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A study of the formation of excitons as a problem of two Dirac particles in a gapped graphene layer and in
two gapped graphene layers separated by a dielectric is presented. In the low-energy limit the separation of the
center-of-mass and relative motions is obtained. Analytical solutions for the wave function and energy dispersion
for both cases when the electron and the hole interact via a Coulomb potential are found. It is shown that the
energy spectrum and the effective exciton mass are functions of the energy gaps as well as of the interlayer
separation in the case of two-layer gapped graphene.
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I. INTRODUCTION

The coupling of two Dirac particles is of fundamental inter-
est in both experimental and theoretical physics and is a subject
of studies in different fields of physics. Usually the coupling
of Dirac particles is considered using the Dirac equation or
the field theoretic framework for the treatment of relativistic
bound states in which the dynamics is governed by the
Bethe-Salpeter equation. The canonical Foldy-Wouthuysen
transformation [1] of the Dirac Hamiltonian allows one to
obtain a two-component theory in the low-energy limit. In
atomic physics the application of this approach as well as the
Bethe-Salpeter formalism has led to the solution of the rela-
tivistic hydrogen problem, the bound states for a positronium
[2] and a muonium [3]. For example, an effective Hamiltonian
approach is considered for the perturbative calculation of
bound state energies in positronium [2,4,5] that provides a
sensitive test of the quantum electrodynamics. Let us also
mention that Ref. [6] addresses that a Coulomb-like potential
for the Dirac equation for which there is an exact SU(2)
symmetry leads to an exact spin-orbit doublet degeneracy.
References [7,8] provide examples of using in nuclear physics
the Bethe-Salpeter formalism for the description of deuteron
and the Foldy-Wouthuysen transformation for the effective
electron-proton Hamiltonian retaining up through terms of
order three of the inverse nucleon mass. In particle physics
similar techniques for the coupling of two Dirac particles
are used nowadays for describing quark-antiquark bound
states and quarkonium, which is a fundamental problem in
quantum chromodynamics (see, for example, Ref. [9]). To
this type of system, where two Dirac particles are coupled,
belongs also the exciton in graphene, a two-dimensional (2D)
honeycomb lattice formed by carbon atoms [10,11]. At low
energies an electron and a hole in graphene are described by
a two-dimensional Dirac-like (Weyl-like) equation, in which
the Fermi velocity plays the role of the speed of light [12–15].

The study of the excitonic system and its properties is
necessary because of potential applications in electronics and
photonics, including design of thresholdless lasers, optical
computing, and quantum computing [16–23]. From the the-
oretical point of view, an exciton is a two-body system and to
address the problem we have to solve a two-body problem in
semiconductor heterostructures or graphene. Let us mention

that the problem of the interaction between two particles is
very important for an in-depth analysis of the many-body
physics in an excitonic system. The analysis of the spectrum
of collective excitations necessary to study such many-
body phenomena in an excitonic system as Bose-Einstein
condensation and superfluidity [24] requires the solution of
a two-body problem for a single exciton. The temperature
of the Kosterlitz-Thouless phase transition corresponding
to superfluidity depends on the density of the superfluid
component [25]. This density of the superfluid component
is defined by the two-particle Green function of weakly
interacting excitons. The problem of finding the two-particle
Green function of the interacting excitons requires a one-
particle Green function of the noninteracting excitons, which is
defined by the wave function and energy dispersion of a single
exciton [26]. The collective properties and superfluidity of
excitons and polaritons in gapped graphene have been studied
in Refs. [27,28]. Therefore, it is of fundamental and practical
interest to focus on the solution of the two-body problem
in semiconductor heterostructures and graphene. Finding the
solution of the two-body problem in gapped graphene layers
is the subject of this paper.

