
                        
                              

              

           
                

Scaling behavior of disordered lattice fermions in two dimensions
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Abstract. We propose a lattice model for Dirac fermions which allows us to break the degeneracy of the
node structure. In the presence of a random gap we analyze the scaling behavior of the localization length
as a function of the system width within a numerical transfer-matrix approach. Depending on the strength
of the randomness, there are different scaling regimes for weak, intermediate and strong disorder. These
regimes are separated by transitions that are characterized by one-parameter scaling.

1 Introduction

Two-dimensional (2D) Dirac fermions play a crucial role
as quasiparticles in graphene and on the surface of topo-
logical insulators. A fascinating consequence of their ap-
pearance in graphene are the robust electronic trans-
port and the optical properties in the vicinity of the two
Dirac nodes, where two electronic bands meet each other
with linear dispersion [1,2]. The appearance of the Dirac
nodes is caused by the honeycomb lattice in graphene,
which decomposes into two triangular sublattices. A sim-
ilar band structure was discussed for a number of semi-
conductors [3]. This indicates that 2D Dirac fermions may
play a crucial role in designing new materials with specific
opto-electronic properties.

In contrast to the experimentally observed robust
transport properties it has been claimed from the the-
oretical side that transport is very sensitive to whether
inter-node scattering is present or not in the presence of
disorder [4]. In particular, there have been speculations
that electronic states are delocalized in the absence of
inter-node scattering but localized in its presence. Several
authors claimed that this can be explained by changing
the symmetry class of the underlying Hamiltonian from
symplectic to orthogonal [5,6]. These claims are based on
weak-localization calculations [4,6], which predict weak
(anti-)localization (with) without inter-node scattering.
Since weak localization calculations can only indicate the
tendency towards localization, it would be interesting to
evaluate this effect directly in terms of the scaling be-
havior of the localization length. A step in this direction
is a computer simulation of the conductivity, using the
Landauer-Büttiker formalism, that shows that fermions
on the honeycomb lattice undergo a metal-insulator tran-
sition for long-range random scalar potential with strong
disorder [7].
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We shall study in the following the localization length
of a strip of finite width M under a change ofM in this pa-
per. Our method, originally introduced for transfer-matrix
calculations of the Schrödinger Hamiltonian [8–10], will be
applied subsequently to 2D lattice Dirac fermions with one
or more nodes. The same method has also been used to
study the scaling behavior of network models (cf. [11,12])
or the brickwork lattice within the tight-binding formal-
ism [13,14]. For this purpose we introduce a model which
has two bands and four Dirac nodes. We can open a gap at
one node and gaps for the other three nods independently.
This allows us to study the effect of intervalley scattering
by either keeping all four nodes or removing three of them
and keeping only a single node.

The aim of this work is to understand the scaling be-
havior of the localization length in two dimensions in the
metallic regime and near a metal-insulator transition due
to a gap opening. The latter has been observed recently
in graphene [15–17] where it appears in the presence of
a random gap in the Dirac spectrum. If the average gap
value is small in comparison to the fluctuation strength the
system is metallic whereas it is insulating when the gap
fluctuations are too weak in comparison to the average
gap [18–20].

2 Model

A tight-binding description of electrons in graphene yields
the famous energy dispersion with two separate nodes (or
neutrality points) in the Brillouin zone. In the vicinity
of these nodes the momentum dependence of the spec-
trum is found to be linear and the low-energy behavior of
quasi particles can well be described by the Dirac equation
Hψ(x, y) = Eψ(x, y) with the Hamiltonian

H = −i�vF

(
�σ · �∇

)
+ v2

Fmσ3, (1)
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Fig. 1. Brillouin zone of the discrete Dirac equation with circles depicting the positions of the Dirac cones (left). A cut through
the energy dispersion (8) in the two-dimensional k space with the points X, Y and Γ , as indicated in the inset, is shown on the
right for δ = 0 (blue line), δ = 0.5 (red line).

where vF is the Fermi velocity, �σ is the vector of Pauli ma-
trices and ψ = (ϕ1, ϕ2) is the two component spinor wave
function, furthermore, we set �vF = 1. The gap m can be
of different origin: in graphene for example, a gap can be
opened by breaking the sublattice symmetry, i.e. a stag-
gered potential or by adsorption of atoms [16]. In a topo-
logical insulator the Dirac surface mode can be gapped due
to local spins originating from magnetic dopants on the
surface. Then, the mean density of local spins determines
the gap width [21].

