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Abstract
We study the scattering dynamics of an n-component spinor wavefunction
in a random environment on a two-dimensional lattice. If the particle–hole
symmetry of the Hamiltonian is spontaneously broken the dynamics of the
quantum particles becomes diffusive on large scales. The latter is described
by a non-interacting Grassmann field, indicating a special kind of asymptotic
freedom on large scales in d = 2.

1. Introduction

Conventional wisdom is that a classical approach of a randomly scattered particle leads to
diffusion. Diffusion in quantum systems can either be caused by particle–particle collisions or
collisions with (static) impurity scatterers. If the latter are randomly distributed, however, this
may lead to Anderson localization rather than to diffusion [1, 2]. This effect is particularly
strong in low-dimensional systems such as in two-dimensional graphene sheets. The scaling
approach to generic random scattering [2] indicates that diffusion is suppressed by Anderson
localization for dimension d � 2. On the other hand, ballistic motion can also be ruled out,
even for a finite system with random scattering [4]. It was pointed out by Kaveh, however, that
diffusion cannot be obtained in random-phase approximation applied to the disordered system
[3].

Inspired by the recent observation of metallic behavior (i.e. diffusive or even ballistic
transport) in disordered two-dimensional systems (graphene) [5, 6], a general discussion of
a diffusive quantum particle is required, which takes into account a spinor structure of the
wavefunction. There are two possibilities, ballistic transport for finite systems [7, 8] or diffusive
transport for infinite systems [9]. Here we will focus on infinite systems and study a quantum
n-component spinor particle on a two-dimensional lattice with particle–hole symmetry. It will
be shown that on large scales the particle diffuses on the lattice with d = 2. This work presents
a generalization of the idea that a spontaneously broken supersymmetry can lead to diffusion
in a system with particle–hole symmetry [9, 10].
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The motion of a quantum particle is characterized by the transition probability Pr,r′ (iε)

for an n-component spinor particle at site r′ that moves to site r with frequency iε:

Pr,r′ (iε) = Kr,r′ (iε)∑
r Kr,r′ (iε)

with Kr,r′ (iε) = 〈
Trn

[
Gr,r′ (iε)G†

r′,r(iε)
]〉

v

= 〈Trn[Gr,r′ (iε)Gr′,r(−iε)]〉v, (1)

where G(iε) = (iε + H)−1 is the one-particle Green function of the Hamiltonian H and 〈· · ·〉v
is the average with respect to some random scatterers. Trn(. . .) is the trace with respect to the n
spinor components. The last equation in equation (1) follows from the Hermitian Hamiltonian:
H† = H.

After Fourier transformation of the two-particle Green function Kr,r′ (iε) → kr,r′ (t)
we study the motion of the quantum particle with the mean-square displacement of the
coordinate rk

〈r2
k 〉 =

∑
r r2

k kr,0(t)∑
r kr,0(t)

. (2)

This expression grows linearly with time t in the case of diffusion.

2. Model

We consider an n-component spinor wavefunction described by the Hamiltonian matrix

H = H0 + vH1, H0 = (hr,α;r′,α′ ), H1 = (hα,α′δr,r′ ), v = (vrδα,α′δr,r′ ), (3)

where r, r′ are coordinates on the two-dimensional lattice and α, α′ = 1, 2, . . . , n refer to
the n spinor components. vr is a random variable with an uncorrelated Gaussian distribution:
〈vr〉v = 0, 〈vrvr′〉v = gδr,r′ . In the following we assume that the Hamiltonian satisfies the
generalized particle–hole symmetry H j → −UH∗

j U
† = H j ( j = 0, 1), which belongs to

class D according to Cartan’s classification scheme [11]. In terms of the Green functions, this
transformation provides a sign change of the frequency:

G(iε) → −UGT (iε)U† = G(−iε), (4)

since H†
j = H j implies H j = −UHT

j U† (T is the matrix transposition). The Green functions
G(iε) and the transposed Green function GT (iε) can be expressed in a functional-integral
representation of a free complex (boson) field φ1

r,k and a Grassmann (fermion) field φ2
r,k,

respectively. This allows us to construct the Bose–Fermi functional integral [12]

