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Superfluidity and collective properties of excitonic polaritons in gapped graphene in a microcavity
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We predict the formation and superfluidity of polaritons in an optical microcavity formed by excitons in gapped
graphene embedded there and microcavity photons. The Rabi splitting related to the creation of an exciton in a
graphene layer in the presence of the band gap is obtained. It is demonstrated that the Rabi splitting decreases
when the energy gap increases, while the larger value of the dielectric constant of the microcavity gives a smaller
value for the Rabi splitting. The analysis of collective excitations as well as the sound velocity is presented. We
show that the superfluid density ns and temperature of the Kosterlitz-Thouless phase transition Tc are decreasing
functions of the energy gap.
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I. INTRODUCTION

To date, theoretical and experimental studies have been
devoted to Bose coherent effects of two-dimensional (2D)
excitonic polaritons in a quantum well embedded in a semi-
conductor microcavity.1–4 To obtain polaritons, two mirrors are
placed opposite each other in order to form a microcavity, and
quantum wells are embedded within the cavity at the antinodes
of the confined optical mode. The resonant exciton-photon
interaction results in the Rabi splitting of the excitation
spectrum. Two polariton branches appear in the spectrum due
to the resonant exciton-photon coupling. The lower polariton
branch of the spectrum has a minimum at zero momentum.
The effective mass of the lower polariton is extremely small.
These lower polaritons form a 2D weakly interacting Bose
gas. The extremely light mass of these bosonic quasiparticles
at experimentally achievable excitonic densities results in
a relatively high critical temperature for superfluidity. The
critical temperature is relatively high because the 2D thermal
de Broglie wavelength is inversely proportional to the mass of
the quasiparticle, and this wavelength becomes comparable to
the distance between the bosons.

Recently there have been many experimental and the-
oretical studies devoted to graphene, known for unusual
properties in its band structure.5,6 Due to the absence of a gap
between the conduction and valence bands in graphene, the
screening effects result in the absence of excitonic excitations
in graphene. To date, we have achieved different ways to obtain
a gap in graphene. For example, the gap in graphene structures
can be formed due to a magnetic field, doping, an electric field
in biased graphene, and finite size quantization in graphene
nanoribbons. A gap in the electron spectrum in graphene can
be opened by applying a magnetic field, which results in the
formation of magnetoexcitons.7 Excitons in graphene can be
also formed due to a gap opening in the electron and hole
spectra in the graphene layer by doping.8 There have been a
number of papers devoted to the excitonic effects in different
graphene-based structures. Significant excitonic effects related
to strong electron-hole correlations were observed in graphene
by measuring its optical conductivity in a broad spectral
range.9 The observed excitonic resonance was explained
within a phenomenological model as a Fano interference of

a strongly coupled excitonic state and a band continuum.9 The
electron-hole pair condensation in the two graphene layers has
been studied in Refs. 10–14. The possibility of formation of
edge-state excitons in graphene nanoribbons is caused by the
appearance of the gap in the electron energy spectrum due to
the finite-size quantization. A first-principles calculation of the
optical properties of armchair-edged graphene nanoribbons,
taking into consideration many-electron and excitonic effects,
was presented in Ref. 15. Yang et al.16 studied the optical
properties of zigzag-edged graphene nanoribbons with the spin
interaction. It was found that optical response was dominated
by magnetic edge-state-derived excitons with large binding
energy. First-principles calculations of many-electron effects
on the optical response of graphene, bilayer graphene, and
graphite were performed in Ref. 17. It was found that resonant
excitons were formed in these two-dimensional semimetals.
The other mechanism of electronic excitations in graphene
can be achieved in biased graphene, where the energy band
gap is formed by an applied electric field. A continuously
tunable band gap of up to 250 meV was generated in biased
bilayer graphene.18 It was shown that the optical response of
this system is dominated by bound excitons.19

According to Ref. 20 a tunable gap in graphene can
be induced and controlled by hydrogenation. The excitons
in gapped graphene can be created by laser pumping. The
superfluidity of quasi-two-dimensional dipole excitons in
double-layer graphene in the presence of band gaps was
proposed recently in Ref. 21.

