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Perturbative analysis of the conductivity in disordered monolayer and bilayer graphene
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The DC conductivity of monolayer and bilayer graphene is studied perturbatively for different types of disorder.
In the case of monolayer, an exact cancelation of logarithmic divergences occurs for all disorder types. The total
conductivity correction for a random vector potential is zero, while for a random scalar potential and a random
gap it acquires finite corrections. We identify the diagrams which are responsible for these corrections and
extrapolate the finite contributions to higher orders which gives us general expressions for the conductivity of
weakly disordered monolayer graphene. In the case of bilayer graphene, a cancelation of all contributions for
all types of disorder takes place. Thus, the minimal conductivity of bilayer graphene turns out to be very robust
against disorder.
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Introduction. Monolayer graphene (MLG) represents a
monoatomic sheet of carbon atoms arranged in a honeycomb
lattice with lattice spacing a and next-neighbor hopping energy
t ≈ 2.8 eV. The transport properties of charge-neutral MLG
are characterized by the semimetallic behavior with a point-
like Fermi surface at two nodes (valleys) and linear low-energy
dispersion in the vicinity of these valleys. This remarkable fact
is one reason for the outstanding electronic properties of ML
graphene.1–3 Perhaps the most prominent transport property of
ML graphene is the minimal conductivity σ̄0 = e2/hπ exactly
at the Dirac point which has been observed in a number of
experiments.1,2,4 Bilayer graphene (BLG) represents two ML
honeycomb lattices with Bernal stacking, where the interlayer
hopping processes are allowed with the energy t⊥ ≈ 0.4 eV.
The main difference between MLG and BLG is that the
low-energy excitations of the latter have a quadratic spectrum
in the vicinity of the valleys.5 This difference causes a factor
of two for the DC conductivity σ̄0 = 2e2/hπ . Experimentally,
both values seem to depend only very weakly on disorder or
thermal fluctuations,5–9 which is supported by field-theoretical
studies for various types of disorder.10–16

To the best of our knowledge, a systematic diagrammatic
analysis of the conductivity of disordered graphene has
not been performed so far. Usually, only certain types of
diagrams are taken into account. Such approximations cannot
be considered as fully controllable, since each diagram in
the perturbative expansion exhibits logarithmic divergences.
Therefore, the final result of calculations must crucially depend
on a correct counting of diagrams. It is the purpose of this paper
to demonstrate this for the conductivity calculated within the
Kubo formalism.

Kubo formula. Within the linear response theory, the
conductivity of graphene per a spin and valley projection can
be approximated for low frequencies (ω ∼ 0) by the Kubo
formula17

σ̄ (ω) = −ω2 e2

2h
Cg(ω), (1)

where

Cg(ω) =
∑

r

r2
k Tr

〈
Gr0

(
iε + ω

2

)
G0r

(
−iε − ω

2

)〉
g

(2)

is the analog of the (mean square) displacement function of a
classical random walk. The spin-valley degeneracy should be
taken into account by multiplying it with an additional factor
4. The symbol rk denotes the k component of the position
operator; the brackets 〈. . .〉g mean average with respect
to disorder of strength g. The expression Grr ′ (z)Gr ′r (−z)
is referred to as the two-particle Green’s function and is
commonly depicted diagrammatically as a closed loop .
Here, G denotes the one-particle Green’s function with

G−1(z) = h̄z + σ · ∇ + v2ûr , (3)

where the vector σ consists of Pauli matrices σ1,2 and
ûr represents a disorder potential. The operator of kinetic
energy reads ∇i = ih̄v∂i for MLG with the Fermi ve-
locity v = √

