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Abstract
We study the creation of a bosonic N00N state from the evolution of a Fock state in a double
well. While noninteracting bosons disappear quickly in the Hilbert space, the evolution under
the influence of a Bose–Hubbard Hamiltonian is much more restricted. This restriction is
caused by the fragmentation of the spectrum into a high-energy part with doubly degenerate
levels and a nondegenerate low-energy part. This degeneracy suppresses transitions to states
of the high-energy part of the spectrum. At a moderate interaction strength, this effect supports
strongly the dynamical formation of a N00N state. The N00N state is suppressed in a double
well, where one well has attractive and the other has repulsive interaction, because the double
degeneracy is absent.

                                                              

1. Introduction

Recent experiments on ultracold gases in optical potentials
[1–3] and experiments on photons in microwave cavities [4, 5]
have demonstrated that it is possible to prepare a Fock state as a
pure state in a finite-dimensional system. After the preparation
of the Fock state, the parameters of the system can suddenly
be changed (performing a ‘quench’) such that the Fock state is
not an eigenstate of the new system Hamiltonian H. Then, the
evolution of the many-body state due to the evolution operator
exp(−iHt) will lead to a random walk inside the available
Hilbert space. The visited states include other Fock states as
well as superpositions of Fock states. Typical questions in this
context are: what is the probability for visiting different states
and how is this affected by the interaction of the particles? A
natural quantity for measuring this probability is the spectral
density function of the Hamiltonian H with respect to the initial
Fock state [6–8].

A classical candidate for modelling the evolution of a
Fock state is the Hubbard model [9, 10]. The corresponding
discrete Hamiltonian describes the tunnelling of a particle
between neighbouring potential wells and a local particle–
particle interaction. The Hubbard model for bosons (the
Bose–Hubbard model) was realized as an atomic system in
an optical lattice [11]. A possible realization of the Bose–
Hubbard model by photons in coupled microwave cavities was
proposed recently by Hartmann et al [12]. An anharmonicity

of the microwave cavities plays the role of the photon–photon
interaction [8].

The simplest system for discussing the evolution of a
Fock state within the Hubbard model is a double well, where
particles can tunnel between the two wells. For N bosons the
underlying Hilbert space is spanned by the (N+1)-dimensional
Fock base {|0, N〉, |1, N −1〉, . . . , |N, 0〉}, where l bosons are
in one well and N−l in the other well [13–16]. The initial state
is prepared as a Fock state, where all the bosons are in one
of the two wells (i.e. |0, N〉 or |N, 0〉), while the tunnelling
between the wells is turned off. To start the evolution, a
‘quench’ is provided by switching on the tunnelling between
the two wells. This is realized by a sudden reduction in the
potential barrier between the wells in an atomic system [1] or
by connecting the two microwave cavities with an optical fibre
[8, 12, 17]. A similar experiment was performed with two
atomic clouds subject to weak interaction and separated by an
adjustable potential barrier [18, 19].

On the theoretical side, mean-field descriptions of the
Bose–Hubbard model, such as a Hartree approximation or
the Gross–Pitaevskii equation, may work well for clouds
with many bosons and weak boson–boson interaction [14].
However, they provide a rather poor approximation for the
dynamics of small many-body systems (cf [13]). This was also
observed in a recent study by Streltsov et al who compared the
results of a simple Hartree (Gross–Pitaevskii) approximation
with a sophisticated (multiconfigurational time-dependent)
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Hartree approximation for bosons [20]. The latter reveals
that the bosonic clouds are related to superpositions of Fock
states in the form of N00N states

|N00N〉 = 1√
2
[|0, N〉 + eiφN |N, 0〉]. (1)

In the following, we will study the Hubbard dynamics of
bosons in a double well in more detail. In particular, we
are interested in the connection of spectral properties and
the formation of N00N states, based on a Fock state with all
particles in one well as the initial state. To avoid problems with
uncontrolled approximations, we will rely on a full quantum
calculation. An exact solution is available in a Fock-state base,
as described previously in [6, 8].