To describe the formation of an exciton in semiconductor
heterostructures like quantum wells the standard quantum me-
chanical approach is used based on the Schrödinger equation.
In this case the two-body problem with a scalar interparticle
potential is completely understood and developed both in
configuration or momentum 3D as well as 2D spaces [29–31].
The notions of absolute time and absolute space allow us to
describe the two particles of masses m1and m2 with Euclidean
position vectors r1 and r2 and momenta p1 and p2 in an inertial
frame. It is well known [29] that, in covariant mechanics, the
most straightforward solution of the classical problem with
scalar interaction is obtained by a transformation from the
individual particle coordinates r1 and r2 and p1 and p2 to
the covariant center-of-mass and relative coordinates. Using
canonical transformation,

R = m1r1 + m2r2

m
, r = r1 − r2,

(1)
and P = p1 + p2, p = p1 − p2,
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where m = m1 + m2 is the total mass of the system, we
can separate the center-of-mass from the relative motion in
configuration or momentum space. At these coordinates, the
nontrivial motion of the system of two particles occurs entirely
in the reduced problem of one-body motion and motion of
the center-of-mass. The total Hamiltonian of the system can
be presented as a sum of two parts. One part describes the
motion of the center-of-mass while the other part describes two
particles’ relative motion: H = P2

2m
+ Hr with Hr = p2

2μ
+ V (r),

where μ = m1m2/m is the two bodies’ reduced mass. The
Hamiltonian Hr governs the relative motion of two particles
and, when the Schrödinger equation with this Hamiltonian has
been solved, the wave function of the relative motion of two
particles is obtained.

Today graphene has been attracting a great deal of experi-
mental and theoretical attention because of unusual properties
in its band structure [14,32–34]. Graphene is a 2D layer of
carbon atoms, where the atoms form a honeycomb lattice
[10,11]. In the low-energy limit the low-energy excitations
in graphene are described not by the Schrödinger equation but
instead, in graphene, electrons and holes behave as relativistic
massless particles described by a Dirac-like equation for
massless and chiral particles [12–15], which is known as the
Weyl equation. Many of the unusual properties of graphene
arise from the fact that its quasiparticles are described by Dirac
spinors. Since electrons and holes in graphene are governed
by the Weyl equation they have an intrinsic degree of freedom
that resembles the spin degree of freedom in the original
Weyl equation. This degree of freedom is called pseudospin
in order to distinguish it from the spin and is described by
the Pauli matrices. In connection with the pseudospin, there
is a good quantum number—the chirality that is defined to be
the projection of the two-momentum operator in the direction
of the pseudospin. Clearly, the electrons will have positive
chirality and the holes will have negative chirality. Also the
Fermi speed vF ∼ 106 m/s, which is around 300 times slower
than the speed of light, replaces the speed of light in the
original Weyl equation. The positive-energy solutions of this
2D equation describe electrons, whereas the negative-energy
solutions describe holes.

A 2D exciton, which is a bound state of an interacting
electron and hole, in gapped graphene presents a two-body
system and it is a fundamental and practical interest to
focus on the solution of the two-body problem in graphene.
Graphene consists of two equivalent carbon sublattices and
quantum-mechanical hopping between the sublattices leads
to the formation of two energy bands, and their intersection
near the edges of the Brillouin zone yields the conical energy
spectrum. As a result, quasiparticles in graphene exhibit a
linear dispersion relation. The formation of excitons requires
the existence of the energy gap in the electron and hole energy
spectrum. The formation of excitons in gapped graphene was
studied in Refs. [27,35–37]. The electronic ground state of
intrinsic graphene and bilayer graphene in the absence of
the energy gap using density functional theory within the
local-density approximation and the Bethe-Salpeter equation
was studied in Ref. [38]. According to Ref. [38], no pure
bound exciton was identified in intrinsic graphene and bilayer
graphene in the absence of the energy gap. Therefore, excitons

in graphene can be formed due to an energy gap opening in
the electron and hole spectra in the graphene layer. There are
different mechanisms of electronic excitations in graphene.
The energy gap in graphene can be induced and controlled
by a magnetic field, by doping, by an electric field in biased
graphene, and by hydrogenation [35,39–41].

By contrast, in quantum mechanics the description of the
relativistic two-body problem is extremely more complicated
and till now there has been no completely self-consistent theory
for the separation of the center-of-mass and relative motions
even for the two-body case. This is due to the following facts.

(i) The particles’ locations and momenta are four-vectors.
(ii) The momenta are not independent but must satisfy

mass-shell conditions.
(iii) The interparticle interaction potentials appear in the

boosts as well as in the energy generator in the instant form
of dynamics. As a result of a transformation to the center-
of-mass system even a scalar action-at-a-distance interparticle
interaction potential becomes dependent on a coordinate and
momentum.