3ta/2h̄, and ∇1 = h̄2(∂2
1 − ∂2

2 )/2μ and ∇2 =
h̄2∂1∂2/μ for BLG, where μ = 2t⊥h̄2/3t2a2 denotes the
electron band mass. For BLG, we also define a character-
istic velocity v = h̄/aμ = 3t2a/2t⊥h̄ which appears in the
Green’s function. Here, we consider three disorder types:
1) random scalar potential, ûr = Vrσ0; 2) random vector
potential ûr = σ · Ar ; and 3) random gap ûr = δMrσ3. We
assume disorder to be Gaussian correlated with zero mean,
i.e., 〈ûr〉 = 0, 〈ûr ûr ′〉 = (h̄/v)2(g/mv2)δ(r − r ′) (〈ûr ûr ′〉 =
(h̄/v)2(g/mv2)δijδ(r − r ′) for random vector potential), with
corresponding v and m = me, the bare electron mass for
MLG (mev

2 ≈ 6 eV), and m = μ for BLG (μv2 ≈ 30 eV).
Our assumption suggests g/(mv2) 
 1. Below we use a unit
system with h̄ = 1, e2/h = 1, me = 1, 2μ = 1, and v = 1.

Before we embark on the perturbative calculation, we
briefly discuss the status quo of the field-theoretical approach.
In the case of a random vector potential, representing random
ripples in graphene, a bosonized replica approach yields for
MLG σ̄ = σ̄0.11 The random gap case is of particular interest,
because it describes a metal-insulator transition due to the
opening of the gap m. The displacement function Cg(m,ω)
can be evaluated in this case by replacing the random field
δMr by a more general random field. This mapping enables us
to search for saddle points in a multidimensional manifold. It
turns out that not just a single saddle point exists but a whole
saddle-point manifold. As a result, we have one massless
mode.14 The latter creates an ω−2 singularity in Cg(m,ω),
which cancels the ω2 factor in the conductivity of Eq. (1). There
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FIG. 1. Two-loop corrections of the two-particle Green’s func-
tion. Each diagram appears twice in the expansion. Solid lines in the
upper/lower bow correspond to Green’s functions of clean graphene
(û = 0) G(−z)/G(+z) and slashed lines to the disorder.

are also massive modes around the saddle-point manifold.
Altogether this leads to the following scaling form:

Cg(m,ω) = (ω + 2iη)2

ω2
C0(m/2,ω + 2iη)Kg, (4)

with the displacement function of the pure system

C0(m,ω) = 2

π

1

4m2 − ω2
. (5)

Kg is the contribution of the massive modes. Although its form
is unknown for g > 0, it is always finite with K0 = 1 for g =
0. The scattering rate η is given by η = (m2 − m2

c)	(m2
c −

m2)/4 with mc = 
e−π/g .14 It should be noticed that the ω−2

singularity of Cg disappears for both MLG and BLG for η = 0
and m > 0. In terms of the conductivity of Eq. (1), this yields
for ω ∼ 0 eventually

σ̄ ∼ σ̄0Kg

(
1 − m2

m2
c

)
	

(
m2

c − m2
)
. (6)

This result indicates that σ̄ vanishes for any m > 0 in pertur-
bation theory because mc is always zero in the latter. On the
other hand, for m = 0 the perturbation theory should reproduce
σ̄ = σ̄0Kg , since the mc drops out of the conductivity in this
case.

Perturbative theory. Now we evaluate the displacement
function perturbatively in powers of the disorder strength
g/2. In order to perform these calculations, the translational
invariance broken by disorder has to be restored by averaging
over the Gaussian ensemble. Here, we perform this aver-
aging using a diagrammatic representation. The first order
conductivity corrections arise from the graphs depicted in
Fig. 1. Results of the evaluation of these diagrams are shown
in Table I, where we only retain constant contributions and
logarithmically divergent terms. The second-order (three-loop
order) diagrams contributing to the conductivity are shown
in Fig. 2 and results of their evaluation are summarized in
Table II. Technical details of the evaluation can be found in
the supplementary material.18 The total combinatorial factor
for each topological class of diagrams is 2n. Each topological
class of diagrams exhibits in turn further degeneracy due to

diagram symmetries: The degeneracy factor of the first-order
topological class 1 (Fig. 1) and of the second-order topological
classes 1, 2, and 7 (Fig. 2) is one, while that of the first-order
topological class 2 (Fig. 1) and of the second-order topological
classes 4, 5, 6, and 8 (Fig. 2) is two and degeneracy factor of
the second-order topological class 3 is four. All these factors
should be carefully taken into account.

