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Abstract
The spectral density of the Rabi model is calculated exactly within a continued-
fraction approach. It is shown that the method provides a simple algorithm for
the spectral density with convergent solutions. We compare these recursive
solutions with the solutions of the Jaynes–Cummings model and discuss the
effect of approximations on the spectral properties.

                                      

                                                   

1. Introduction

A recent work by Braak [1] has renewed the interest in the old problem of coupling a photon
field to a single spin-1/2 state, using the Rabi model [2]. The central statement of this work
is that the eigenfunctions in Bargmann representation must be analytic functions in the entire
complex plane. Based on this condition, a procedure is derived from the series expansion of
the eigenstates which provides a recursive evaluation of the spectrum. It is claimed that the
series expansion yields an exact solution of the Rabi model, which cannot be obtained from a
direct continued-fraction (CF) approach, contrary to the previously suggested approaches by
Schweber [3] and Swain [4]1. In the following, it is shown that this statement is incorrect, and
that the use of the extra condition of analyticity of the eigenfunction in Bargmann representation
is not necessary. Therefore, the CF is directly applicable to the Rabi model and yields an exact
solution for the spectral density, where the term ‘exact’ means that the CF is convergent and
the spectral density can be evaluated by a simple algorithm to any desired accuracy.

Although the intention of this paper is to discuss the evaluation of the spectral density for
the Rabi model, there is a more general aspect in terms of other physical systems: there exists
a class of quantum models whose solutions can be obtained within a recursive algorithm.
Examples are small quantum systems with Jahn–Teller electron–phonon coupling [6] and
the double-well Bose–Hubbard model [7, 8]. The recursive approach, based on a CF, can
provide more complex spectral properties and, therefore, a richer dynamics than we obtain

1 This statement has been withdrawn in a more recent work by the author of [5].
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from (integrable) quantum models whose solutions are given by orthogonal polynomials (e.g.,
harmonic oscillator or the hydrogen atom). Their spectra are rather regular, whereas models
with CF solutions have a more complex spectrum. For instance, the spectrum of the two-site
Jahn–Teller model [6] or the two-site Bose–Hubbard model [8] has more structural features
and is very sensitive to small parameter changes.

2. Continued-fraction approach to the Rabi Hamiltonian

The Rabi model is defined by the Hamiltonian

HR = ωa†a + �σ3 + U (a† + a)σ1, (1)

where a† (a) are creation (annihilation) operators of a photon and ω is the frequency of the
photon field. The Pauli matrices σ j ( j = 0, . . . , 3) describe operations on the spin-1/2 state,
and � is a symmetry breaking field for the spin. U is the coupling strength between the
photons and the spin states. This Hamiltonian maps a product state |N〉 ⊗ |σ 〉 with N photons
to |N ± 1〉 ⊗ |σ ′〉, where σ, σ ′ =↓,↑. Thus eigenstates of H are superpositions of product
states, which can be derived by a recursive approach for the coefficients of the superposition
[3]. In the following, we apply the recursive projection method (RPM) of [8]. This method is
based on a random walk expansion in the underlying Hilbert space which visits each subspace
at most once [9]. Consequently, there are no loops in the random walk, which leads directly
to a CF 2.

The RPM, as described in [8], can be directly applied to the resolvent 〈N; s|(z−H)−1|N; s′〉
and yields immediately the spectral density with respect to |N; s〉 ≡ |N〉 ⊗ |s〉:

ρN (E ) = 1

2

∑
s=↑,↓

lim
ε→0

Im(〈N; s|(E − iε − H)−1|N; s〉). (2)

The simplest case is the resolvent 〈0; s|(z − H)−1|0; s′〉 of states without photons |0; s〉 and
with spin projection s =↑,↓:

(〈0; s|(z − H)−1|0; s′〉) = lim
n→∞

(
gn 0
0 hn

)
, (3)

where the eigenvalues of H are the poles of the resolvent. Then the matrix elements gn, hn are
subject to the following recurrence relations:

gk = 1

z − ω(n − k) + � − U2(n − k + 1)hk−1
(4)

hk = 1

z − ω(n − k) − � − U2(n − k + 1)gk−1
, (5)

for 1 � k � n with the initial values

g0 = 1

z − ωn − �
, h0 = 1

z − ωn + �
. (6)

The iteration of these recurrence relations gives a finite CF of the standard form [10]

gn = b0 + a1

b1 + a2
b2+···

≡ b0 + a1|
|b1

+ · · · + an|
|bn

(7)

2 A recurrence relation can also be established directly from the eigenvalue problem of the Rabi Hamiltonian, without
projecting onto subspaces of the Hilbert space, by using a series expansion of the general solution [3, 4]. The recursive
projection method is technically simpler because it deals with a finite number of photons and with the controllable
limit of an infinite number of photons.
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with coefficients

a1 = 1, ak = (1 − k)U2, b0 = 0, b1 = z − �,

bk = z − (k − 1)ω + (−1)k� (2 � k � n). (8)

For the corresponding coefficients of hn we must only replace � by −�. Therefore, all
considerations for gn apply to hn after replacing � → −�. Due to b0 = 0 the inverse of gn

can be obtained directly by inverting gn in equation (7):

a1/gn = b1 + a2|
|b2

+ · · · + an|
|bn

. (9)

This means that the poles of gn are obtained from the zeros of the related CF, and vice versa.
gn can also be expressed as the ratio (cf [10])

gn = bnAn−1 + anAn−2

bnBn−1 + anBn−2
, (10)

where An−l (Bn−l) are polynomials in z of order n − l − 1 (n − l) which are generated by the
recurrence relations