(iv) The structure of the Poincaré group implies that there
is no definition of the relativistic 4-center-of-mass sharing all
the properties of the nonrelativistic 3-center-of-mass [42].

The two-body problem in graphene when the electron
and hole interact via a scalar action-at-a-distance interparticle
potential and are described by Weyl’s equation becomes even
more complicated than in the simple relativistic case. First, this
is related to the fact that the speed of light in the Weyl equation
for an electron in graphene is replaced by the Fermi speed and
the resultant equation becomes noncovariant and the canonical
transformation implementing the separation of the center-of-
mass from the relative variables within the relativistic approach
is invalidated. Second, even though the interparticle interaction
depends only on the coordinate of the relative motion, after the
center-of-mass transformation it becomes dependent also on
the momentum. Last, the center-of-mass cannot be separated
from the relative motion even though the interaction depends
only on the coordinate of the relative motion. This is caused
by the chiral nature of Dirac electrons in graphene.

Our paper is organized in the following way. In Sec. II we
present the Hamiltonian of the coupled two Dirac particles in
the gapped graphene. In Sec. III we present the procedure of
separation of the center-of-mass and relative motions for two
particles in graphene. In Sec. IV we obtain the energy spectrum
and the wave function of dipole excitons in two-layer graphene
and find the effective exciton mass. The energy spectrum and
the wave function of excitons formed in a gapped graphene
layer and the corresponding effective exciton mass are given
in Sec. V. Finally, the conclusions follow in Sec. VI.

II. EXCITON HAMILTONIAN

Let us consider two different parallel graphene layers with
the interlayer separation D and assume that excitons in this
system are formed by the electrons located in the one graphene
layer and, correspondingly, the holes located in the other. In
this system electrons and holes move in two separate layers
with a honeycomb lattice structure. Since the motion of the
electron is restricted in one graphene layer and the motion of
the hole is restricted in the other graphene layer, we replace the
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coordinate vectors of the electron and hole by their projections
r1 and r2 on the plane of one of the graphene sheets. These
new in-plane coordinates r1 and r2 are used everywhere below.
Thus, we reduced the restricted 3D two-body problem to the
2D two-body problem on the graphene plane. Each honeycomb
lattice is characterized by the coordinates (rj ,1) on sublattice
A and the coordinates (rj ,2) on sublattice B with j = 1 and
2 referring to the two sheets. Then the two-particle wave
function, describing two particles in different sheets, reads
�(r1,s1; r2,s2), where r1 and r2 represent the coordinates
of the electron and the hole, repectively, and s1 and s2 are
sublattice indices. This wave function can also be understood
as a four-component spinor, where the spinor components refer
to the four possible values of the sublattice indicies s1 and s2:

�(r1,s1; r2,s2) =

⎛⎜⎝φaa(r1,r2)
φab(r1,r2)
φba(r1,r2)
φbb(r1,r2)

⎞⎟⎠ ≡
(

�a

�b

)
,

(2)

where �a =
(

φaa

φab

)
, �b =

(
φba

φbb

)
.

The two components mean that one particle is on sublattice
A(B) and the other particle is on sublattice A(B), correspond-
ingly. In other words, the spinor components are from the same

tight-binding wave function at different sites. Each graphene
layer has an energy gap. Obviously the energy gaps in graphene
layers are independent and in the general case we can introduce
two nonequal gaps, δ1 and δ2, for the first and the second
graphene layers, respectively.

The corresponding hopping matrix for two noninteracting
particles, including the energy gaps δ1 and δ2 on the first and
second layers, respectively, then reads

H0 =

⎛⎜⎜⎜⎝
−δ1 + δ2 d2 d1 0

d
†
2 −δ1 − δ2 0 d1

d
†
1 0 δ1 + δ2 d2

0 d
†
1 d

†
2 δ1 − δ2

⎞⎟⎟⎟⎠ . (3)

In Eq. (3) d1 = h̄vF (−i∂x1 − ∂y1 ) and d2 = h̄vF (−i∂x2 −
∂y2 ) and the corresponding Hermitian conjugates are d

†
1 =

h̄vF (−i∂x1 + ∂y1 ) and d
†
2 = h̄vF (−i∂x2 + ∂y2 ), where ∂x =

∂/∂x and ∂y = ∂/∂y; x1, y1 and x2, y2 are the coordinates
of vectors r1 and r2, respectively; and vF is the Fermi velocity
of electrons in graphene. This Hamiltonian allows us to write
the eigenvalue equation for two noninteracting particles as