The Bose-Einstein condensation (BEC) of magnetoex-
citonic polaritons formed by magnetoexcitons in graphene
embedded in a semiconductor microcavity in a high magnetic
field in a planar harmonic potential trap was studied in Ref. 22.
However, the superfluidity of magnetoexcitonic polaritons in
graphene in this case is absent, since the superfluidity is caused
by the sound spectrum of Bose collective excitations due to the
exciton-exciton interaction, which is negligible in graphene in
a high magnetic field, in analogy to 2D magnetoexcitons in a
quantum well.23

In this paper we consider the direct 2D excitons formed
in a single graphene layer in the presence of the band gap
and predict the superfluidity of polaritons formed by these
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excitons and microcavity photons, when the graphene layer
is embedded into an optical microcavity. We obtained the
corresponding superfluid density and temperature for the
Kosterlitz-Thouless phase transition due to the superfluidity
of microcavity polaritons.

The paper is organized in the following way. In Sec. II
we present the Hamiltonian of excitons in a graphene layer
embedded in an optical microcavity. In Sec. III we obtain
the excitonic Hamiltonian, which is the sum of the Hamilto-
nian of noninteracting excitons in gapped graphene and the
Hamiltonian that describes the exciton-exciton interaction.
The Hamiltonian of photons in a semiconductor microcavity
is given in Sec. IV. In Sec. V the Hamiltonian of the harmonic
exciton-photon coupling in gapped graphene is derived and
the corresponding Rabi splitting is obtained. The study of the
condensation of a gas of microcavity polaritons, the density of
the superfluid component, as well as the Kosterlitz-Thouless
temperature are presented in Sec. VI. Finally, the discussion
of the results and the conclusions follow in Sec. VII.

II. HAMILTONIAN OF GAPPED GRAPHENE EXCITONS
IN A MICROCAVITY

The total Hamiltonian Ĥtot of the system of 2D excitons in
gapped graphene embedded in an optical microcavity and 2D
microcavity photons can be written as

Ĥtot = Ĥex + Ĥph + Ĥex-ph, (1)

where Ĥex is the Hamiltonian of excitons in graphene in the
presence of the gap, Ĥph is the Hamiltonian of the microcavity
photons, and Ĥex-ph is the Hamiltonian for the exciton-photon
interaction.

The Hamiltonian of 2D excitons in the graphene in the
presence of a gap is given by

Ĥex = Ĥ (0)
ex + Ĥex-ex, (2)

where Ĥ (0)
ex is the Hamiltonian of noninteracting 2D excitons in

gapped graphene and Ĥex-ex is the Hamiltonian of the exciton-
exciton interaction.

The Hamiltonian of noninteracting excitons in gapped
graphene Ĥ (0)

ex is given by

Ĥ (0)
ex =

∑
P

εex(P )b̂†Pb̂P, (3)

where b̂
†
P and b̂P are the excitonic creation and annihilation

operators obeying Bose commutation relations and εex(P ) is
the energy dispersion of a single exciton in a graphene layer.

The Hamiltonian of the exciton-exciton interaction Ĥex-ex

in graphene in the presence of a gap is given by

Ĥex-ex = 1

2A

∑
P,P′,q

Uqb̂
†
P+qb̂

†
P′−qb̂Pb̂P′ , (4)

where A is the macroscopic quantization area and Uq is
the Fourier transform of the exciton-exciton pair repulsion
potential.

The Hamiltonian of photons in a semiconductor microcav-
ity is given by24

Ĥph =
∑

P

εph(P )â†
PâP, (5)

where â
†
P and âP are photonic creation and annihilation Bose

operators, and εph(P ) is the cavity photon energy dispersion.
Following Ref. 25 the Hamiltonian of the harmonic exciton-

photon coupling can be written as

Ĥex-ph = h̄�R

∑
P

â
†
Pb̂P + H.c., (6)

where the exciton-photon coupling energy is represented by
the Rabi splitting h̄�R .

Let us present the detailed consideration and analysis of
each term in Eq. (1): first, the excitonc Hamiltonian Ĥex

that describes the formation of excitons in gapped graphene;
second, the Hamiltonian Ĥph that describes the microcavity
photons; and last, the Hamiltonian Ĥex-phresponsible for the
exciton-photon coupling within the microcavity.

III. EXCITONIC HAMILTONIAN

In this section we present the excitonic Hamiltonian Ĥex

that consists from two terms: the Hamiltonian that describes
the formation of the gas of noninteracting excitons in gapped
graphene and the Hamiltonian responsible for the exciton-
exciton interaction that we assume is strong enough to be
neglected.