The paper is organized as follows. In section 2, the model
based on the Bose–Hubbard Hamiltonian is defined, and in
section 2.1, the dynamics of an isolated quantum system is
explained. Then, we discuss the dynamics of a noninteracting
Bose gas in section 3, and the dynamics of an interacting
Bose gas in section 4. The latter is divided into a study of a
symmetric double well (section 4.1) and a double well with
mixed interaction, where one well has attractive and the other
repulsive interaction (section 4.2). Finally, we summarize the
results of our calculation in section 5 and discuss them in
section 6.

2. The model

The many-body Hamiltonian Ĥ of N bosons with mass m reads

Ĥ =
N∑

j=1

[
p2

j

2m
+ V (rj )

]
+

N∑
j,k=1

U(rj , rk), (2)

where pj is the momentum of a boson, V (rj ) is the one-
body potential of the double well and U(rj , rk) is the two-
body interaction potential. For the latter, we assume that it
decays very quickly with the distance |rj −rk| of the particles.
This implies that particles located in different wells do not
interact with each other. In a general situation, the two-body
interaction can be attractive in one and repulsive in the other
well. Then, the many-body Hamiltonian is expressed in Fock-
state representation as∫

· · ·
∫
〈N − k, k|r1, r2, . . . , rN 〉〈r1, r2, . . . , rN |Ĥ

× |r′
1, r′

2, . . . , r′
N 〉〈|r′

1, r′
2, . . . , r′

N

× |N − k′, k′〉 d3r1 · · · d3r′
N

= 〈N − k, k|H |N − k′, k′〉. (3)

For the new Hamiltonian H, which acts in the Hilbert
space spanned by the Fock base, we can use a generalized
Bose–Hubbard Hamiltonian with different local interaction
parameters U1, U2 in the corresponding wells as a reasonable
approximation:

H = J
(
a
†
1a2 + a

†
2a1

)
+ U1

(
a
†
1a1

)2
+ U2

(
a
†
2a2

)2
, (4)

where a
†
j (aj ) are creation (annihilation) operators for bosons in

the Fock states. H, which describes tunnelling between the two
wells and the local interaction inside the well with interaction
strength Uj , gives us a complete quantum description of the
different Fock states and their superpositions. In particular, we

can employ it to study the evolution of a Fock state to a N00N
state of equation (1). This will be used subsequently for two
special cases. The first case is a symmetric double well, where
U1 = U2. The second case has opposite signs of interactions
U1 = −U2, which describes an attractive interaction in one
well and a repulsive interaction in the other well.

2.1. Evolution of isolated systems

We consider a system which is isolated from the environment.
Furthermore, we assume that the system lives in an (N + 1)-
dimensional Hilbert space. With the initial state |�0〉, we can
obtain for the time evolution of the state

|�t 〉 = e−iHt |�0〉 (5)

or the evolution of the return probability |〈�0|�t 〉|2 with the
amplitude

〈�0|�t 〉 = 〈�0| e−iHt |�0〉. (6)

In general, the amplitude 〈�1|�t 〉 can be expressed via an
integral transformation of the resolvent as

〈�1|�t 〉 = 〈�1| e−iHt |�0〉 =
∫

�

〈�1|(z − H)−1|�0〉 e−iztdz,

(7)

where the contour � encloses all the eigenvalues Ej (j =
0, 1, . . . , N ) of H. With the corresponding eigenstates |Ej 〉,
the spectral representation of the resolvent is a rational
function:

〈�1|(z − H)−1|�0〉 =
N∑

j=0

〈�1|Ej 〉〈Ej |�0〉
z − Ej

= PN (z)

QN+1(z)
,

(8)

where PN (z), QN+1(z) are polynomials in z of orders N, N +1,
respectively, with the common denominator

QN+1(z) =
N∏

j=0

(z − Ej ).

These polynomials are readily evaluated by the recursive
projection method (RPM) [6].