A numerical treatment of the Dirac equation requires
a discretization in space. However, the naive discretiza-
tion through replacing the differential operator by a dif-
ference operator leads to additional new nodes, which is
often called fermion doubling or multiplication [22]. In
real space there are two methods to circumvent this prob-
lem [5,23,24]. One that we will describe in this section goes
back to the idea of Susskind. We start with discretizing
the differential operator in a symmetric way

∂xf(x) ≈ 1
2Δ

(fl+Δ − fl−Δ), (2)

where Δ is the lattice constant which we set to unity in
the following. The discrete Dirac equation for m = 0 then
takes the form

− i

2
σ1 {ψl+1,n−ψl−1,n}− i

2
σ2 {ψl,n+1−ψl,n−1}=Eσ0ψl,n

(3)

with lattice points given by the coordinates (l, n) with in-
teger l and n. This lattice Hamiltonian can be understood
as a tight-binding model for electrons on a lattice with
sublattice structure. A well-known example is graphene.
Off-diagonal elements of the Pauli matrices describe hop-
ping between different sublattices. Fourier transformation
provides the dispersion E = ±√

sin(kx)2 + sin(ky)2 which
has four Dirac cones in the Brillouin zone corresponding
to four Dirac fermions. In order to open a gap at three of
them we introduce a lattice operator [25] which acts on a
wave function as:

B̂ψl,n =
1
2
σ3 {ψl+1,n + ψl−1,n + ψl,n+1 + ψl,n−1 − 4ψl,n} .

(4)

Such a lattice term can appear, for instance, in the tight-
binding representation on a surface of a topological in-
sulator. It describes a nearest-neighbor hopping term on
the same sublattice. As such it breaks the sublattice sym-
metry of the Hamiltonian in equation (3) with the effect
that a gap opens. This leads to a discretized version of the
Hamiltonian (1), where we include the lattice operator B̂
and a random gap term

H → H + δB̂ +ml,n σ3. (5)

The parameter δ allows us to tune the contribution of the
hopping on the same sublattice. Then the Hamiltonian
can also be written as:

Hr′r = εr δr′r + tx δr′r+ex + ty δr′r+ey + h.c. (6)

where r = lex +ney is a vector on the lattice with unit vec-
tors ex = (1, 0) and ey = (0, 1). Furthermore, the nonzero
matrix elements are given by:

εr =(ml,n−2δ)σ3, tx =
1
2

(δσ3−iσ1) , ty =
1
2

(δσ3−iσ2).

Here it should be noticed that the invariance of the
Hamiltonian (1) under the transformationH → −σ1H

∗σ1

has been preserved under the discretization procedure.
For uniform gap m our new Hamiltonian reads in

Fourier representation

H = sin(kx)σ1 − sin(ky)σ2 + (m+ δ(cos(kx)
+ cos(ky) − 2))σ3

= h1(kx)σx − h2(ky)σ2 + h3(kx, ky)σ3 (7)

with the dispersion

E = ±
√
h1(kx)2 + h2(ky)2 + h3(kx, ky)2. (8)

For m = 0, δ = 0 there are four different nodes in the
Brillouin Zone as it is indicated by the open circles in the
left panel of Figure 1. We denote these points by Γ , Y ,
and X , where Y is two fold degenerate. For m = 0 and
δ �= 0 there is a node at (kx, ky) = (0, 0) (Γ ) and the nodes
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at Y and X are gapped. For m = 2δ the nodes are located
at Y or atX for m = 4δ. The right panel of Figure 1 shows
a plot of the dispersion equation (8). The node degeneracy
can be lifted in this model via the parameter δ.