〈 f (φ)〉φ =
∫

f (φ) e−SD[φ], (5)

which is normalized:∫
e−SD[φ] = 1. (6)

The action S is

S = −i(φ · (Ĥ0 + iε)φ̄) + g(φ · Ĥ1φ̄)2 (ε > 0), (7)

with respect to the boson–fermion vector field φ = (
φ1

r,k, φ
2
r,k

)
(k = 1, 2, . . . , n) and with

the block-diagonal Hermitian matrices Ĥ j = diag(H j, HT
j ). After averaging over the random

variables vr we can write〈
Gr,k;r′,l(iε)GT

r′,m;r,n(iε)
〉
v

= −〈
φ1

r′,lφ̄
1
r,kφ

2
r,nφ̄

2
r′,m

〉
φ

(8)

with 〈· · ·〉φ = ∫ · · · e−SD[φ]. The normalization can easily be seen by performing the φ

integration before averaging over vr.
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An integral of the form (6) describes a supersymmetric field theory, meaning that it is a
field theory for bosons as well as fermions which appear with the same Green functions [12].
However, it should be noticed that supersymmetry is sufficient for the normalized integral
but not necessary [9]. In the present case the boson and the fermion Green functions are
different, provided that HT �= H. The choice of different Green functions in the action (7)
has profound consequences in comparison with the model, where fermions and bosons appear
symmetrically with the same Green function, because the latter is subject to a larger symmetry
group. This will be discussed at the end of the paper.

Using the relation in equation (8), we can write for the expression in equation (1)

Kr,r′ = 〈Trn[Gr,r′ (iε)Gr′,r(−iε)]〉v = − 〈
Trn

[
Gr,r′ (iε)UGT

r′,r(iε)U†]〉
v

=
∑

l,m,n,n′
Um,nU

∗
l,n′

〈
φ1

r′,mφ̄1
r,lφ

2
r,n′ φ̄

2
r′,n

〉
φ

= −
∑

l,m,n,n′
Um,nU

∗
l,n′

〈
φ1

r′,mφ̄2
r′,nφ

2
r,n′ φ̄

1
r,l

〉
φ
. (9)

This expression will be used subsequently to study diffusion in the particle–hole symmetric
system.

3. Summary of the subsequent calculation

Before embarking to the detailed calculation of Kr,r′ , that will lead us to a simple expression
for the functional integral on large scales |r − r′| in terms of a saddle-point approximation, a
brief outlook on the lengthy calculation is given in this section. In a first step we identify a
symmetry in terms of a similarity transformation with respect to the boson–fermion structure.
After introducing a new field in the functional integral, we apply a saddle-point approximation
to the latter. It turns out that the above mentioned symmetry creates a two-dimensional
fermionic saddle-point manifold, given by a two-component Grassmann field (ϕ, ϕ′). For
large scales this becomes a free field and provides a diffusion propagator. In other words, our
approximation scheme allows us to prove that the Fourier components of Kr,r′ (iε) describe
diffusion in the large distance asymptotics:

Kq(iε) ∼ K̄

ibε + c̃0 − c̃q
(10)

with finite constants b and K̄, which is determined by the solution of the saddle-point equation.
Moreover, c̃q are the Fourier components of

cr,r′ = 16Trn[g+,r′,rQ2H1g−,r,r′Q2H1],

where the Green functions g± are defined as

g± = [H0 ± iε + 2(Q1 ± Q2)H1]−1. (11)

Q1, Q2 are determined by saddle-point equations.

Remark. The Green functions g± can be considered as the self-consistent Born approximation
(SCBA) of the random Green functions G(±iε), where Q1, Q2 are self-energies [13, 14].

4. Diffusion on large scales

In the following we derive the asymptotic form of Kr,r′ in equation (10).
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4.1. Boson–fermion symmetry

Considering the block matrix(
A �

�̄ B

)
,

where the elements of the matrices A, B are complex and the elements of the matrices �, �̄

are Grassmannian, we introduce the graded trace

Tr g

(
A �

�̄ B

)
= Tr A − Tr B,

where Tr is the conventional trace, and the graded determinant detg [9]:

detg

(
A �

�̄ B

)
= det(A)

det(B)
det(1 − �B−1�̄A−1) = det(A − �B−1�̄)

det(B)
. (12)

For the special matrix Ĥ = diag(H, HT ) this gives Trg(Ĥ) = 0 and detg(Ĥ + iε) = 1. Trg
and detg have the same properties as the conventional trace and determinant. In particular, we
have the relations detg(Â)detg(B̂) = detg(ÂB̂) and detg(Â) = exp(Trg(log Â)).