The expression in equation (8) for |�1〉 = |�0〉 can be
interpreted as the bosonic spectral density ρε(E) with respect
to the state |�0〉:

ρε(E) = 1

π
Im〈�0|(E − iε − H)−1|�0〉

= ε

π

N∑
j=0

|〈�0|Ej 〉|2
ε2 + (E − Ej )2

. (9)

The amplitude of the return probability then reads as the
Fourier transform of the spectral density

〈�0|�t 〉 = lim
ε→0

∫
ρε(E) e−iEt dE. (10)

Analogously, the overlap 〈�1|�t 〉 reads in terms of the
resolvent

〈�1|�t 〉 = 1

π
lim
ε→0

∫
Im〈�1|(E − iε − H)−1|�0〉 e−iEt dE,

(11)
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with

lim
ε→0

Im〈�1|(E − iε − H)−1|�0〉

= π
∑

j

〈�1|Ej 〉〈Ej |�0〉δ(E − Ej ), (12)

provided that the matrix elements are symmetric. The latter is
the case for the Hubbard Hamiltonian.

The purpose of the subsequent calculation is to determine
the evolution of the Fock state under the influence of the
Bose–Hubbard Hamiltonian of equation (4). In general, this
is expressed in the Fock base as

|�t 〉 =
N∑

j=0

cj (t)|N − j, j 〉, (13)

with coefficients cj (t) = 〈N − j, j |�t 〉. For the N00N state
we only need to focus on the coefficients c0(t) and cN (t).
Although we do not anticipate that the other coefficients
vanish, for the existence of a N00N state it is sufficient to
have simultaneously c0(t), cN (t) �= 0. Moreover, the resulting
entangled state may in general not have c0(t) = cN (t) but is
still called a N00N state.

Comparing the result in equation (13) with the expressions
in equations (10), (11) and (12), it turns out that the Fourier
transforms of c0(t) and cN (t) are just the imaginary parts of
the matrix elements of the resolvent:

c̃0(E) = 1

π
lim
ε→0

Im〈N, 0|(E − iε − H)−1|N, 0〉

=
∑

j

〈N, 0|Ej 〉〈Ej |N, 0〉δ(E − Ej ) (14)

and

c̃N (E) = 1

π
lim
ε→0

Im〈0, N |(E − iε − H)−1|N, 0〉

=
∑

j

〈0, N |Ej 〉〈Ej |N, 0〉δ(E − Ej ). (15)

These two expressions will be called spectral coefficients,
where c̃0(E) measures the relative weight |〈N, 0|Ej 〉|2.
Integration over the energy E gives 1 for this coefficient. The
coefficient c̃N (E) measures the correlation between |N, 0〉 and
|0, N〉 due to the product 〈0, N |Ej 〉〈Ej |N, 0〉. The latter is
real for a symmetric Hamiltonian. Integration over the energy
E gives 0 for this coefficient.

3. Double well: noninteracting Bose gas

The Bose–Hubbard Hamiltonian has two simple limits: the
local limit J = 0 and the noninteracting limit U1 = U2 = 0.
In the local limit for a symmetric double well with U1 = U2

pairs, Fock states |N −k, k〉, |k,N −k〉 are doubly degenerate
eigenstates with energy Ek = U [(N−k)2+k2]. A perturbation
by a small tunnelling term will break the degeneracy. This
effect is stronger at lower energies because the parabolic
spectrum is denser there. This agrees with a numerical study
[13]. The fact that the states |N, 0〉 and |0, N〉 are very close
in energy may support the formation of a N00N state.

In the absence of the particle–particle interaction the
Bose–Hubbard Hamiltonian Ht (i.e. the Hamiltonian in

equation (4) with U1 = U2 = 0) only describes tunnelling. A
straightforward calculation shows that the eigenstate |N−k; k〉
of Ht with Ht |N −k; k〉 = J (N −2k)|N −k; k〉 has an overlap
with the Fock states |N, 0〉 and |0, N〉 as

〈N, 0|N − k; k〉 = 2−N/2

√(
N

k

)
,

〈0, N |N − k; k〉 = (−1)k2−N/2

√(
N

k

)
. (16)

