measured in units of 1/ω0.

of the two-level atoms) the distribution of the levels with spectral weights pj = |〈Ψ0|Ej〉|2
is binomial for equidistant energy levels with spacing ∆E = 2J . The resulting evolution is
periodic and is reminiscent of Rabi oscillations with a single frequency J . Such a behavior was
observed experimentally for weakly interacting bosonic atoms [4, 5] and should also be accessible
in experiments with photons in harmonic cavities.

The amplitudes for visiting the initial Fock state |N, 0〉 or the complimentary Fock state
|0, N〉 vary as cosN (Jt) or (−i)N sinN (Jt), respectively. This implies for a large number N of
bosons that (i) these states are visited only for a very short period of time and (ii) the two
Fock states are visited at well separated times. Thus the dynamical creation of a N00N state
from a Fock state |N, 0〉 is very unlikely for harmonic cavities, unless the number of photons is
small. The reason is that the photons can travel without seeing each other through the entire
Hilbert space. A simultaneous overlap of |Ψt〉 with both Fock states |N, 0〉 and |0, N〉 is very
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Figure 4. Transition amplitude 〈ψ1|ψt〉 as a function of time for two coupled harmonic cavities
(dashed curve), for two coupled cavities with two-level atoms (full curve in the upper panel) and
for bosonic atoms in a double-well potential (full curve in the lower panel). The parameters are
the same as in the previous Figure.

unlikely then. This is a situation in which it is very difficult to control and follow the quantum
evolution. On the other hand, applications of finite quantum systems, such as in quantum
information processing [39, 40], require a controllable evolution, in which only certain parts of
the available Hilbert space can be visited with reasonable probability. In terms of our two-
cavity system this means that the spectral weight pj = |〈Ψ0|Ej〉|2 with respect to the initial
state |Ψ0〉 is small for most eigenstates |Ej〉 and has only a few pronounced maxima that can
be used for information storage. We have found that such a structured spectral density appears
for anharmonic cavities, created by coupling two-level atoms to the cavity photons. Then the
photons experience a mutual influence which restricts their individual random walks in Hilbert
space significantly and, what is even more important here, they can have a simultaneous overlap
with both states |N, 0〉 and |0, N〉. This effect enables the system to create dynamically a N00N
state. The situation is even better for bosonic atoms in a double-well potential, where the
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Figure 5. Effect of an increased damping on the transition amplitude 〈ψ1|ψt〉 for coupled
cavities with decay times T = 200 and T = 2. The other parameters are the same as in the
previous Figures.
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Figure 6. Probability Pt(c0, cN ) for creating a N00N state for large times in coupled anharmonic
cavities with N = 100 photons, J = 0.8, g = 1.2 (left panel) and for N = 20 bosonic atoms in
a double-well potential with U/J ≈ 0.026 (right panel, from Ref [29]). The axes are scaled by a
factor 100.

stronger interaction effects supports the formation of a N00N state. This allows us to conclude
that the complex quantum dynamics of two coupled anharmonic optical cavities and bosonic
atoms in a double-well potential offer an approach for quantum information processing as it has
also been proposed for ultracold atoms [39] and cold trapped ions [40].
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