Now we consider the special matrix

Ŝ =
(

0 ϕU
ϕ′U† 0

)
(ϕ, ϕ′ ∈ G), (13)

where G is a Grassmann algebra (i.e. ϕϕ′ = −ϕ′ϕ). Ĥ j and Ŝ anticommute:

Ĥ jŜ =
(

0 H jϕU
HT

j ϕ′U† 0

)
=

(
0 ϕH jU

ϕ′HT
j U† 0

)
=

(
0 −ϕUHT

j

−ϕ′U†H j 0

)
= −ŜĤ j,

where the second equation follows from the assumption that ϕ, ϕ′ commute with H j. This
relation implies that for a global Ŝ (i.e. Ŝ is constant on the lattice)

eŜĤ j eŜ = Ĥ j, (14)

which can be considered the supersymmetry of the model defined in (7) because the
transformation connects the fermionic and the bosonic sector of the theory. For the subsequent
calculations, it is useful to notice that with Trg Ŝ = 0 we have

detg(eŜ) = exp(Trg Ŝ) = 1. (15)

4.2. Functional integral with nonlinear field

Defining the tensor field

�̂
j, j′
kk′ = φ̄

j
kφ

j′
k′ ( j, j′ = 1, 2; k, k′ = 1, . . . , n),

we rewrite the terms in equation (7) as

(φ · Ĥ0φ̄) = Trg(Ĥ0�̂), (φ · Ĥ1φ̄)2 = Trg(Ĥ1�̂Ĥ1�̂).

Then, the identity

gTrg(Ĥ1�̂Ĥ1�̂) + g−1 Trg[(igĤ1�̂ − Q̂)(igĤ1�̂ − Q̂)] = g−1 Trg(Q̂2) − 2i Trg(Q̂Ĥ1�̂)

with matrix field

Q̂ =
(

Qr �r

�̄r iPr

)
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allows us to write the interaction term as a Q̂ integral:

exp[−gTrg(Ĥ1�̂Ĥ1�̂)] =
∫

exp[−gTrg(Ĥ1�̂Ĥ1�̂)

− g−1 Trg[(igĤ1�̂ − Q̂)(giĤ1�̂ − Q̂)]]D[Q̂]

=
∫

exp[−g−1 Trg(Q̂2) + 2i Trg(Q̂Ĥ1�̂)]D[Q̂].

With the expression on the right-hand side we can perform the φ integration in the functional
integral of equation (5), since φ appears only as a quadratic form in the exponent. Thus we
remain with a functional integral over Q̂:∫

F(�̂) e−SD[φ] =
∫

G(Q̂)detg(Ĥ0 + iε + 2Q̂Ĥ1)
−1 e−g−1 Trg(Q̂2 )D[Q̂] (16)

because of ∫
e−Trg(Â�̂)D[φ] = detg(Â)−1.

The determinant

J = detg(Ĥ0 + iε + 2Q̂Ĥ1)
−1 (17)

is the Jacobian for the transformation φ → Q̂ in the functional integration. The function G
can be obtained from F by directly calculating the integrals on both sides. This, however, is a
complex task for a general F . Here we consider only one specific case which is sufficient for
a diffusive mode:

Kr,r′ = − 1

g2

∑
l,m,n,n′

Um,nU
∗
l,n′

〈(
H−1

1 �r′
)

mn

(
HT−1

1 �̄r
)

n′l

〉
Q̂

with 〈· · ·〉Q̂ = ∫ · · · Je−g−1 Trg(Q̂2 ))D[Q̂]. Moreover, we have HT
1 = −U†H1U such that

Kr,r′ = 1

g2

∑
l,m,n,n′

Um,nU
∗
l,n′

〈(
H−1

1 �r′
)

mn

(
U†H−1

1 U�̄r
)

n′l

〉
Q̂. (18)

4.3. Saddle-point approximation

The saddle-point approximation of the functional integral (16) is given by a solution of the
saddle-point equation δQ̂S′ = 0 with

S′ = g−1 Trg
(
Q̂2

0

) + log detg(Ĥ0 + iε + 2Q̂Ĥ1). (19)

The saddle point is degenerate with respect to the similarity transformation

eŜQ̂0 e−Ŝ with Q̂0 =
(

Q0 0
0 iP0

)
.