H0�0 = ε0�0, (4)

which leads to the following eigenenergies:

ε0(k1,δ1; k2,δ2) = ±
√

h̄2v2
F k2

1 + h̄2v2
F k2

2 + δ2
1 + δ2

2 ± 2
√

(h̄2v2
F k2

1 + δ2
1)(h̄2v2

F k2
2 + δ2

2)

= ±
√

h̄2v2
F k2

1 + δ2
1 ±

√
h̄2v2

F k2
2 + δ2

2 . (5)

where k1 and k2 are the wave vector of each particle, correspondingly. Equation (5) gives the energy spectrum for two
noninteracting particles in the presence of the nonequal gap energies δ1 and δ2. When there are no gaps, δ1 = 0 and δ2 = 0, as it
follows from Eq. (5), the energy dispersion is ±h̄vF k1 ± h̄vF k2.

Let’s consider the electron and the hole located in two graphene sheets with the interlayer separation D, and interacting via
the Coulomb potential V (r), where r is the projection of the distance between an electron and a hole on the plane parallel to the
graphene layers. Now the problem for the two interacting particles located in different graphene layers with the broken sublattice
symmetry in each layer can be described by the Hamiltonian

H =

⎛⎜⎜⎝
−δ1 + δ2 + V (r) d2 d1 0

d
†
2 −δ1 − δ2 + V (r) 0 d1

d
†
1 0 δ1 + δ2 + V (r) d2

0 d
†
1 d

†
2 δ1 − δ2 + V (r)

⎞⎟⎟⎠ , (6)

and the eigenvalue problem for Hamiltonian (6) is

H� = ε�, (7)

where � are four-component eigenfunctions as given in
Eq. (2).

Hamiltonian (6) describes two interacting particles located
in two graphene layers and satisfies the following conditions.

(i) When both gaps vanish, δ1 = 0 and δ2 = 0, and the
two-body potential V (r) = 0, the Hamiltonian describes two
noninteracting Dirac particles. It is important to mention that
eigenenergies are symmetrical with respect to the replacement
of particles 1 and 2.

(ii) When the interaction between particles vanishes,
V (r) = 0, the Hamiltonian describes two independent par-
ticles, each located in the separate graphene layers, having
two independent gaps energies related to the broken sublattice
symmetry in each graphene sheet.

(iii) When the gaps in each graphene layer vanish, δ1 = 0
and δ2 = 0, the Hamiltonian describes two interacting particles
in one graphene layer interacting via the Coulomb potential
V (r) and is identical to the Hamiltonian (2) in Ref. [36]
representing the two-body problem in one graphene layer if
the band gap is absent.

(iv) When the gaps δ1 = δ2 ≡ δ, the Hamiltonian describes
two interacting particles in one graphene layer interacting via
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the Coulomb potential V (r) = −e2/4πε0εr, where e is the
charge of the electron and ε is the dielectric constant of the
graphene layer.

(v) When an electron and a hole are located in two different
graphene sheets with the interlayer separation D, they interact
via the potential V (r) = −e2/4πε0εd

√
r2 + D2, where εd

is the dielectric constant of the dielectric between the two
graphene layers. Let us mention that for δ1 = δ2 = 0 and
D = 0 Hamiltonian (6) is also identical to Hamiltonian (2)
in Ref. [36].

III. SEPARATION OF THE CENTER-OF-MASS AND
RELATIVE MOTIONS

In Hamiltonian (6) the center-of-mass cannot be separated
from the relative motion even though the interaction V = V (r)
depends only on the coordinate of the relative motion. This is
caused by the chiral nature of Dirac electrons in graphene. A
similar conclusion was made for the two-particle problem in
graphene in Ref. [36].

Since the electron-hole Coulomb interaction depends only
on the relative coordinate, we introduce the new “center-of-

mass” coordinates in the plane of a graphene sheet:

R = αr1 + βr2, r = r1−r2. (8)

Here the coefficients α and β are to be determined later.
Apparently we can use the analogy of the two-particle problem
for Dirac particles in gapped two-layer graphene with the
center-of-mass coordinates for the case of the Schrödinger
equation. The coefficients α and β are found below from the
condition of the separation of the coordinates of the center-
of-mass and relative motion in the Hamiltonian in the one-
dimensional scalar equation determining the corresponding
component of the wave function.