This implies that the spectral coefficients of equations (14) and
(15) have a binomial form:

c̃0(E) = 2−N

N∑
k=0

(
N

k

)
δ(E + J (2k − N)), (17)

c̃N (E) = 2−N

N∑
k=0

(
N

k

)
(−1)kδ(E + J (2k − N)). (18)

A Fourier transformation reveals a periodic behaviour of the
evolutionary coefficients as

c0(t) = 〈N, 0| e−iHt |N, 0〉 = cosN (J t),

cN (t) = 〈0, N | e−iHt |N, 0〉 = (−i)N sinN (J t). (19)

Thus, the evolution of the Fock state leads to a N00N state
with a probability that decays exponentially with N. This is a
consequence of the fact that for an increasing N, the particles
disappear in the (N + 1)-dimensional Hilbert space because
there is no constraint due to interaction.

4. Double well: interacting Bose gas

The double well with the two Fock states |N, 0〉, |0, N〉
as possible initial states can be treated within the RPM.
This method is based on a systematic expansion of the
resolvent 〈�1|(z − H)−1|�0〉, starting from the initial base
{|N, 0〉, |0, N〉}. The method can also be understood as a
directed random walk in Hilbert space. This means that in
comparison with the conventional random walk the directed
random walk of the RPM visits a subspace H2j only once
and never returns to it. In terms of N bosons, distributed
over the double well, the subspace H2j is spanned by the
base {|N − j, j 〉, |j,N − j 〉}. A step from H2j to H2j+2

is given by the Hamiltonian H in such a way that H2j+2 is
created by acting H on H2j (see the appendix). This step is
provided by the tunnelling of a single boson. Thus, the directed
random walk follows a path with increasing numbers j . The
directed random walk is the main advantage of the RPM which
allows us to calculate the matrix elements 〈�0|(z−H)−1|�0〉,
〈�1|(z−H)−1|�0〉 of the resolvent on an (N +1)-dimensional
Hilbert space exactly.

4.1. Symmetric double well

Now we choose U1 = U2 ≡ U for the Bose–Hubbard
Hamiltonian. Assuming that N is even, all projected spaces
H2j are two-dimensional and spanned by {|N − j, j 〉, |j,N −
j 〉} (j = 0, . . . , N/2). This leads to a recurrence relation in
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the base of the two Fock states (|N, 0〉, |0, N〉) as initial states.
The recurrence relation reads (see the appendix)

gk+1 =
(

ak+1 bk+1

bk+1 ak+1

)
, g0 = 1

z − UN2/2

(
1 0

0 1

)

(k = 0, 1, . . . , N/2 − 1), (20)

with coefficients

ak+1 = z−f̃k+1−J 2ak(N/2+k+1)(N/2−k)

[z−f̃k+1−J 2ak(N/2+k+1)(N/2−k)]2−J 4b2
k(N/2+k+1)2(N/2−k)2

(21)

bk+1 = J 2bk(N/2+k+1)(N/2−k)

[z−f̃k+1−J 2ak(N/2+k+1)(N/2−k)]2−J 4b2
k(N/2+k+1)2(N/2−k)2

(22)

and

f̃k+1 = U(N/2 + k + 1)2 + U(N/2 − k − 1)2.

The iteration terminates after N/2 steps with

gN/2 =
(

aN/2 bN/2

bN/2 aN/2

)
, (23)

where

aN/2 = 〈N, 0|(z − H)−1|N, 0〉 = 〈0, N |(z − H)−1|0, N〉
(24)

and

bN/2 = 〈0, N |(z − H)−1|N, 0〉 = 〈N, 0|(z − H)−1|0, N〉.
(25)

An invariance of the recurrence relation under the following
simultaneous sign changes in equations (21) and (22)
exists:

z → −z, U → −U, aj → −aj , bj → −bj .

(26)

This implies that a change from a repulsive to an attractive
Hubbard interaction results in a mirror image with respect to
energy of the spectral coefficients

c̃0(E,U) = c̃0(−E,−U), c̃N (E,U) = c̃N (−E,−U).