This covers the entire saddle-point degeneracy because we assume here that there is no
additional symmetry of H.

Q̂0 consists of two terms, namely Q̂0 = Q̂1+Q̂2, where Q̂1 (Q̂2) commutes (anticommutes)
with Ŝ:

eŜQ̂0 e−Ŝ = Q̂1 + Q̂2 e−2Ŝ, (20)

which implies Trg(Q̂2
0) = 0. Then the saddle-point solution contributes to the action (19) the

two terms

U (Q1H1)
TU† = −Q1H1, U (Q2H1)

TU† = Q2H1, (21)
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where the first (second) term preserves (breaks) the symmetry of the Jacobian. These properties
imply

UgT
−U† = −g+, (22)

which is consistent with equation (4).
Inserting the expression (20) into the functional integral of equation (16) results in∫

G(eŜQ̂0 e−Ŝ)detg[Ĥ0 + iε + 2Q̂1Ĥ1 + 2Q̂2Ĥ1 e2Ŝ]−1D[Q̂′]. (23)

This indicates that Q̂2 is the order parameter for spontaneous symmetry breaking. Thus we
have reduced the integration to the nonlinear field Q̂′ = Q̂2 exp(2Ŝ), while Q̂0 is determined
by the saddle-point condition.

Now we use the identity e2Ŝ = 2(1 − Ŝ)−1 − 1 and define γ± = 4g±Q2H1with the help
of the Green functions g± in equation (11) to obtain for the inverse Jacobian (cf appendix A)

J−1 = J̄−1 det(1 + γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′) with

J̄ = det(−[H0 − iε + 2(Q1 − Q2)H1])

det(H0 + iε + 2Q0H1)
. (24)

Using the identity det(A) = exp{Tr[log(A)]}, we eventually have

J = J̄ exp{−Tr[log(1 + γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′)]}. (25)

4.4. Large-scale properties

The spatial diagonal elements of γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′ can be written as

(γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′)r,r = (γ+ − γ− + γ+γ−)r,rϕrϕ
′
r +

∑
r′

γ+,r,r′γ−,r′,r(ϕr′ − ϕr)ϕ
′
r,

(26)

where the first part is proportional to ε:

(γ+ − γ− + γ+γ−)r,r = −8iεg+g−Q2H1. (27)

The second term can also be expressed as∑
r′

Trnγ+,r,r′γ−,r′,r(ϕr′ − ϕr)ϕ
′
r = −

∑
r′

dr,r′ϕrϕ
′
r′ (28)

with

dr,r′ = δr,r′
∑

r′′
cr′′,r′ − cr,r′ with cr,r′ = Trn[γ+,r′,rγ−,r,r′ ]. (29)

It should be noticed in equation (28) that the spatial diagonal elements γ±,r,r do not contribute.
Moreover, (γ+ϕϕ′ −ϕγ−ϕ′ +γ+ϕγ−ϕ′)r,r′ (r′ �= r) has at least one spatial off-diagonal factor
γ±,r,r′ in each term. Therefore, all matrix elements (γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′)r,r′ have at
least one factor γ±,r,r′ with r′ �= r, except for the diagonal term in (27) which is proportional
to ε.