We absorb the index n with the help of matrix
representation and write for the wave function

ψl+1 = Hy ψl +HD ψl−1. (9)

Each spinor component is now a M -component vector,
where M is the width of a strip and thus n = 1, 2, . . . ,M .
The matrices Hy, HD read

Hy
n,n = t−1

x [E σ0 + (2δ −mn)σ3]

Hy
n,n+1 =

1
2
t−1
x [iσ2 − δσ3]

Hy
n,n−1 = −1

2
t−1
x [iσ2 + δσ3]

HD
n,n = −1

2
t−1
x [iσ1 + δσ3]

where Hy contains periodic boundary conditions in the
y-direction. This matrix structure allows us to construct
a transfer matrix Tl through the equation [8]

(
ψl+1

ψl

)
=

(
Hy HD

1 0

) (
ψl

ψl−1

)
≡ Tl

(
ψl

ψl−1

)
. (10)

The introduction of a different random potential, e.g.
random scalar potential, is straight forward.

Lyapunov exponents

According to [8,9] the transfer matrices Tl, defined in
equation (10), can be used to calculate Lyapunov char-
acteristic exponents (LCE). With initial values ψ0 and ψ1

the iteration of equation (10) provides ψL by the product
matrix

ML =
L∏

l=1

Tl. (11)

For disordered systems this is a product of random matri-
ces that satisfies Oseledec’s theorem [26]. The latter states
that there exists a limiting matrix

Γ = lim
L→∞

(
M †

LML

)1/2L

. (12)

The eigenvalues of Γ are usually written as exponential
functions exp(γi), where γi is the LCE. Adapting the nu-
merical algorithm described in reference [8], the whole
Lyapunov spectrum can be calculated and the smallest
LCE is identified with the inverse localization length [9].

3 Numerical results for random gap

After introducing the model and the corresponding trans-
fer matrices we calculate the inverse of the smallest LCE

Λ = 1/γmin which is identified as the localization length.
Λ increases with the system width M according to a power
law:

Λ ∝Mα, (13)

where α > 1 (α < 1) in the regime of extended (localized)
states, and α = 1 in the critical regime. For the exponen-
tially localized regime we expect Λ ∝ const. According
to the one-parameter scaling theory by MacKinnon and
Kramer [27], the normalized localization length Λ̃ = Λ/M
obeys the equation

d ln Λ̃
d lnM

= χ(ln Λ̃), (14)

where χ is an unknown function with solutions of the form

Λ̃(M,W ) = f(ξ(W )/M). (15)

The parameter W characterizes the disorder strength
and ξ is a characteristic length of the system. The one-
parameter scaling theory states that Λ̃ is not depend-
ing on M and W separately. Any change of disorder
strength W can be compensated by a change of the sys-
tem width M . Furthermore, from the behavior of Λ̃ in the
vicinity of a scale-invariant point it is possible to calculate
the critical exponent ν of the correlation length [8], which
is the localization length of the infinite system. This is
done by Taylor expansion

ln Λ̃ = ln Λ̃c +
S∑

s=1

As

(
|W −Wc|M1/ν

)s

= ln Λ̃c +
S∑

s=1

As

(
ξ

M

)−s/ν

, (16)

with ξ = |W −Wc|−ν . Comparing the latter with equa-
tion (15), the scaling function ξ can be interpreted as the
characteristic length scale. We also have used the scaling
ansatz of reference [14] but this did not provide a good
fit to our data. On the other hand, the scaling behavior
in this type of numerical analysis is limited by the finite
width of the system. This means that we cannot rule out
that there are corrections to the asymptotic behavior of
the infinite system.

3.1 Preserved node symmetry: δ = 0

In this case we have a four-fold degeneracy of the node
structure. First we calculate Λ from transfer matrix (10)
with δ = 0. If it is not mentioned explicitly we use for
the random gap m a box distribution on the interval [m̄−
W/2, m̄+W/2], where the corresponding variance is given
byW 2/12. Furthermore, we restrict our calculations to the
Dirac point (i.e. E = 0).

Figure 2 depicts the effect of the average gap m̄ on
the localization length Λ. The localization length always
increases with system width M , indicating that there is
no exponential localization. Only for very weak disorder
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Fig. 2. Localization length for preserved node degeneracy (δ = 0) with average gap m̄ = 0 (left panel) and m̄ = 0.2 (right
panel) as a function of strip width M .
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Fig. 3. Scaling plot of the localization length for δ = 0, m̄ = 0 (left) and δ = 0, m̄ = 0.2 (right). Left: rescaled without data for
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(W < 0.2) and m̄ = 0.2 the localization length Λ is al-
most independent of M , which indicates exponential lo-
calization for m̄ = 0.2 (cf. Fig. 4a). As disorder increases
the localization length decreases monotonically for m̄ = 0
but not for m̄ = 0.2 (cf. Fig. 2b). If we normalize Λ by
strip width M and perform single parameter scaling as
described in reference [8], almost all data points collapse
to a single curve (cf. Fig. 3a). However, we had to neglect
data points from weak disorder (W ≤ 1.6) to see clearly
a scaling behavior.