First we discuss results for monolayer graphene. To the two-
loop order, contributions to the displacement function from all
diagrams reveal divergences ∼ω−2 ln 
/ω. Here, 
 denotes
the UV cutoff and ω the imaginary frequency in contrast to
Eqs. (1) and (2). The emergence of the logarithms is due to the
divergence of the loop integrals

I =
∫

d2k

(2π )2
Gk(z) ∼ ln




ω
, (7)

while the singularity ω−2 appears in the displacement function
due to rescaling of the factor r2

k in Eq. (2),18 but disappears in
the conductivity because of the factor ω2 in Eq. (1), as in the
field-theoretical approach discussed above. At the three-loop
level, contributions from diagrams containing intercrossing
impurity lines (diagrams 6, 7, and 8 in Fig. 2) vanish after
angular integration. Contributions to the displacement function
arising from each diagram with noncrossing impurity lines
diverge ∼ω−2(ln 
/ω)2, with some of them revealing sub-
dominant divergence ∼ω−2 ln 
/ω. However, to both orders
g and g2, the sum over all conductivity contributions is finite,
i.e., singularities to both orders ∼ ln 
/ω and ∼(ln 
/ω)2

cancel each other exactly. For the random vector potential,
the conductivity correction is zero to both two- and three-loop
order. This is in accord with the findings of Refs. 11, 15,
and 16. For random gap and random scalar potential to both
orders, finite conductivity corrections are generated only by
ladder diagrams, i.e., by diagrams 1 in Figs. 1 and 2. Provided
that the cancelation of singularities holds to higher orders
as well, the analysis of higher order ladder diagrams yields
the following general expression for the nth order (n � 1)
conductivity correction

σ̄0
(±1)n

2n−1

( g

2π

)n

, (8)

with + for the random scalar potential and − for the random
gap. This expression has been verified to the fourth order in
perturbative expansion (five-loop order). The sum over n � 1
converges and we obtain for the conductivity

σ̄V,M = σ̄0

1 ± g

4π

1 ∓ g

4π

, (9)

TABLE I. Conductivity corrections from the first-order classes of diagrams (Fig. 1) for MLG (BLG) in corresponding σ̄0 units (Ref. 18).
MLG results are shown for 
 � ω. Here we use the shorthands α = g/2π , � = log(
/ω), and β = g/8ω. The degeneracy factors for each
diagram and combinatorial factor 2 are taken into account (first column).

Diagram class Scalar disorder Gap disorder Vector disorder

(1, 1) × 1 α[1 + 2�]/2 (2β) −α[1 − 2�]/2 (2β) 2α� (4β)
(1, 2) × 2 −α� (−2β) −α� (−2β) −2α� (−4β)
Total × 2 α (0) −α (0) 0 (0)
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FIG. 2. Three-loop corrections of the two-particle Green’s func-
tion. Each diagram appears four times. Generally, the combinatorial
factor of each nth order diagram is 2n.

for random scalar potential (+) and random gap (−), cor-
respondingly. It should be noticed that the conductivity is
enhanced (reduced) by scalar-potential (gap) disorder. This is
plausible because the fluctuations of the former add particles
to the system at the Dirac point, whereas the latter opens
a fluctuating gap that should reduce the contribution to the
conductivity.

In the case of bilayer, the integral in Eq. (7) converges
for 
 → ∞, giving I ∼ const. Therefore, corrections to the
displacement function arising from each nth order diagram
become proportional to ω−2−n. Formally, this leads to the

singularity ∼ω−n of each nth order conductivity correction
for small ω, as is shown in Tables I and II (values in
brackets). Details of the evaluation of the first-order diagrams
are summarized in Ref. 18. However, the sum over all
contributions gives a zero for all disorder types in both first and
second order of perturbation theory. Provided this cancelation
holds to higher orders as well, the minimal conductivity of
bilayer graphene turns out to be very robust with respect to all
types of disorder.