(27)

4.2. Double well with mixed interaction

In the case U1 = −U2 ≡ U, we have one more variable,
namely ak , bk and ck with the following recurrence relations
(see the appendix):

gk+1 =
(

ak+1 ck+1

ck+1 bk+1

)
, g0 = 1

z

(
1 0

0 1

)

(k = 0, 1, . . . , N/2 − 1), (28)

with matrix elements (n = N/2):

ak+1 = z + 4Un(k + 1) − J 2(n + k + 1)(n − k)bk

Dk+1
(29)

bk+1 = z − 4Un(k + 1) − J 2(n + k + 1)(n − k)ak

Dk+1
(30)

ck+1 = −J 2(n + k + 1)(n − k)ck

Dk+1
(31)

and with

Dk+1 = [z − 4Un(k + 1) − J 2ak(n + k + 1)(n − k)]

× [z + 4Un(k + 1) − J 2bk(n + k + 1)(n − k)]

− J 4c2
k(n + k + 1)2(n − k)2.

The final result of the iteration is

gN/2 =
(

aN/2 bN/2

bN/2 cN/2

)
, (32)

with

aN/2 = 〈N, 0|(z − H)−1|N, 0〉,
bN/2 = 〈0, N |(z − H)−1|0, N〉, (33)

cN/2 = 〈N, 0|(z − H)−1|0, N〉 = 〈0, N |(z − H)−1|N, 0〉.
(34)

5. Results

The iteration of equations (21) and (22) for a symmetric double
well and the iteration of equations (29)–(31) for a double well
with mixed interaction give us, according to equations (24),
(25) and (33), (34), the following four matrix elements of the
resolvent:

〈N, 0|(z − H)−1|N, 0〉, 〈0, N |(z − H)−1|0, N〉,
〈0, N |(z − H)−1|N, 0〉 = 〈N, 0|(z − H)−1|0, N〉.

These are rational functions of z as shown in equation (7).
For N bosons these are lengthy expressions with N + 1
poles. Therefore, it is convenient to present the results as
plots with respect to energy. The examples of the spectral
coefficients c̃0(E) and c̃N (E) are shown for a symmetric
double well with 100 bosons in figure 1 and with 20 bosons in
figure 2, and for a double well with mixed interaction for
100 bosons in figure 3. A larger number of bosons show
a richer spectral structure. The diagonal coefficient c̃0(E)

in the case of 100 bosons is remarkably different from the
off-diagonal coefficient c̃N (E) because the latter does not
have spectral weight from eigenstates whose energy Ej is
larger than the energy of the initial Fock state Ē = UN2.
The reason for this feature is the double degeneracy of the
eigenvalues mentioned in section 3: the signs of the product
〈0, N |Ej 〉〈Ej |N, 0〉 for adjacent eigenvalues are opposite to
each other. Since the eigenvalues get closer pairwise as we
increase their energy, the contribution of the two levels cancels
each other for each pair inside the sum of equation (15).
This interaction effect is also visible for 20 bosons (figure 2),
although the cancellation is incomplete then due to a larger
level distance. This can be considered as an effect of spectral
fragmentation, where the spectrum has a nondegenerate low-
energy part and a degenerate high-energy part, caused by the
competition of tunnelling and interaction.
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Figure 1. Spectral coefficients of equations (14) and (15) for 100
bosons with U/J ≈ 0.023 and ε = 0.01. The energy of the initial
Fock state is Ē = 1000. The spectral fragmentation appears around
E ≈ 970, where the levels are nondegenerate at lower energies but
almost degenerate for higher energies. This is a consequence of the
competition between tunnelling and interaction, in which the latter
wins at higher energies.