The behavior of Λ for a nonzero average gap (m̄ = 0.2)
is more complex, as shown in Figures 3b and 4a. For weak
disorder the localization length converges to a constant
value for increasing M . As disorder increases Λ increases
also but remains constant for large M . Then there is a
transition at W ≈ 2.1 where Λ is again growing with sys-
tem size but the slope decreases with increasing disorder.

Due to this behavior of Λ as a function of disorder it
is not possible to perform single parameter scaling in the
common way. One approach to calculate the scaling func-
tion is to minimize the variance of lnM − ln ξ for each
localization length [27]. In a double logarithmic plot of
Λ̃ the problem of one-parameter scaling translates then
into shifting all curves onto one [8]. Since the position of

the resulting curve is irrelevant it is convenient to shift
all curves onto the lowest i.e. that for biggest disorder. If
one looks closely at the data in Figure 2 one sees that this
is not possible only by shifting. Comparing to Figure 4
one can distinguish two regimes separated at W ≈ 2.1. In
both regimes one parameter scaling can be performed sep-
arately which gives two scaling functions for the infinite
system. Additionally it is very important to point out that
Λ̃ is always decaying with system size. Usually this is inter-
preted as localizing behavior. Whereas our analysis shows
a rather unusual phase transition, namely that the corre-
lation length diverges only when approaching the critical
point from below Wc. In order to extract the functional
behavior of ξ at the transition point we have fitted the
data to several functions and found best agreement with

ξ(W ) ∝ |W −Wc|−νL for 0 < W < Wc. (17)

The results for the critical parameters are

ν ≈ 0.289± 0.013 (Wc ≈ 2.156± 0.009).

If we compare the variance g of the fitted critical disorder
strength which is gc = 0.387 to the gap width 2m̄ = 0.4
we see a good agreement. A possible explanation for this
might be that if fluctuations of the random gap are larger
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Fig. 4. Localization length for random gap with zero mean and broken node symmetry with (δ = 0.0, m̄ = 0.2) (left), δ = 0.5
and m̄ = 0 (right) and δ = 0.5 and m̄ = 0.2 (bottom) as a function of disorder.

than the gap width states are no more exponentially local-
ized and diffusive transport is possible. From this point of
view we can also calculate Wc from the average gap width
which yields W̃c ≈ 2.191. Fitting (17) with fixed critical
disorder gives slightly different exponents but also a very
good agreement with the numerical scaling function for
0 < W < Wc:

ν ≈ 0.332 ± 0.004 (Wc ≈ 2.191).

3.2 Broken node symmetry: δ �= 0

By setting δ = 0.5 we break the four-fold degeneracy of
the node structure and retain only the node at kx = ky =
0. Unlike in the case of δ = 0 the localization length is
not growing with system size if m̄ = 0. Figure 5a shows
that for weak disorder Λ is constant with increasing M
but decreases with increasing disorder W . However, for
W ≥ 4.1 Λ it increases with M (Fig. 5a). The normalized
data is shown in Figure 4b. To keep the plot illustrative
only a choice of the whole data is shown. What can be
seen in Figure 4a is that for weak disorder up to W =
3.6 the normalized localization length decays for growing
system sizes and scales to zero with M . For disorder larger
than W = 3.6 Λ̃ is growing with system size. The growing
localization length may be explained by comparison to
the clean case. If fluctuations of the random gap are in

the range of 2δ a massless fermion appears. Thus disorder
effectively closes the gap at the border of the Brillouin
zone and the model shows metallic behavior.

For weak (i.e. W � 4) and strong disorder (i.e.
W � 7.5) the behavior is qualitatively the same, charac-
terized by a decaying behavior of Λ̃ with increasing M .
The benefit of plotting Λ̃ over W is that one can see
directly two scale invariant points where different Λ̃ are
intersecting for all available values of M . These points
are indicative of phase transitions. Now we use the fitting
functions of equation (16) to extract the critical expo-
nent ν from our numerical result. For this purpose we set
s = 5 and obtain the resulting curves in Figure 6. The
critical parameters are listed in Table 1.