Discussion. The conductivity formula Eq. (9) represents the
main result of our work. It has the required form σ̄ = σ̄0Kg . An
important feature of this solution is its scale invariance. Indeed,
while this expression has been obtained for a finite frequency
ω after performing the limit 
 → ∞, formally, the same result
follows by keeping the cutoff 
 finite and performing the limit
ω → 0. Hence, Eq. (9) can be regarded as an asymptotically
exact solution of the DC transport problem in disordered ML
graphene.

For the particular case of the random gap disorder in
MLG with zero average gap, our results confirm findings of
the recent numerical works.19,20 For g ∼ 0 it reproduces the
field theoretical result obtained in Ref. 12. The robustness
of the minimal conductivity for BLG for zero average mass
is in remarkable agreement with the nonperturbative result
obtained in Ref. 14. On the other hand, the perturbation
theory fails to describe a metal-insulator transition typical
for a two-dimensional electron gas.14,20 This is because the
scattering rate η vanishes in perturbation theory, whereas a
nonzero η is the parameter which controls the metal-insulator
transition according to Eq. (6). Hence, the area of applicability
of perturbation theory is restricted to the metallic phase.

Apart from the contribution to the displacement function
shown in Eq. (2), there are two further contributions which
emerge from the Kubo formula and might become important
sufficiently far away from the Dirac point.13 In terms of
one-particle Green’s functions, they correspond to the product
G(±z)G(±z). However, close to the Dirac point these contri-
butions can be neglected in comparison to Eq. (2). Although
the reason for neglecting them is not evident from the point of
view of perturbation theory, the argument is provided by the
field theory. The latter demonstrates the absence of massless
modes at the saddle point for these contributions,12,13 i.e., at the
Dirac point they are strongly suppressed and do not contribute
to the transport.

TABLE II. Conductivity corrections from the second-order classes of diagrams (Fig. 2) for MLG (BLG) in corresponding σ̄0 units. All
shorthands as above. The degeneracy factors and combinatorial factor 4 are taken into account (first column).

Diagram class Scalar disorder Gap disorder Vector disorder

(2, 1) × 1 α2[1 + 4� + 6�2]/8 (3β2/2) α2[1 − 4� + 6�2]/8 (3β2/2) 3α2�2 (6β2)
(2, 2) × 1 5α2�2/12 (5β2/6) 5α2�2/12 (5β2/6) 5α2�2/3 (10β2/3)
(2, 3) × 4 −α2�[1 + �] (−3β2) −α2�2 (−3β2) −2α2�[1 + 2�] (−12β2)
(2, 4) × 2 α2�[1 − �]/2 (2β2/3) α2�[1 − �]/2 (2β2/3) 2α2�[1 − �] (8β2/3)
(2, 5) × 2 α2�2/3 (0) α2�2/3 (0) 4α2�2/3 (0)
(2, 6) × 2 0 0 0
(2, 7) × 1 0 0 0
(2, 8) × 2 0 0 0
Total × 4 α2/2 (0) α2/2 (0) 0
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In conclusion, we have carefully studied perturbative
corrections to the conductivity of disordered monolayer and
bilayer graphene for different disorder types. Up to three-
loop order we managed to show that in the case of ML
graphene logarithmic divergences cancel each other exactly,
irrespectively of the disorder type. Thus, the conductivity of
weakly disordered monolayer graphene is modified by a finite

correction. On the other hand, the minimal conductivity of
bilayer graphene does not acquire any corrections for any type
of disorder, as we have demonstrated for the first and second
order in the perturbative expansion.

We acknowledge financial support by the DFG Grant No.
ZI 305/5–1.
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