Ak = bkAk−1 + akAk−2, Bk = bkBk−1 + akBk−2 (k � 1), (11)

with initial conditions A−1 = 1, A0 = b0 = 0, B−1 = 0, B0 = 1.
By taking the limit g = limn→∞ gn the CF in equations (7) or (9) yields the spectral

density of the Rabi model for the complex energy z. The existence of the limit n → ∞ is a
consequence of a theorem by Pringsheim (cf [10]): considering the tail tn of the CF

tn = an+1|
|bn+1

+ · · · , (12)

we can write

g = b0 + a1|
|b1

+ · · · + an|
|bn

+ tn (13)

and estimate the error when we truncate g at k = n (which gives gn). Pringsheim’s theorem
states that for complex ak, bk with |bk| � |ak| + 1 (k � n) the truncated CF tn,l ,

tn,l = an+1|
|bn+1

+ · · · + al |
|bl

(n + 1 < l), (14)

is convergent for l → ∞ and converges to a tn with

0 � |tn| � 1. (15)

For the coefficients of the Rabi model in equation (8) the conditions for the coefficients are
satisfied for a given z and for sufficiently large n if U2 < ω. Then (15) means that the ratio
tn/bn is O(1/n), which implies

tn−1 = an

bn + tn
= an

bn
+ O(1/n) = (1 − n)U2

z − (n − 1)ω − (−1)n�
+ O(1/n) = U2

ω
+ O(1/n).

(16)

This result enables us to approach the exact solution by a sequence of truncated CF’s with a
given error O(1/n):

g = b0 + a1|
|b1

+ · · · + an−1|
|bn−1

+ an/bn + O(1/n)|
|1 . (17)

Replacing an/bn by an/bn + O(1/n) in the finite CF of equation (10) gives us

g = An−1 + [an/bn + O(1/n)]An−2

Bn−1 + [an/bn + O(1/n)]Bn−2
. (18)
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Figure 1. Spectral density ρ0(E ) for maximally n = 500 photons and � = 0.4, U = 0.99,
ε = 0.005 in units of the photon frequency ω. The green (red) curves are contributions from
gn (hn).

3. Conclusions

Equation (18), together with the coefficients in equations (8) and (11), allows us to approach
successively the spectral density of the Rabi Hamiltonian, where the accuracy is improved
with increasing n. An example is depicted in figure 1. The error is O(1/n) and estimated by the
tail tn of (16). According to our definition this provides an exact solution of the Rabi spectrum,
where the poles of g and h are the corresponding eigenvalues. The evaluation of ρN (E ) for
N > 0 can also be performed within the same approach.

The individual matrix elements g, h avoid level crossing due to parity conservation, since
eigenstates of consecutive eigenvalues have different parity. However, the sum of gn and hn in
the spectral density ρ0(E ) allows level crossing by shifting their levels relative to each other,
for instance, by changing �.

The RPM provides gn, hn with the unique initial expressions g0, h0 of equation (6). It
has been claimed in [5] that this leads to the same large n asymptotics as the result in [1] by
comparing the two spectra. It should be noted that a series representation of the solution of
the full problem [3, 4] may cause some difficulty for the initial condition of the recurrence
relation due to the implicit limit n → ∞. Therefore, the RPM is easier to control because the
initial expressions g0, h0 are well defined for finite n, where the limit n → ∞ is only taken at
the end.

The ‘rotating-wave’ approximation of the Rabi Hamiltonian yields the Jaynes–Cummings
(JC) Hamiltonian [11]:

HJC = ωa†a + �σ3 + U (a†σ− + aσ+), (19)

with σ± = (σ1 ± iσ2)/2. This Hamiltonian does not belong to the class of models with
recursive solutions because the recurrence relation of the RPM terminates already after the
first step for each k:

gk = z − ω(n − k + 1) − �

[z − ω(n − k) + �][z − ω(n − k + 1) − �] − U2(n − k + 1)

hk = 1

z − ω(n − k) − �
. (20)
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Here the evaluation of the eigenvalues requires only the solution of a quadratic equation for
each k, in agreement with the original work on this model [11, 12]. The asymmetry of gk

and hk reflects the fact that the JC Hamiltonian can only absorb (emit) a photon in the low
(high)-energy spin state.

A comparison of the Rabi and the JC model in terms of spectral properties sheds some
light on the accuracy of the ‘rotating-wave’ approximation for small quantum systems. It is
obvious that the energy levels Ek = ω(n− k +1/2)±

√
(ω + 2�)2/4 + U2(n − k + 1) of the

JC model do not reproduce the more complex energy-level spacings of the Rabi Hamiltonian
as visible, for instance, in figure 1. This might not be very significant for a qualitative picture
though. More important, however, is the spectral density ρ0, which, in contrast to figure 1,
would include only the two levels En± = ω/2 ±

√
(ω + 2�)2/4 + U2 for g and E ′

n = � for
h. This affects the matrix elements of (3), especially for strong coupling U and for a small
number of photons. A similar observation was made for the two-site Bose–Hubbard model,
where the Hartree (Gross–Pitaevskii) approximation has a much more regular spectrum and
dynamics than the original quantum model [7, 8].

With the increasing accuracy of experimentally obtained spectral and dynamical data of
trapped atoms [13–15] and photons in microcavities [16], it may become important to go
beyond simplifying approximations. A possible way is to apply recursive methods such as the
CF discussed in this paper. Moreover, quantum models with recursive solutions may present
a bridge between models with simple spectra (e.g., the harmonic oscillator or the JC model)
and models with random-matrix spectra, as proposed for nuclei [17, 18].
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