Using the scaling form of equation (15) all the curves
collapse on two curves for a proper choice of the scaling
function ξ, as depicted in Figures 7, 8. There plots agree
qualitatively well for m̄ = 0, m̄ = 0.2, m̄ = 0.8 and m̄ =
−0.5, the critical exponents for the second transition differ
slightly though (cf. Tabs. 1–4).

3.2.1 Insulator-insulator transition

The reason that the model is not critical for m̄ = 0 is that
it is not symmetric when replacing m → −m. Instead it
is symmetric around m̄ = 1. Nevertheless we expect a
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Table 1. Critical values for m̄ = 0 and δ = 0.5 obtained from
fitting the data to equation (16).

Critical point I II
Exponent ν 1.297 ± 0.031 1.299 ± 0.066

Wc 3.975 ± 0.002 7.668 ± 0.008
Λc 0.574 ± 0.009 0.447 ± 0.005

Disorder range 3.87 ≤ W ≤ 4.17 7.35 ≤ W ≤ 7.8
System sizes 20 ≤ M ≤ 80 30 ≤ M ≤ 80

phase boundary separating two distinct insulating phases
in vicinity of m̄ ∼ 0, 2δ, 4δ where the localization length is
independent of system size for disorder strengths smaller
than Wc1. This means, that if we change m̄ for fixed dis-
order, the system should undergo an insulator-insulator
transition. Due to the asymmetry in m the phase bound-
ary, at m̄ ∼ 0, is shifted to negative m̄ for increasingW . In
order to confirm this assumption, we fix disorder strength
and calculate Λ for different strip widths M as a function
of m̄. Discussing the inverse of the normalized localization
length z = Mγmin (or normalized Lyapunov exponent) is
equivalent to discussing Λ/M [10] and numerical results
are shown in Figure 9. Indeed, it can be seen that there

is a critical point at m̄ < 0. The critical exponent can be
obtained by fitting the data to:

z =
M

Λ
≈ zc + c (m̄−mc)M1/ν . (18)

This has been done for three points in the (m̄,W )-plane
and the results for the critical exponents can be taken
from Table 5.

3.2.2 Phase diagram

As described in the latter we have verified several critical
points using finite-size scaling, where metal-insulator and
insulator-insulator transitions occur. As a consequence,
our analysis for the introduced model with broken node
symmetry leads to a phase diagram shown in Figure 10.
Since the model is symmetric around m̄ = 2δ only one
half of the (m̄,W )-plane is shown.

3.2.3 Suppression of the metallic regime

The metallic regime we have found is only present for a
fluctuating mass with broken node symmetry. If we change
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Table 2. Critical values for m̄ = 0.2 and δ = 0.5 obtained
from fitting the data to equation (16).

Critical point I II
Exponent ν 1.297 ± 0.045 1.397 ± 0.069

Wc 3.792 ± 0.002 7.629 ± 0.015
Λc 0.591 ± 0.007 0.517 ± 0.009

Disorder range 3.72 ≤ W ≤ 3.88 7.1 ≤ W ≤ 8.0
System sizes 20 ≤ M ≤ 80 20 ≤ M ≤ 80

Table 3. Critical values for m̄ = 0.8 and δ = 0.5 obtained
from fitting the data to equation (16).

Critical point I II
Exponent ν 1.217 ± 0.017 1.451 ± 0.024

Wc 3.047 ± 0.004 7.727 ± 0.01
Λc 0.893 ± 0.013 0.479 ± 0.007

Disorder range 2.7 ≤ W ≤ 3.33 6.6 ≤ W ≤ 8.4
System sizes 20 ≤ M ≤ 80 20 ≤ M ≤ 80

the type of disorder, for example from a scalar random
potential to random gap, the behavior changes from insu-
lating to metallic. For this purpose we introduce p which

Table 4. Critical values for m̄ = −0.5 and δ = 0.5 obtained
from fitting the data to equation (16).