To find the solution of Eq. (7) we make the Ansätze

�j (R,r) = eiK·Rψj (r). (9)

Let us introduce the following notations:

K+ = Kei� = Kx + iKy, K− = Ke−i� = Kx − iKy,

� = tan−1

(Ky

Kx

)
, (10)

and rewrite Hamiltonian (6) in terms of the representation of
the coordinates R and r in the form of a 2 × 2 matrix as

H =
(O2 + V (r)σ0 − δ1σ0 + δ2σ3 O1

O†
1 O2 + V (r)σ0 − δ1σ0 + δ2σ3

)
, (11)

where O1 and O2 are given by

O1 = h̄vF (αK− − i∂x − ∂y)σ0, (12)

O2 = h̄vF

(
0 βK− + i∂x + ∂y

βK+ + i∂x − ∂y 0

)
, (13)

where x and y are the components of vector r, σj are the Pauli matrices, and σ0 is the 2 × 2 unit matrix. Analysis of the operators
(12) and (13) shows that the coordinates of the center-of-mass and relative motion can be separated in a certain approximation.

For Hamiltonian (11) the eigenvalue problem H� = ε� results in the following equations:

[O2 + V (r)σ0 − δ1σ0 + δ2σ3] �a + O1�b = εσ0�a,

O†
1�a + [O2 + V (r)σ0 − δ1σ0 + δ2σ3] �b = εσ0�b. (14)

From Eq. (14) we have

�b = [εσ0 − O2 − V (r)σ0 + δ1σ0 − δ2σ3]−1 O†
1�a. (15)

Assuming the interaction potential and both the relative and center-of-mass kinetic energies are small compared to the gaps δ1

and δ2, we use the following approximation:

[εσ0 − O2 − V (r)σ0 + δ1σ0 − δ2σ3]−1 � 1

εσ0 + δ1σ0 − δ2σ3
. (16)

Using the fact that the operator O†
1O1 is purely Hermitian, applying Eq. (14) and

O†
1O1 = h̄2v2

F

[
α2K2 − ∇2

r − 2iα(Kx∂y + Ky∂x)
]
σ0, (17)

we obtain

[O2 + V (r)σ0 − δ1σ0 + δ2σ3] �a + h̄2v2
F

[
α2K2 − ∇2

r − 2iα(Kx∂x + Ky∂y)
]

εσ0 + δ1σ0 − δ2σ3
�a = εσ0�a. (18)

Now using Eq. (2) we rewrite Eq. (18) for the individual spinor components in the following form:[
−δ1 + δ2 + V (r) + h̄2v2

F

α2K2 − ∇2
r − 2ih̄vF α(Kx∂x + Ky∂y)

ε − δ1 − δ2

]
φaa + h̄vF (βK− + i∂x + ∂y)φab = εφaa, (19)
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h̄vF ( βK+ + i∂x − ∂y)φaa +
[
−δ1 − δ2 + V (r) + h̄2v2

F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 + δ2

]
φab = εφab. (20)

We solve Eq. (20) with respect to φab:

φab =
[
ε + δ1 + δ2 − V (r) − h̄2v2

F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 + δ2

]−1

( βK+ + i∂x − ∂y)h̄vF φaa. (21)

Substituting φab from Eq. (21) into Eq. (19), we obtain[
−δ1 + δ2 + V (r) + h̄2v2

F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 − δ2

]
φaa + h̄2v2

F (βK− + i∂x + ∂y)

×
[
ε + δ1 + δ2 − V (r) − h̄2v2

F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 + δ2

]−1

(βK+ + i∂x − ∂y)ϕaa = εφaa. (22)

Assuming again that the interaction potential and both the relative and center-of-mass kinetic energies are small compared to the
gaps δ1 and δ2 we apply to Eq. (22) the following approximation:[

ε + δ1 + δ2 − V (r) − h̄2v2
F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 + δ2

]−1

= 1

ε + δ1 + δ2
. (23)

Applying the approximation given by Eq. (23) to Eq. (22), we get from Eq. (22) the eigenvalue equation for the spinor component
φaa in the following form:[