In the next step we analyze terms that depend on the off-diagonal elements γ±,r,r′ (r′ �= r).
Under a change of the length scale r → 
r on the two-dimensional lattice these off-diagonal
terms scale as (cf appendix B)

γ±,r,r′ → 
−2γ±,r,r′ (r′ �= r). (30)

ε is an arbitrarily small parameter which should be sent to zero. This allows us to replace
ε → 
−2ε here. Moreover, products of n matrices are of order 
−2n because γ±,r,r′ decays
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exponentially in space due to the nonzero symmetry breaking term Q2. Therefore, the
intermediate r summations do not contribute a factor 
. Finally, the trace scales as Tr → 
2Tr,
and we obtain from equation (25) for the scaled Jacobian

J → J
 = J̄
 exp{−
2Tr[log(1 + 
−2(γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′))]}.
Thus the large-scale limit 
 ∼ ∞ reads

J
 ∼ J̄
 exp{−Tr(γ+ϕϕ′ − ϕγ−ϕ′ + γ+ϕγ−ϕ′)}, (31)

which is a quadratic form of ϕ, ϕ′ in the exponent (i.e. (ϕ, ϕ′) is a free field). This reads with
equations (27), (28)

J
 ∼ J̄
 exp

[
−

∑
r,r′

(iεbδr,r′ + dr,r′ )ϕrϕ
′
r′

]
≡ J̄
 exp

(
−

∑
r,r′

κ−1
r,r′ϕrϕ

′
r′

)
, (32)

where b = 8Trn[(g+g−Q2H1)r,r]. After Fourier transformation r → q we obtain

d̃q = c̃0 − c̃q and κq = 1

ibε + c̃0 − c̃q
. (33)

Returning to the functional integral in equation (18) we now have an integration over ϕ, ϕ′

with

�r = −2Q2Uϕr, �̄r = 2U†Q2ϕ
′
r,

such that

Kr,r′ ∼ 4J̄


g2

∑
m,n

Um,n
(
H−1

1 Q2U
)

mn

∑
l,n′

U∗
l,n′

(
U†H−1

1 Q2
)

n′l

〈
ϕrϕ

′
r′
〉

= 4J̄


g2
Trn

(
UUT H−1

1 Q2
)
Trn(U

∗U†H−1
1 Q2)

〈
ϕrϕ

′
r′
〉

with 〈ϕrϕ
′
r′〉 = −κr′,r/ det(κ). Using the Fourier components in equation (33), the Fourier

transformation of Kr,r′ reads

K̃q ∼ K̄

ibε + c̃0 − c̃q
, (34)

where

K̄ = 4J̄


det(κ)g2
Trn

(
UUT H−1

1 Q2
)
Trn

(
U∗U†H−1

1 Q2
)
.

This concludes our calculation of the large-scale properties of Kr,r′ .

4.5. Alternative approach: nonlinear sigma model

Returning to the expression in equation (23), we can expand the logarithm of the Jacobian
in powers of Q̂2 up to second order. This approximation is referred to as the nonlinear sigma
model approach which is believed to provide a good description of the transport properties of
disordered systems [15, 16]. For our model we derive the nonlinear sigma model for the action

S′ = log[detg(Ĥ0 + iε + 2Q̂1Ĥ1 + 2Q̂2Ĥ1e2Ŝ)]

= log[detg(Ĥ0 + iε + 2(Q̂1 + Q̂2)Ĥ1 + 2Q̂2Ĥ1(e
2Ŝ − 1))],

where e2Ŝ − 1 = 2(Ŝ + Ŝ2). With

Ĝ0 =
(

g+ 0
0 −U†g−U

)−1

=
(

g+ 0
0 gT

+

)−1
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we can expand the action up to second order in Q̂2 as S′ ≈ S0 + S′′ with

S′′ = 4 Trg(Ĝ0Q̂2Ĥ1(Ŝ + Ŝ2)) + 8 Trg[(Ĝ0Q̂2Ĥ1(Ŝ + Ŝ2))2]

= 4 Trg(Ĝ0Q̂2Ĥ1Ŝ2) + 8 Trg[(Ĝ0Q̂2Ĥ1Ŝ)2] + 8 Trg[(Ĝ0Q̂2Ĥ1Ŝ2)2]. (35)

Ĝ0Q̂2Ĥ1 can be approximated by a gradient operator. This gives the standard form of the
nonlinear sigma model for the last two terms, whereas the first term contributes to the
symmetry-breaking term which is proportional to iε. Moreover, a straightforward calculation
shows that the last term vanishes for our model

Trg[(Ĝ0Q̂2Ĥ1Ŝ2)2] = 0, (36)

such that only the quadratic terms in ϕ survive in the nonlinear sigma model. This is in
agreement with the exponent in equations (31) and (32).