Critical point I
Exponent ν 1.503 ± 0.026

Wc 4.379 ± 0.006
Λc 0.687 ± 0.010

Disorder range 4.0 ≤ W ≤ 4.9
System sizes 20 ≤ M ≤ 80

allows to tune the type of disorder as:

(1 − p)Ul,n σ0 + pml,n σ3, (19)

where we have chosen two independent random number
distributions for Ul,n and ml,n with same width W . In our
numerical calculations we fix disorder strength to W = 6,
where we expect metallic behavior in the case of ran-
dom gap and tune p from scalar (p = 0) to random gap
(p = 1). Moreover, numerical calculations show that the
metallic behavior is already suppressed for values slightly
below p = 1 (cf. inset in Fig. 11). A metallic phase for a
different type of disorder can be found in the presence of
spin-orbit coupling [28,29].
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Table 5. Critical exponents for the insulator-insulator
transition.

Critical exponents
ν = 1.019 ± 0.001 (W = 1.0 mc = −0.037)
ν = 1.033 ± 0.002 (W = 1.6 mc = −0.095)
ν = 1.006 ± 0.005 (W = 1.0 mc = 1.0)

4 Discussion

Our numerical results can be summarized as follows. The
localization length Λ always increases with M according
to the power law of equation (13), where the exponent α
depends on the model parameters:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < α < 1 for δ = 0, m̄ = 0
α = 0 for δ = 0, m̄ = 0.2, W ≤Wc

0 < α < 1 for δ = 0, m̄ = 0.2, W > Wc

α = 0 for δ = 0.5, m̄ = 0, 0.2, W ≤Wc1

α > 1 for δ = 0.5, m̄ = 0, 0.2, Wc1 ≤W ≤Wc2

α = 1 for δ = 0.5, m̄ = mc, Wc1

0 < α < 1 for δ = 0.5, m̄ = 0, 0.2, W > Wc2

(20)

where δ = 0 represents the case with four degenerate
nodes and δ = 0.5 a single node. In our numerical results
we can distinguish these to two cases: (I) for a preserved
four-fold node degeneracy (i.e. δ = 0) the gapless system
has a monotonically increasing localization length with M
as well as with W and does not indicate any transition. In
the presence of a gap (m̄ �= 0), however, there is a qualita-
tive change at a characteristic disorder strength Wc: For
W < Wc the states are exponentially localized, whereas
for W > Wc they are not. It is not possible to decide
within our numerical approach whether they are really
extended or power-law localized in the gapped case. As
discussed in Appendix, it might be sufficient for diffusion
in a 2D system that the states obey a power law.

(II) For the single node (i.e. δ = 0.5) the one-parameter
scaling analysis of our results indicates a typical Anderson

I

I

M

0 2δ
<m>

0

1

2

3

4

5

6

7

8

9

W

Fig. 10. Phase diagram for the case of broken node symmetry.
Critical points (red points) have been obtained from finite-size
scaling, broken lines are estimations of the phase boundaries.

transition at two critical points Wc1, Wc2. The exponent
α = 0 for weak disorder (i.e. for W < Wc1) indicates
exponentially localized states. There is the intermediate
metallic phase for Wc1 < W < Wc2 with α > 1 with one-
parameter scaling behavior near the critical points. This is
indicative of two metal-insulator transitions. In particular,
there is a metal-insulator transition from α = 0 to α > 1
at a critical Wc1, which corresponds to a transition from
α = 0 to 0 < α < 1 for the gapped four degenerate Dirac
nodes. The difference between a transition from α = 0 to
0 < α < 1 and a transition from α = 0 to α > 1 is not
clear from our numerical results. It could be that the lat-
ter is a genuine transition from exponentially localized to
extended states, whereas the former is a transition from
exponentially localized to power-law localized states. Fur-
thermore, there are phase boundaries at m̄ = mc where
the localization length shows critical behavior thus α = 1.

5 Conclusion

We have introduced a model for Dirac fermions on a
lattice with several nodes which allows us to perform
numerical calculations of the localization length within
the framework of the transfer matrix formalism. Using
the Hamiltonian in equation (7) it is possible to break the
node symmetry and to compare the properties for one and
four nodal points in the Brillouin zone. We have shown
that states in the gap can be localized and thus the local-
ization length Λ converges to a finite value for increasing
system size, whereas in the gapless case there are extended
states as expected.