−δ1 + δ2 + V (r) + h̄2v2
F

α2K2 − ∇2
r − 2iα(Kx∂x + Ky∂y)

ε − δ1 − δ2
+ h̄2v2

F

β2K2 − ∇2
r + 2iβ(Kx∂x + Ky∂y)

ε + δ1 + δ2

]
φaa = εφaa. (24)

Choosing the values for the coefficients α and β to separate
the coordinates of the center-of-mass (the wave vector K ) and
relative motion r in Eq. (24), we have

α = ε − δ1 − δ2

2ε
, β = ε + δ1 + δ2

2ε
. (25)

After substitution of Eq. (25) into Eq. (24) we can obtain
the component φaa of the spinor (2) as a solution of one-
dimensional second order differential equation:{

(h̄vFK)2

2ε
+ V (r) − ε(h̄vF )2∇2

r

2[ε2 − (δ1 + δ2)2]

}
φaa

= [ε + δ1 − δ2] φaa. (26)

The other components of Eq. (2) can be found as

�b = −[εσ0 − iD2 − δ1σ0

− δ2σ3 − V (r)σ0]−1iD
†
1�a, (27)

with Pauli matrices σj and the 2 × 2 unit matrix σ0. In Eq. (27),
we have

D1 = (∂x1 − i∂y1 )σ0, D2 = ∂x2σ1 + ∂y2σ2. (28)

IV. TWO-BODY PROBLEM IN TWO GAPPED
GRAPHENE LAYERS

Let us consider an electron and a hole located in two
different parallel graphene layers and interacting via the poten-
tial V (r) = −e2/4πε0εd

√
r2 + D2. Substituting this potential

into Eq. (26) we obtain the second-order differential equation
for the component φaa. This equation cannot be solved analyti-
cally. However, assuming r � D we can approximate V (r) by

the first two terms of the Taylor series, and substituting V (r) =
−V0 + γ r2, where V0 = e2/4πε0εdD and γ = e2/8πε0εdD

3

for the interaction potential into Eq. (26), we obtain[
− 2ε(h̄vF )2∇2

r

ε2 − (δ1 + δ2)2
+ γ r2

]
φaa

=
[
ε + δ1 − δ2 + V0 − (h̄vFK)2

2ε

]
φaa. (29)

The last equation can be rewritten in the form of the 2D
isotropic harmonic oscillator:[−F1(ε)∇2

r + γ r2
]
φaa = F0(ε)φaa, (30)

where

F1 = 2ε(h̄vF )2

ε2 − (δ1 + δ2)2
, F0 = ε + δ1 − δ2 + V0 − (h̄vFK)2

2ε
.

(31)

The eigenfunction and eigenenergy for the 2D isotropic
parabolic well were first determined by Fock in 1928 [43],
later in Ref. [44], and were studied in detail in Ref. [45]. The
single-particle eigenfunction for the 2D oscillator was widely
used for the description of quantum dots [46]. The solution
of Eq. (30) is well known (see, for example, Ref. [47]) and is
given by

F0(ε)

F1(ε)
= 2N

√
γ

F1(ε)
,

where N = 2Ñ + |L| + 1, and Ñ = min(̃n,̃n′), L = ñ − ñ′,
and ñ, ñ′ = 0,1,2,3, . . . are the quantum numbers of the 2D
harmonic oscillator. The corresponding 2D wave function in
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FIG. 1. (Color online) Excitons in two graphene layers separated by the dielectric GaAs. The effective exciton mass M in units of free
electron mass m0 (a) as a function of the total energy gap for the different graphene interlayer separations and (b) as the function of an interlayer
separation for different values of the total energy gap.

terms of associated Laguerre polynomials can be written as

φaaÑL
(r) = Ñ !

a|L|+1
√

ñ!̃n′!
sgn(L)Lr |L|−1/2e−r2/(4a2)

×L
|L|
Ñ

[r2/(2a2)]
e−iLφ

(2π )1/2
, (32)

where φ is the polar angle, L
p

k (x) are the associated Laguerre
polynomials, and a = [

√
F1(ε)/(2

√
γ )]1/2.