5. Discussion

Our derivation of Kr,r′ in the previous section was obtained without specifying H0, H1 of
the Hamiltonian. This prevents us from determining Q1, Q2 here because this requires the
solution of the saddle-point equation. It is crucial though that the symmetry breaking term Q2

represents a mass to the Green functions γ± such that the latter decay exponentially. There is
no diffusion but localization for saddle-point solutions with Q2 = 0, as discussed for the case
of Weyl fermions in [10].

We leave the determination of Q1, Q2 for specific Hamiltonians to further work and study
only the general structure of the diffusion propagator in equation (34). For the large-scale
behavior of the latter we consider q ∼ 0

K̃q ∼ K̄

b

1

iε + ∑
i, j Di jqiq j

(37)

with

d̃q = c̃0 − c̃q ∼ b
∑
i, j

Di jqiq j

and with the diffusion coefficients

Di j = − 1

2b

∂2c̃q

∂qi∂q j

∣∣∣∣
q=0

=
∑

r rir jTrn[g+,0,rQ2H1g−,r,0Q2H1]

Trn[(g+g−Q2H1)r,r]
.

In the isotropic case (i.e. for Di j = Dδi j) we have

d̃q = c̃0 − c̃q ∼ bDq2, D = − 1

2b

∂2c̃q

∂q2
k

∣∣∣∣
q=0

= 1

2b

∑
r

r2
k cr,0

such that the diffusion propagator reads

K̃q(iε) = K̄

ibε + c̃0 − c̃q
∼ K̄

b

1

iε + Dq2
. (38)

From the diffusion propagator we can evaluate the dynamics of the quantum walk. We apply
a Fourier transformation from frequency ε to time t and get

K̃q(iε) → Kq(t) = K̄

b
e−Dq2t,

and a Fourier transformation from momentum q to real space coordinates r gives

Kq(t) → kr(t) = K̄

b

e−r2/4Dt

πDt
.
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This provides the mean-square displacement as a function of time:〈
r2

k

〉 =
∑

r r2
k kr(t)∑

r kr(t)
∼ 2Dt. (39)

There is a simple scaling relation between the two-particle Green function Kr,0 in equation (1)
and saddle-point expression cr,0 in equation (29) as∑

r

r2
k Kr,0(iε) ∼ K̄

b2ε2

∑
r

r2
k cr,0. (40)

This result can be considered as an extension of the self-consistent Born approximation to
Kr,r′ .

Example. Weyl fermions with random gap: n = 2, H0 = i∂xσ1 + i∂yσ2, H1 = σ3, U = σ1,
Q1 = 0, Q2 = −i(η/2)σ3, where {σ j} are Pauli matrices. The saddle-point equation reads in
this case [10]

Tr2[(g+g−)r,r] = g−1.

Inserting this in our expressions above, we obtain b = 4iη/g, K̄/b2 = −1/4,

cr,0 = −4η2Tr2[g+,0,rg−,r,0],
∑

r

r2
k Kr,0(iε) ∼ − 1

4ε2

∑
r

r2
k cr,0 = 1

2πε2
.

Here we have fixed the cut-off � in equation (B.1) such that det(κ) = 1. The conductivity
σ can be calculated from this expression via the Kubo approach by an analytic continuation
ε → iω/2 [10]:

σ ∼ − e2

2h
ω2

∑
r

r2
k Kr,0(−ω/2) = e2

πh
, (41)

which is the well-known minimal conductivity of graphene (except for an additional
degeneracy factor 4) [5]. The disorder independent conductivity reflects the well-known fact
that the conductivity can not distinguish between ballistic and diffusive transport of Weyl
fermions [13]. The diffusive behavior was also found in recent numerical simulations by
Chalker et al [17] and Medvedyeva et al [18].