A. An exciton in a graphene layer in the presence of the gap

The Hamiltonian of 2D excitons in gapped graphene is
given by Eq. (2). As the first step let us analyze the Hamiltonian
of noninteracting excitons Ĥ (0)

ex . As follows from Eq. (3),
this Hamiltonian is determined by the energy-momentum
dispersion of noninteracting excitons εex(P ). Therefore, we
need to find out the energy-momentum dispersion εex(P ) of
the electron and hole that are bound in a gapped graphene
layer via an electromagnetic attraction by solving a two-body
problem.

We consider an electron and a hole located in a single
graphene sheet, assume that they form an exciton, and
introduce the gap parameter δ. The gap parameter δ is the
consequence of adatoms on the graphene sheets (e.g, by
hydrogen, oxygen or other noncarbon atoms8) which create
a one-particle potential.

We use the coordinate vectors of the electron and the hole r1

and r2, respectively. Each honeycomb lattice is characterized
by the coordinates (rj ,1) on sublattice A and (rj ,2) on
sublattice B. Then wave function, describing two particles
in the same graphene sheet, reads �(r1,s1; r2,s2). This wave
function can also be understood as a four-component spinor,
where the spinor components refer to the four possible values
of the sublattice indices s1,s2:

�(r1,s1; r2,s2) =

⎛
⎜⎜⎝

φaa(r1,r2)
φab(r1,r2)
φba(r1,r2)
φbb(r1,r2)

⎞
⎟⎟⎠ . (7)
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The Hamiltonian that describes the interacting electron and
hole with a broken sublattice symmetry can be written as

H =

⎛
⎜⎜⎝

V (r) d2 d1 0
d
†
2 −2δ + V (r) 0 d1

d
†
1 0 2δ + V (r) d2

0 d
†
1 d

†
2 V (r)

⎞
⎟⎟⎠ , (8)

where V (r) is the electron-hole electromagnetic interaction
that depends on r = |r1 − r2|. In Eq. (8), dj = h̄vF (−i∂xj

−
∂yj

), d
†
j = h̄vF (−i∂xj

+ ∂yj
), where ∂xj

= ∂/∂xj , ∂yj
=

∂/∂yj , j = 1,2, x and y are components of the vectors r1

and r2, and vF = √
3at/(2h̄) is the Fermi velocity of electrons

in graphene, where a = 2.46 Å is a lattice constant and
the value of the overlap integral between the nearest carbon
atoms is t ≈ 2.71 eV.26 In Eq. (8) we take into account the
renormalization of the electron-hole distance in the electron-
hole Coulomb attraction due to the non-locality of electron
and hole wave function, assuming the following model for
the electron-hole attraction: V (r) = −e2/[4πε0ε(r2 + r2

0 )1/2],
where ε0 = 8.85 × 10−12 C2/(Nm2), e is the electron charge,
ε = 2.5 is the dielectric constant of graphene, and r0 is the
renormalization parameter which will be estimated below. It
should be mentioned that the main contribution to the polariton
mass is the cavity photon mass rather than exciton mass, and,
therefore, we use our model to estimate the exciton mass
roughly by the order of magnitude. Assuming r � r0, we
expand V (r) in a Taylor series as V (r) = −V0 + γ r2, where
V0 = e2/(4πεε0r0) and γ = e2/(8πε0εr

3
0 ).

Now we have to solve the eigenvalue problem for the
Hamiltonian (8) H� = ε� and find the energy of the exciton
ε. The eigenfunction depends on the coordinates of both
particles, namely (r1,r2). To separate the relative motion of
the electron and hole we use the following ansatz for the wave
function:

�j (R,r) = eiP·R/h̄ ψj (r), (9)

where P is momentum, and following Ref. 21 for a generalized
center-of-mass coordinate R and relative coordinate r we have

R = αr1 + βr2, r = r1 − r2 (10)

with the parameters

α = ε − 2δ

2ε
, β = ε + 2δ

2ε
(11)

that have been found from the condition of separation of the
relative motion of the electron-hole pair and the motion of
the center of mass. The procedure given in Ref. 21 can be
applied to the eigenvalue problem (H + V0)� = (ε + V0)�
when we assume that both relative and center-of-mass kinetic
energies, as well as the harmonic term in the potential energy
V (r) + V0 = γ r2, are small in comparison to the gap energy
2δ. Starting from the wave function (9) and using the same
procedure that we developed in Ref. 21, we obtain for the
spinor component φaa the equation(

(vF P )2

2ε
+ γ r2 − 2ε(h̄vF )2∇2

r(
ε2 − 4δ2

)
)

φaa = (ε + V0) φaa. (12)