After some straightforward but lengthy calculations and
the expansion up to second order in K we obtain the following
expression for the energy in quadratic order with respect to K:

ε = −V0 +
√

μ2 + C1

μ
+ 1

2μ4

C1√
1 + C1

μ3

(h̄vFK)2, (33)

where μ = δ1 + δ2 and C1 = 2γN2(h̄vF )2. Thus, from
Eq. (33) we can conclude that the effective exciton mass M is
given as a function of total energy gap δ1 + δ2 as

M = μ4

v2
F C1

√
1 + C1

μ3
. (34)

The dependence of the effective exciton mass M defined by
Eq. (34) on the total energy gap δ1 + δ2 and the interlayer
separation D for two graphene layers separated by the
dielectric GaAs is shown in Fig. 1. First, according to Fig. 1,
the effective exciton mass M increases when the total energy
gap δ1 + δ2 and the interlayer separation D increase. Second,
the mass increases much faster for the bigger value of the
interlayer separation and the bigger value of the energy gap.
Note that the dependence of the effective exciton mass M on
the interlayer separation D is caused by the quasirelativistic
Dirac Hamiltonian of the gapped electrons and holes in
graphene layers. However, for the excitons in coupled quantum
wells (CQW) the effective exciton mass does not depend on
the interlayer separation, because the electrons and holes in
CQW are described by a Schrödinger Hamiltonian [48], while
excitons in two graphene layers are described by the Dirac-like
Hamiltonian (6).

In Fig. 2 is shown the energy dispersion of excitons for
different values of the total energy gap and interlayer sepa-
ration and for the different dielectrics between the graphene
layers. Results are presented for the parabolic approximation
for the energy dispersion assuming the low-energy limit. When
K ∼ 0.08 nm−1 the parabolic approximation (33) gives about
2% difference with respect to the exact numerical solution
and this percentage decreases when K decreases. The analysis
of the results presented in Fig. 2(a) shows that the energy
dispersion decreases when the total energy gap increases.
The same behavior can be observed for the dependence of
the energy dispersion on interlayer separation: for given K
when interlayer separation increases the energy dispersion
decreases [Fig. 2(b)]. In Fig. 2(c) is given the energy dispersion
of excitons for the different dielectric placed between two
graphene layers. As can be seen, there is a small increase for
the energy dispersion: for a smaller value of the dielectric
constant the energy dispersion of excitons becomes bigger.

V. TWO-BODY PROBLEM IN A GAPPED
GRAPHENE LAYER

Now we consider an electron and a hole located in a single
gapped graphene layer with the energy gap parameter δ and
an exciton formed by the electron and the hole located in this
graphene layer. Putting the gaps δ1 = δ2 ≡ δ in Eq. (6), we
obtain the Hamiltonian that describes two interacting particles
in one graphene layer interacting via the Coulomb potential
V (r) = − e2

4πε0εr
. Using this potential we rewrite Eq. (26) in

the form[
−2ε(h̄vF )2∇2

r

ε2 − 4δ2
− e2

4πε0εr

]
φaa =

[
ε − (h̄vFK)2

2ε

]
φaa.

(35)

Equation (35) can be rewritten in the form of the two-
dimensional hydrogen atom:(

−F1(ε)∇2
r − e2

4πε0εr

)
φaa = F0(ε)φaa, (36)
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FIG. 2. (Color online) Excitons in two graphene layers separated
by the dielectric. The energy dispersion of excitons in the ground state
(a) for the fixed total energy gap and the different graphene interlayer
separations, (b) for the fixed interlayer separation for different values
of the total energy gap, and (c) for the fixed total energy gap, graphene
interlayer separations, and the different dielectrics between graphene
layers.

where

F1 = 2ε(h̄vF )2

ε2 − 4δ2
, F0 = ε − (h̄vFK)2

2ε
. (37)

The solution of the 2D hydrogen atom equation (36) is well
known [49–51] and is given by

F0(ε) = − e4

4F1(ε)ε2 (n − 1/2)2 , (38)

where n = 1,2,3, . . . are the quantum numbers, and the wave
function in terms of associated Laguerre polynomials is
given by

φaanl
(r) = β̃

[
(n − 1 − |l|)!