5.1. Broken particle–hole symmetry

We introduce a chemical potential μ that shifts away from particle–hole symmetry point by
±μ in the Hamiltonian

H̄ =

⎛
⎜⎜⎝

H + μσ0 0 0 0
0 H − μσ0 0 0
0 0 HT − μσ0 0
0 0 0 HT + μσ0

⎞
⎟⎟⎠ . (42)

Then we define the Green function in analogy to Ĝ(iε) as

Ḡ(iε) = (H̄ + iε)−1. (43)

The generalization of transformation matrix Ŝ in equation (13) then is

S̄ =

⎛
⎜⎜⎝

0 0 ϕ1U 0
0 0 0 ϕ2U

ϕ′
1U

† 0 0 0
0 ϕ′

2U
† 0 0

⎞
⎟⎟⎠ (44)

9



                                          

which anticommutes with H̄: S̄H̄ = −H̄S̄. This implies the symmetry transformation

eS̄H̄ eS̄ = H̄

and detg(eS̄) = exp(TrgS̄) = 1. Now we can employ the expansion of equation (35) to obtain
the nonlinear sigma model. It turns out that the fourth-order term in S̄ does not vanish for
μ �= 0, in contrast to the result in equation (36).

6. Conclusions

We have seen that the discrete particle–hole symmetry of the Hamiltonian H → −UH∗U† = H
can lead to a diffusive behavior. For this result it is crucial that no additional continuous
symmetry exists for the H. A typical realization of this case are two-dimensional Weyl–Dirac
fermions with random gap [9]. The diffusive behavior requires a non-vanishing symmetry-
breaking term Q̂2, which reflects spontaneous breaking of the symmetry in equation (14).
Q̂2 must be determined as a solution of the saddle-point equation. This can, depending on
the specific Hamiltonian H, generate a complex phase diagram with metallic (i.e. diffusive),
insulating and quantum-Hall phases (cf [10]).

A central fact in section 4.4 is that the saddle-point integration in equation (23) is restricted
to a two-component Grassmann field (ϕ, ϕ′). This is crucial for the derivation of the main
result. The integration would be over a larger manifold when the underlying Hamiltonian has
additional symmetries or in the absence of particle–hole symmetry. The latter case was briefly
discussed in section 5.1 where we introduced a shift away from the particle–hole symmetry
point. The integration over a larger manifold may result in a non-diffusive behavior.

There is a large number of publications on the subject of disordered particle–hole
symmetric Hamiltonians (class D), which are based on (i) field theory (in particular, nonlinear
sigma models), (ii) related network models and (iii) numerical simulations. A discussion
with many references can be found, for instance, in [19]. Unfortunately, there is no simple
conclusion from all the publications because the details of the results depend on the specific
form of the Hamiltonians or the network models, the distribution of disorder as well as on
the approximations used in analytic treatments. Moreover, the mapping from network models
onto Hamiltonian models is only understood on an approximative level [20, 21].

The approach discussed in this paper, which was originally proposed in [9], offers an
alternative to the nonlinear sigma model used in [22]. The main difference between the two
approaches is that the former is not supersymmetric, in contrast to the latter. The reason is that
we started from the asymmetric two-particle (Bose–Fermi) Hamiltonian Ĥ = diag(H, HT )

in the construction of the functional integral in equation (7), whereas Bocquet et al used
the symmetric two-particle (Bose–Fermi) Hamiltonian Ĥ = diag(H, H). This difference has
several consequences for the effective field theory of the average Green functions. First,
the saddle-point manifold defined in equation (20) is different from the ortho-symplectic
Lee group OSp(2n|2n)/GL(n|n) which generates the manifold of the symmetric approach
[22]. Second, the massless mode is only the two-component Grassmann field (ϕ, ϕ′) in the
asymmetric approach, whereas it consists of Grassmann and Goldstone (bosonic) components
in the symmetric approach. Thus the saddle-point integration is more complex in the latter. It
was treated within a renormalization-group approach, which provides an ideal metallic fixed
point with infinite conductivity, in contrast to our finite conductivity in equation (41). Besides
its technical simplicity, the asymmetric approach provides a metal-insulator phase diagram
[10], which agrees qualitatively with the numerically determined phase diagram of Chalker
et al [17].
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Appendix A. Jacobian

The inverse Jacobian in equation (23) reads

J−1 = detg(Ĥ0 + iε + 2Q̂1Ĥ1 + 2Q̂2Ĥ1e2Ŝ)

= detg(Ĥ0 + iε + 2Q̂1Ĥ1 − 2Q̂2Ĥ1 + 4Q̂2Ĥ1(1 − Ŝ)−1). (A.1)

After pulling out the factor (1 − Ŝ)−1 we get

J−1 = detg(1 − Ŝ)−1detg(Ĥ0 + iε + 2Q̂0Ĥ1 − [Ĥ0 + iε + 2(Q̂1 − Q̂2)Ĥ1]Ŝ).