The last equation can be rewritten in more convenient form,(−F∇2
r + γ r2)φaa = F0φaa, (13)

where F is given by

F = 2(ε + V0)(h̄vF )2

(ε + V0)2 − 4δ2
(14)

and F0 is given by

F0 = ε + V0 − (vF P )2

2(ε + V0)
. (15)

Equation (13) describes a two-dimensional isotropic harmonic
oscillator, whose solutions are given by the condition

F0

F = 2N

√
γ

F , (16)

with N = 2n1 + n2 + 1 and quantum numbers n1 =
0,1,2,3, . . . and n2 = 0, ± 1, ± 2, ± 3, . . . , ± n1. Below we
will focus subsequently on the analysis of the ground state of
the exciton corresponding to N = 1. At N = 1 from Eq. (16),
by keeping the second-order terms with respect to P, we obtain

ε′4 − [4δ2 + (vF P )2]ε′2 − 8Cε′ + 4δ2(vF P )2 = 0, (17)

where ε′ = ε + V0 and C = γ (h̄vF )2.
Assuming C � ε(ε2 − 4δ2), we solve Eq. (17) for ε, then

expand ε up to the second order in P (i.e. for vF P � δ) and
the first order in C and obtain for the electron-hole dispersion

ε(P ) = 2δ + εex(P ), (18)

where the exciton dispersion presented in Eq. (3) is given by

εex(P ) = −V0 + C

δ2
+ P 2

2M . (19)

In Eq. (19) M is the effective exciton mass given by

M = 2δ4

Cv2
F

. (20)

The exciton effective mass M increases when the gap
parameter δ increases. Note that, if N > 1, at small momenta
P the exciton energy spectrum at the same quantum number N

increases with the increase of the gap δ. However, the exciton
energy spectrum at the same gap energy δ decreases with the
increase of the quantum number N .

The exciton radius can be obtained from the wave function
of the 2D harmonic oscillator and reads ρ = 2−1/2[F(ε)/γ ]1/4.
In the dilute system when the majority of particles are in a
condensate, we substitute ε at zero momentum: ε(P = 0).

The electron-hole recombination produces a photon with
energy Eph = h̄ω equal, by energy conservation, to the exci-
ton excitation energy 2δ + εex(0). Then the renormalization
parameter r0 can be found from the condition h̄ω = 2δ +
εex(0), where εex(P ) is given by Eq. (19). This condition leads
to the following equation for r0:

2δ2(2δ − h̄ω)r3
0 − 2Dδ2r2

0 + D(h̄vF )2 = 0, (21)

where D = e2/(4πε0ε). For dipolar excitons in GaAs/AlGaAs
coupled quantum wells, the energy of the recombination peak
is h̄ω = 1.61 eV.27 We expect similar photon energies in
graphene; its exact value depends on the graphene dielectric
environment and substrate properties though.

235404-3



BERMAN, KEZERASHVILI, AND ZIEGLER PHYSICAL REVIEW B 86, 235404 (2012)

FIG. 1. (Color online) The dependence of the parameter r0 on the
gap energy δ.

The parameter r0 is obtained as a result of a numerical
solution of Eq. (21) for each value of the gap energy. The
results of calculations are presented in Fig. 1. According to
Fig. 1, the parameter r0 decreases when the gap energy δ

increases.

B. Exciton-exciton interaction

Here we analyze the Hamiltonian (4) of the exciton-exciton
interaction Hex-ex in graphene in the presence of the gap,
which contributes to the exciton Hamiltonian Ĥex given by
Eq. (2). As discussed in Refs. 28 and 29 for a dilute exciton
gas, the excitons can be treated as bosons with a repulsive
contact interaction. For small wave vectors q � ρ−1, the value
of Uq which is related to exciton-exciton repulsion can be
approximated as

Uq � U = 3e2ρ

2πε0ε
. (22)

This approximation for the exciton-exciton repulsion is ap-
plicable because resonantly excited excitons have very small
wave vectors.25 Another reason for the validity of this approx-
imation is that the exciton gas is assumed to be very dilute
and the average distance between excitons rs � ρ, which
implies the characteristic wave number q ∼ r−1

s � ρ−1. A
much smaller contribution to the exciton-exciton interaction
is also given by band-filling saturation effects,30 which are
neglected here. To demonstrate the dependence of U on the
gap energy, we calculate U for each value of ρ that is by itself
the function of the parameter r0 obtained from Eq. (21). The
result of the numerical calculations presented in Fig. 2 shows
that U decreases when the gap energy δ increases.