[(|l| + n − 1)!]3(2n − 1)

]1/2

× e−β̃r/2(β̃r)|l|L2|l|
n+|l|−1(β̃r)

eilϕ

(2π )1/2
, (39)

where β̃ = e2/ [(n − 1/2)εF1(ε)], ϕ is the polar angle, L
p

k (x)
are the associated Laguerre polynomials, and the quantum
numbers l can take the values l = 0, ± 1, ± 2, . . . , ± (n − 1).

After simplification Eq. (38) can be rewritten in the form
of the following quadratic equation:

(C + 8γ )ε2 − 4γ k2 − 4Cδ2 = 0, (40)

where γ = (h̄vF )2, k = h̄vFK, and C = e4/

[4πε0ε(n − 1/2)]2.
The solutions of Eq. (40) are given by

ε = 2

(
γ (h̄vFK)2 + Cδ2

C + 8γ

)1/2

. (41)

Equation (41) gives the energy dispersion ε(K) of the
electron and the hole that are bound via the Coulomb potential
in a single graphene layer. Since our interest is small kinetic
energy, therefore for small K we expand Eq. (41) with respect
toK2 and approximate ε(K) by the first two terms of the Taylor
series:

ε = Eb + (h̄K)2

2M , (42)

where Eb is the exciton binding energy given by

Eb = 2δ

(
C

C + 2γ

)1/2

(43)

and M is the effective mass of the exciton given by

M = δ

2γ v2
F

√
(C + 8γ )C. (44)

We note the exciton effective mass M increases when
the gap δ increases as is shown in Fig. 3(a). The result
of the calculation of the exciton energy dispersion in a
graphene layer for different gap energy δ in the low-energy
parabolic approximation is given in Fig. 3(b). When K ∼
0.08 nm−1 the parabolic approximation (42) gives less than
0.5% difference with respect to the exact solution (41) and this
value decreases when K decreases. According to Fig. 3(b), the
energy dispersion of the exciton increases with the increase of
the gap energy δ. However, for two graphene layers separated
by a dielectric the energy dispersion decreases when the total
energy gap increases. Also the comparison of the exciton
energy distribution in a graphene layer and in two graphene
layers separated by a dielectric shows that the exciton energy
in a single graphene layer is always bigger than that in two
graphene layers separated by a dielectric.
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FIG. 3. (Color online) Excitons in the single graphene layer. (a) The effective exciton mass as a function of the energy gap (b) The energy
dispersion of excitons in the ground state for the different values of the energy gap.

VI. CONCLUSIONS

Now let us return to the fundamental and practical question
related to finding the solution of a problem of two interacting
Dirac particles that form the exciton in a gapped graphene layer
and in two gapped graphene layers. In the low-energy limit this
problem can be solved analytically, and we obtained the energy
dispersion and the wave function of the exciton in a gapped
graphene layer and in two gapped graphene layers separated
by a dielectric. The excitons were considered as a system of
two Dirac particles interacting via a Coulomb potential, V (r).
In the general case the center-of-mass cannot be separated
from the relative motion even though the interaction depends
only on the coordinate of the relative motion. The analytical
solution for the energy dispersion and the wave function was
obtained by introducing the transformation for the separation
of the center-of-mass and relative motions for two particles in
graphene that allows one to reduce the Dirac-like equation for
the spinor to the Schrödinger-like second-order differential
equation for the component of the spinor. In the parabolic
approximation for the energy dispersion the effective mass
of the exciton which is the function of the energy gap in
the single graphene layer and function of the energy gaps
and interlayer separation in the case of two graphene layers

separated by the dielectric is found. First, we can conclude that
the exciton effective mass increases in both the case of a single
layer of graphene and in the case of two layers of graphene
as the gap energy increases. Also the exciton effective mass
increases when the interlayer separation increases. Therefore,
by tuning the energy gaps in graphene layers and changing
the interlayer separation one can get a desirable value for
the effective exciton mass. This is very important for the
system of many excitons when this system is considered as
a dilute gas of excitons that forms Bose-Einstein condensate
and undergoes the Kosterlitz-Thouless phase transition to a
superfluid phase. By decreasing the mass of the exciton one
can increase the Kosterlitz-Thouless transition temperature.
Second, for the exciton in a single graphene layer the energy
dispersion increases with the increase of the gap energy.
However, for the exciton in two graphene layers separated
by a dielectric the energy dispersion decreases when the total
energy gap increases and it decreases when the interlayer
separation increases.
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