We have calculated the localization length for vari-
ous system sizes and for different strength of the random
gap. In all cases the localization length grows like a power
law Λ ∼ Mα with increasing system width M . However,
the exponent α is quite sensitive to the model parameters
(cf. (20)). In particular, this exponent vanishes for nonzero
average gap and weak disorder, indicating exponential lo-
calization. Our numerical result also indicates α = 0 for
non-degenerate nodes, vanishing gap and weak disorder.
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Fig. 11. NLL for W = 6, m̄ = 0 and δ = 0.5 for the transition from random scalar potential to random gap. As a function of p
(left) where the lines are guides for the eyes. The inset shows the behavior close to p = 1. The right panel shows the NLL as a
function of system size.

On the other hand, we have α > 1 only for intermedi-
ate disorder strength and non-degenerate nodes. Thus, the
nodal degeneracy suppresses the intermediate phase. The
latter is separated from the phases with 0 ≤ α < 1 by
transitions that obey one-parameter scaling behavior with
scale-invariant critical points. This reflects the results of
the weak-localization theory, where (anti-)localization has
been found for (single) two nodes [4,6].

Our study was motivated by recent developments in
the field of the 2D electron gas. Transport measurements
on graphene, for instance, indicate that the effect of dis-
order on the electrons is rather weak. Our results confirm
the robustness of the quantum states against Anderson
localization if disorder is not too strong but it also in-
dicates the possibility of an Anderson transition at suf-
ficient strong disorder. Although the latter has not yet
been observed in experiments, for instance, on graphene,
it should be possible to find it on the surface of topologi-
cal insulators, where disorder effects are stronger than in
graphene. It might also be possible to create strong disor-
der in graphene by randomly removing carbon atoms with
energetic particles [30]. The other important aspect is the
tuning of the gaps as wells as the generation or removal
of Dirac cones. Both are associated with an external sym-
metry breaking. This can be provided either by a periodic
potential for the creation of new Dirac cones [31] or by
structural doping with magnetic atoms [32].

Appendix: Localization and diffusion in 2D

Exponentially localized states rule out diffusive behavior.
Here we briefly discuss that a power-law decaying state
can provide diffusive behavior in a 2D electron gas. Diffu-
sion of |Ψ(r, t)|2 in 2D is defined by the diffusion equation

(
∂

∂t
− D

4
∇2

)
|Ψ(r, t)|2 = 0, (A.1)

which has an expanding solution

|Ψ(r, t)|2 ≡ K(r, ω) ∼ e−r2/Dt

Dt
(t ∼ ∞).

The solution of equation (A.1) is also given by the diffusion
propagator

K̃(q, ω) =
K̄

ω +Dq2
.

On the other hand, the localization length ξ in the spatial
direction j can be defined as:

ξ =
√∑

r

r2jK(r, ω),

where K(r, ω) is connected with the diffusion propagator
by a Fourier transformation:

K(r, ω) = K̄

∫
eiq·r

ω +Dq2
d2q.

Using the Bessel function J0 and the momentum cut-off λ
for the q integral this result leads to:

K(r, ω = 0) −K(r′, ω = 0) =
K̄

D

∫ λr

λr′

J0(x)
x

dx

and for λr′, λr � 1

∼ K̄

D

√
2
π

∫ λr

λr′

cos(x− π/4)
x3/2

dx.

Thus K(r, ω = 0) decays on large scales like r−1/2. This
reflects the fact that a decaying wave function leads to
diffusion in 2D.



Page 10 of 10                         

References

1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I.
Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov,
Nature 438, 197 (2005)

2. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438,
201 (2005)

3. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)
4. N.H. Shon, T. Ando, J. Phys. Soc. Jpn 67, 2421 (1998)
5. J. Tworzyd�lo, C.W. Groth, C.W.J. Beenakker, Phys. Rev.

B 78, 235438 (2008)
6. H. Suzuura, T. Ando, Phys. Rev. Lett. 89, 266603 (2002)
7. Y.Y. Zhang, J. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie,

W.M. Liu, Phys. Rev. Lett. 102, 106401 (2009)
8. A. MacKinnon, B. Kramer, Z. Phys. B 13, 1546 (1983)
9. J.L. Pichard, G. Sarma, J. Phys. C 14, L127 (1981)
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