IV. MICROCAVITY PHOTONS

The Hamiltonian of photons in a semiconductor micro-
cavity is determined by the cavity photon energy dispersion
εph(P ). According to Ref. 24 this dispersion is defined

as εph(P ) = (c/
√

εcav)
√

P 2 + h̄2π2L−2
c , where εcav is the

dielectric constant of the cavity, c is the speed of light in
vacuum, and Lc is the length of the microcavity.

Embedding graphene in an optical microcavity can lead to
the formation of polaritons when the excitons couple to the
cavity photons. In such cases the microcavity consists of two
mirrors parallel to each other and a graphene sheet placed
in between. Then the photons are confined in the direction

FIG. 2. (Color online) The dependence of U on the gap energy δ.

perpendicular to the mirrors, but move freely in the two
directions parallel to the mirrors. The length of the microcavity
is chosen as

Lc = h̄πc

(2δ − V0 + C/δ2)
√

εcav
(23)

with the resonance condition that the photonic and excitonic
branches are equal at P = 0, i.e., for ε(0) = εph(0). This
resonance condition can be achieved either by controlling the
gap energy δ or by choosing the appropriate length Lc of the
microcavity.

V. EXCITON-PHOTON INTERACTION

The Hamiltonian of the harmonic exciton-photon coupling,
Eq. (6), contributes to the total Hamiltonian (1) of the system.
In this Hamiltonian the exciton-photon coupling energy is
represented by the Rabi splitting h̄�R . Neglecting anharmonic
terms for the exciton-photon coupling, the Rabi splitting h̄�R

can be estimated quasiclassically as

|h̄�R| = |〈f |Ĥint|i〉|, (24)

where Ĥint is the Hamiltonian of the electron-photon interac-
tion. The initial state |i〉 corresponds to the valence band filled
by electrons and the empty conduction band, while the final
state |f 〉 corresponds to one hole in the valence band and one
electron in the conduction band. In Eq. (24) the initial |i〉 and
final |f 〉 electron states are defined as

|i〉 =
∏

q

ĉ(v)†
q |0〉v|0〉c, |f 〉 = b̂†q|i〉. (25)

In Eq. (25), ĉ(v)†
q is the Fermi creation operator of the electron in

the valence band with the wave vector q, |0〉c denotes the wave
function of the vacuum in the conduction band,

∏
q ĉ

(v)†
q |0〉v

corresponds to the completely filled valence band, and b̂
†
q is the

exciton creation operator with the electron in the conduction
band c and the hole in the valence band v. Following Ref. 31,
b̂q and b̂

†
q for this case are defined as

b̂q =
∑

q′
ĉ

(v)†
q−q′ ĉ

(c)
q′ , b̂†q =

∑
q′

ĉ
(c)†
q′ ĉ

(v)
q−q′ . (26)
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where ĉ
(c)†
q and ĉc

q are the Fermi creation and annihilation
operators of the electron in the conduction band with the
the wave vector q. The eigenfunctions and eigenenergies of
an electron in graphene in the presence of a gap are given
in Appendix A. For graphene the electron-photon interaction
Hamiltonian is determined as

Ĥint = −vF eσ · Aph0 = vF e

iω
σ · Eph0, (27)

where σ = (σx,σy) are Pauli matrices, Aph0 is the electro-
magnetic vector potential of a single cavity photon, and
Eph0 = [h̄ω/(2ε0εcavW )]1/2 is the magnitude of electric field
corresponding to a single cavity photon with frequency ω

within the microcavity volume W .
Substituting Eqs. (26), (A3), and (A4) into (25) and using

the electron-photon interaction Ĥint (27), we finally obtain
from Eq. (24)

|h̄�R| =
∣∣∣∣evF

iω

∫
dx

∫
dy
[
ψ∗

c,Ec
(x,y)σ · Eph0ψv,Ev

(x,y)
]∣∣∣∣ =

∣∣∣∣evF

2iω

√
δ2 − E2

E2

[
Eph0x

(
h̄vF (qx + iqy)

δ − E
+ h̄vF (qx − iqy)

δ + E

)

+ iEph0y

(−h̄vF (qx + iqy)

δ − E
+ h̄vF (qx − iqy)

δ + E

)]∣∣∣∣ . (28)

After simplification of Eq. (28) we obtain

|h̄�R| = eh̄v2
F

ωE
√

δ2 − E2

√
(qxEph0x + qyEph0y)2δ2 + (qyEph0x − qxEph0y)2E2. (29)

Assuming for simplicity an electric field corresponding to a
single cavity photon mode is directed along the x axis, we
obtain

|h̄�R| = evF√
δ2 + h̄2v2

F q2

√
h̄

2Wε0εcavω

√
q2

xδ
2 + q2

yE
2

|q| .