The (anti) commutation relation of Q̂1 (Q̂2) implies

iUPj = −(−1) jQ jU, U†Q j = −i(−1) jPjU
† ( j = 1, 2)

and yields

J−1 = det[1(1 − ϕϕ′)]−1 det(H0 + iε + 2Q0H1)

det
(
HT

0 + iε + 2iP0HT
1

) det(1 − [H0 + iε + 2(Q1 − Q2)H1]ϕ

× [H0 − iε + 2(Q1 − Q2)H1]−1(H0 − iε + 2Q0H1)ϕ
′(H0 + iε + 2Q0H1)

−1).

In the second factor, Pj can be expressed by Q j such that

det
(
HT

0 + iε + 2iP0HT
1

) = det
(
U (HT

0 + iε + 2iP0HT
1 )U†

)
= det(−[H0 − iε + 2(Q1 − Q2)H1]).

With the identities

[H0 − iε + 2(Q1 − Q2)H1]−1(H0 − iε + 2(Q1 + Q2)H1)

= 1 + [H0 − iε + 2(Q1 − Q2)H1]−14Q2H1

=: 1 + 4g−Q2H1

and

[H0 + iε + 2(Q1 + Q2)H1]−1(H0 − iε + 2(Q1 + Q2)H1)

= 1 − [H0 + iε + 2(Q1 + Q2)H1]−14Q2H1

=: 1 − 4g+Q2H1

and with det(1 − ϕϕ′)−1 = det(1 + ϕϕ′) we get eventually

J−1 = det(H0 + iε + 2Q0H1)

det(− [H0 − iε + 2(Q1 − Q2)H1])
det[1(1 + ϕϕ′)]

× det(1 − {1 − 4[H0 + iε + 2(Q1 + Q2)H1]−1Q2H1}
×ϕ{1 + 4[H0 − iε + 2(Q1 − Q2)H1]−1Q2H1}ϕ′). (A.2)

Moreover, we have

det(1 − {1 − 4[H0 + iε + 2(Q1 + Q2)H1]−1Q2H1}
×ϕ{1 + 4[H0 − iε + 2(Q1 − Q2)H1]−1Q2H1}ϕ′)

= det(1 − ϕϕ′ + 4[H0 + iε + 2(Q1 + Q2)H1]−1Q2H1ϕϕ′

− 4ϕ[H0 − iε + 2(Q1 − Q2)H1]−1Q2H1ϕ
′

+ 16[H0 + iε + 2(Q1 + Q2)H1]−1Q2H1ϕ[H0 − iε + 2(Q1 − Q2)H1]−1Q2H1ϕ
′)

= det(1 − ϕϕ′ + 4g+Q2H1ϕϕ′ − 4ϕg−Q2H1ϕ
′ + 16g+Q2H1ϕg−Q2H1ϕ

′).
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Thus, we get for the expression in equation (A.2)

J−1 = det(H0 + iε + 2Q0H1)

det(− [H0 − iε + 2(Q1 − Q2)H1])
det(1 + 4g+Q2H1ϕϕ′ − 4ϕg−Q2H1ϕ

′

+ 16g+Q2H1ϕg−Q2H1ϕ
′).

Appendix B. Scaling transformation

The Green function of the saddle-point approximation in equation (11) reads in Fourier
representation

gr =
∫ �

0

∫ 2π

0 eiqr cos α dα

iε + m + q2
qdq, (B.1)

where m is an effective mass that is created by the saddle-point matrices Q1 ± Q2. Rescaling
r → 
r then gives

g
r =
∫ �

0

∫ 2π

0 ei
qr cos αdα

iε + m + q2
qdq = 
−2

∫ 
�

0

∫ 2π

0 eipr cos α dα

iε + m + p2/
2
p dp ∼ 
−2gr (B.2)

if m ∼ 1, since the integral is dominated by small p and does not depend on the cut-off 
�.
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