(30)

In the limit q → 0, when ω = 2δ/h̄, we obtain from Eq. (30)

|h̄�R| = h̄vF e

√
1

2Wε0εcavδ
, (31)

where W = LcS is the volume of a system with the area S.
When Lc is obtained from the condition of the resonance of
the exciton, and the corresponding photon mode is presented
by Eq. (23), we obtain for the Rabi splitting

|h̄�R| = h̄vF e

√
2 − V0δ−1 + Cδ−3

2πε0h̄c
√

εcavS
. (32)

FIG. 3. (Color online) The dependence of the Rabi splitting |h̄�R|
on the gap energy δ for microcavities with the different dielectric
constants εcav.

According to Eq. (32), Rabi splitting depends on the gap
energy δ, the area of the microcavity S, and the dielectric
constant of the microcavity εcav. The microcavity can be
formed in different types of semiconductors. By using a
different semiconductor for the Bragg mirrors used to confine
the photon in the microcavity, there are possibilities to further
increase the Rabi splitting. In our calculations we considered
the microcavities that were fabricated for the experimental
studies of microcavity polaritons.32–42 The results of the
calculations of the dependence of Rabi splitting on the
gap energy δ for the microcavities with different dielectric
constants are presented in Fig. 3. In the calculations according
to the experiment presented in Ref. 43 we used the value
S = 10 μm2 for the area of the microcavity. The analysis of the
results in Fig. 3 shows that Rabi splitting decreases when the
gap energy δ increases, while for the same gap energy the larger
value of the microcavity dielectric constant there corresponds
to a smaller value of the Rabi splitting. Therefore, we can
conclude that a proper choice of the semiconductor materials
for Bragg mirrors for the fabrication of the microcavity is very
important, and allows achieving a larger value for the Rabi
splitting for the same gap energy.

VI. SUPERFLUIDITY OF MICROCAVITY POLARITONS

We can diagonalize the linear part of the total Hamiltonian
Ĥtot [without the second term on the right-hand side of Eq. (2)]
by applying the unitary transformations,25 and as the result
obtain (see Appendix B)

Ĥ0 =
∑

P

ELP (P )l̂†P l̂P +
∑

P

EUP (P )û†
PûP, (33)

where l̂
†
P, l̂P and û

†
P, ûP are the Bose creation and annihilation

operators for the lower and upper polaritons, respectively.
The corresponding energy spectra ELP (P ) and EUP (P ) of
the lower and upper polaritons are given by Eq. (B3).
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The substitution of the polaritonic representation of the
excitonic and photonic operators (B1) into the total
Hamiltonian (1), gives the Hamiltonian of the lower
polaritons:25

Ĥtot =
∑

P

ELP (P )l̂†P l̂P + 1

2A

∑
P,P′,q

W̃P,P′,q l̂
†
P+q l̂

†
P′−q l̂P l̂P′ ,

(34)

where the effective polariton-polariton interaction W̃ is given
by

W̃P,P′,q = UXP+qXP′XP′−qXP, (35)

with U = 3e2ρ/(2πε0ε) defined in Sec. III B.
At small momenta α ≡ 1/2[M−1 + (c/

√
εcav)Lc/h̄π ]P 2/

|h̄�R| � 1, the single-particle lower polariton spectrum ob-
tained from Eq. (B3), in linear order with respect to the small
parameter α, is

ELP (P ) ≈ c√
εcav

h̄πL−1
c − |h̄�R| + P 2

2Mp

, (36)

where Mp is the effective mass of polariton given by

Mp = 2

(
M−1 + cLc√

εcavh̄π

)−1

. (37)

If we take into account only the lower polaritons corre-
sponding to the lower energy at P = 0 and measure energy
relative to the lower polariton energy (c/

√
εcav)h̄πL−1

c −
|h̄�R| the resulting effective Hamiltonian for polaritons has
the form

Ĥeff =
∑

P

P 2

2Mp

l̂
†
P l̂P + U

(0)
eff

2A

∑
P,P′,q

l̂
†
P+q l̂

†
P′−q l̂P l̂P′ , (38)

where U
(0)
eff = 1

4U = 3e2ρ/(8πε0ε), since at small momenta
|XP |2 ≈ |CP |2 ≈ 1/2.

In the dilute limit (nρ2 � 1, where n is the 2D polariton
density), at zero temperature Bose-Einstein condensation of
polaritons appears in the system, since the Hamiltonian
of microcavity polaritons (38) corresponds to the weakly
interacting Bose gas. The Bogoliubov approximation for the
dilute weakly interacting Bose gas of polaritons results in the
sound spectrum of collective excitations at low momenta:44,45

ε(P ) = cSP with the sound velocity cS = (U (0)
eff n/Mp)1/2 =

(3e2ρn/(8πε0εMp))1/2.
The dilute polaritons constructed by excitons in gapped

graphene embedded in the optical microcavity and microcavity
photons form a 2D weakly interacting gas of bosons with
pair short-range repulsion. So the superfluid-normal phase
transition in this system is the Kosterlitz-Thouless transition,46

and the temperature of this transition Tc in a two-dimensional
microcavity polariton system is determined by the equation

Tc = πh̄2ns(Tc)

2kBMp

, (39)

where ns(T ) is the superfluid density of the polariton system
in a microcavity as a function of temperature T , and kB is
Boltzmann constant. We obtain the superfluid density as ns =
n − nn by determining the density of the normal component
nn when we follow the procedure44 as a linear response of the

FIG. 4. (Color online) The dependence of the Kosterlitz-Thouless
transition temperature Tc on the gap energy δ for the different
polariton densities for a GaAs microcavity.

total momentum with respect to the external velocity:

ns = n − 3ζ (3)

2πh̄2

sk3
BT 3

c4
SMp

, (40)

where s = 4 is the spin degeneracy factor.
Substituting Eq. (40) for the density ns of the superfluid

component into Eq. (39), we obtain an equation for the
Kosterlitz-Thouless transition temperature Tc. The solution of
this equation is

Tc =

⎡
⎢⎣
⎛
⎝1 +

√
32

27

(
MpkBT 0

c

πh̄2n

)3

+ 1

⎞
⎠

1/3

−
⎛
⎝
√

32

27

(
MpkBT 0

c

πh̄2n

)3

+ 1 − 1

⎞
⎠

1/3
⎤
⎥⎦ T 0

c

21/3
, (41)

where T 0
c is the temperature at which the superfluid density

vanishes in the mean-field approximation [i.e., ns(T 0
c ) = 0],

T 0
c = 1

kB

(
πh̄2nc4

s Mp

6sζ (3)

)1/3

. (42)

The analysis of Eq. (41) shows that the Kosterlitz-Thouless
transition temperature Tc depends on the polariton density, the
gap energy, as well as on the properties of the microcavity.
Figures 4 and 5 represent the results of the calculations for the
Kosterlitz-Thouless transition temperature Tc as a function of
the gap energy δ at the different fixed polariton densities n.

FIG. 5. (Color online) The dependence of the Kosterlitz-Thouless
transition temperature Tc on the gap energy δ for the different
polariton densities for a CuBr microcavity.
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FIG. 6. (Color online) The dependence of the Kosterlitz-Thouless
transition temperature Tc on the gap energy δ for microcavities with
the different dielectric constants εcav.

We consider the graphene layer that is embedded in the GaAs
and CuBr microcavities with the dielectric constants εcav = 13
and εcav = 5.7, respectively. According to Figs. 4 and 5, at
the same polariton density n, Tc decreases when δ increases,
and at the same gap energy δ the transition temperature Tc

increases when the polariton density n increases. A proper
choice of the semiconductor materials for fabrication of
the microcavities is important to achieve a high Kosterlitz-
Thouless transition temperature. We consider the graphene
layer embedded in the different microcavities and calculate
the Kosterlitz-Thouless transition temperature Tc as a function
of the gap energy using different dielectric constants εcav

for microcavities that were fabricated for the observation of
polaritons experimentally.32–42 The results of calculations for
the polariton density n = 9 × 1010 cm−2 presented in Fig. 6
show that the Kosterlitz-Thouless transition temperature Tc is
higher for the microcavity fabricated with the material that has
smaller dielectric constant.

VII. DISCUSSION

According to Eq. (37), the effective polariton mass Mp

is mostly determined by the size of the microcavity, which
depends on the gap energy δ according to Eq. (23) when
the exciton and microcavity photon branches of the spectrum
are in resonance at zero momentum. The gap dependence of
the sound velocity is caused by the gap dependence of the
exciton-exciton interaction described in Sec. III B. According
to Figs. 4–6 we conclude that Kosterlitz-Thouless temperature
Tc and, therefore, according to Eq. (39) superfluid density
ns , are decreasing functions of the gap energy δ in graphene
and increasing functions of the polariton density n, while
the Kosterlitz-Thouless transition temperature is higher for
the microcavity fabricated with the material that has smaller
dielectric constant.

The superfluidity and BEC of polaritons formed by
quantum-well excitons and microcavity photons have been
discussed widely. The comparison shows that the advantage
of observing the superfluidity and BEC of polaritons formed
by the gapped graphene excitons and microcavity photons is
related to the fact that in this system the superfluidity and BEC
of polaritons can be controlled by the gap.

In conclusion, we propose the superfluidity of 2D ex-
citon polaritons formed by gapped graphene excitons and

microcavity photons, when the gapped graphene layer is
embedded in an optical microcavity. We conclude that the Rabi
splitting decreases when gap energy δ increases, while for the
same gap energy the larger value of the dielectric constant of
the microcavity gives a smaller value for the Rabi splitting.
We show that the Kosterlitz-Thouless temperature and the
superfluid density increases with the rise of the polariton
density and decreases with the rise of the gap energy due to δ

dependence of the sound velocity of collective excitations,
while Tc is higher for the microcavity fabricated with the
material that has smaller dielectric constant εcav. Thus, the
Kosterlitz-Thouless temperature and the superfluid density
could be controlled by n, δ, and εcav.
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APPENDIX A:THE EIGENFUNCTIONS AND
EIGENENERGIES OF AN ELECTRON IN GRAPHENE IN

THE PRESENCE OF A GAP

We consider two fermions and ignore their interaction [i.e.,
V (r) = 0]. The electrons in the conduction band, described by
the spinor wave function ψcE(x,y), and the holes in the valence
band, described by the spinor wave function ψvE′ (x,y), are
solutions of the eigenvalue equations

H−δψcE = EψcE, HδψvE′ = −E′ψvE′ (A1)

of the Dirac-Weyl Hamiltonian

Hδ =
⎛
⎝ δ h̄vF (∂x − i∂y)

h̄vF (∂x + i∂y) −δ

⎞
⎠ . (A2)

In the presence of a gap 2δ, these solutions are

ψcE(x,y) =
√

δ − E

2E

exp[i(qxx + qyy])√
LxLy

(
h̄vF (qx−iqy )

δ−E

1

)
,

(A3)

ψvE(x,y) =
√

δ + E

2E

exp[i(qxx + qyy)]√
LxLy

(
h̄vF (qx−iqy )

δ+E

1

)
,

(A4)

where E =
√

δ2 + h̄2v2
F q2 is the energy of the electron or the

hole, and Lx and Ly are the 2D microcavity dimensions. This
allows us to construct the four components of the spinor in
Eq. (7) from the solutions of Eq. (A1) as

φjk(r1,r2) = ψcE,j (r1)ψvE′,k(r2) (j = a,b; k = a,b),

(A5)

which solves the eigenvalue equation for two noninteracting
particles with the Hamiltonian H in Eq. (8) when V (r) =
0: H0� = (E − E′)�, where H0 is the Hamiltonian of two
noninteracting particles.
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APPENDIX B: THE REPRESENTATION OF POLARITON OPERATORS FOR THE HAMILTONIAN OF THE
EXCITON-PHOTON SYSTEM IN A MICROCAVITY

We express the exciton and microcavity photon operators in terms of polariton operators. The exciton and photon operators are
defined as25

b̂P = XP l̂P − CP ûP, âP = CP l̂P + XP ûP, (B1)

where l̂P and ûP are lower and upper polariton Bose operators, respectively, XP and CP are

XP =
[

1 +
(

h̄�R

ELP (P ) − εph(P )

)]−1/2

, CP = −
[

1 +
(

ELP (P ) − εph(P )

h̄�R

)]−1/2

, (B2)

and the energy dispersion of the lower and upper polaritons are

ELP/UP (P ) = εph(P ) + εex(P )

2
∓ 1

2

√
[εph(P ) − εex(P )]2 + 4|h̄�R|2. (B3)

We note that |XP |2 and |CP |2 = 1 − |XP |2 represent the exciton and cavity photon fractions in the lower polariton,
correspondingly.
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