The contribution of the two Fock states |0, N〉, |N, 0〉
to the evolution in equation (13) is given by the coefficients
c0(t) = 〈N, 0|�t 〉, cN (t) = 〈0, N |�t 〉. In figure 4, the real
parts of these coefficients are plotted for 100 bosons. Their
evolution indicates a collapse and revival behaviour. The latter
is mainly due to a rapidly changing phase factor, since |c0(t)|,
|cN (t)| has a much smoother behaviour. This allows us to plot
the evolution of the two-dimensional vector (|c0(t)|, |cN (t)|)
to characterize the dynamics of the N00N state. Examples of
the complex dynamical behaviour are shown for 100 bosons
and for 20 bosons in figure 5. These results suggest a statistical
description with a probability P(|c0(t)|, |cN (t)|) that measures
how often certain values of |c0(t)|, |cN (t)| are visited during
the evolution in a period of time. The result for 20 bosons is
plotted in figure 6 for U = 0.1, J = √

15. It indicates that
there is a strong correlation between the coefficients, where
the most favoured values are |c0(t)| ≈ |cN (t)| ≈ 0.35.

For a double well with interaction strength ±U the
spectrum is different because of the absence of double
degeneracy of the eigenvalues (cf figure 3). There are
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Figure 2. Spectral coefficients for 20 bosons with U/J ≈ 0.1 and
ε = 0.01. The energy of the initial Fock state is Ē = 40. The
almost degenerate states appear above 42.

two ‘bands’, one around E = UN2 and the other around
E = −UN2, where the widths of the bands are characterized
by the tunnelling rate J. Moreover, the off-diagonal part c̃N (E)

appears closer to zero energy and its values are very small. This
indicates that the off-diagonal part overlaps with energy levels
which are different from those of the diagonal part c̃0(E). For
the evolution only the latter contribute substantially, preventing
the system from creating a N00N state.

6. Discussion and conclusions

In order to understand the evolution of an isolated many-
body bosonic system, we start with noninteracting bosons
(i.e. U1 = U2 = 0) of section 3. The spectral properties
are characterized by (i) equidistant energy levels with distance
J and (ii) a binomial weight distribution of the energy levels.
The evolution of a Fock state is characterized by a periodic
behaviour with a single frequency ω = J/2π as a direct
consequence of the equidistant energy levels. The amplitudes
for visiting the initial Fock state |N, 0〉 or the complementary
Fock state |0, N〉 vary with cosN (J t) or (−i)N sinN (J t),
respectively. This implies for a large number N of bosons
that (i) these states are visited only for a very short period
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Figure 3. Spectral coefficients for 100 bosons in a double well with
U/J ≈ ±0.023 and ε = 0.01. The energy of the Fock states |0, N〉
and |N, 0〉 is Ē = ±1000, respectively.

of time and (ii) the two Fock states are visited at different
times. Thus, the formation of a N00N state is very unlikely
for noninteracting bosons.

A simple qualitative picture for the general evolution of
the Fock state is the random walk in Hilbert space. In the case
of noninteracting bosons the particles can walk independently
of each other, which enables them to explore the entire Hilbert
space spanned by the Fock states without restriction. Then,
a simultaneous overlap of |�t 〉 with both Fock states |N, 0〉
and |0, N〉 is very unlikely, as discussed above. Once we have
turned on the boson–boson interaction the particles experience
a mutual influence which restricts their individual random
walks. This is related to the fact that the system stays much
longer in the energetically (almost) degenerate Fock states
|N, 0〉 and |0, N〉 than it would for noninteracting bosons (cf
figure 5) and, what is even more important here, they can
have a simultaneous overlap with both Fock states, such that
they create a N00N state. In terms of the spectral properties
the interaction modifies (i) the energy levels, which are not
equally spaced, and (ii) the weight distribution of the levels,
which are not binomial any longer (cf figures 1–3). This,
of course, also affects the evolution of the Fock state which
is more complex now, since many different frequencies are
involved. A particular feature is the spectral fragmentation
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Figure 4. Evolution of the real part of the evolutionary coefficients
c0(t) = 〈N, 0|�t 〉 (upper panel), cN (t) = 〈0, N |�t 〉 (lower panel)
for 100 bosons with U/J ≈ 0.023. The time scale is given in
inverse units of the interaction strength 0.1h̄/U and the energy of
the initial state is Ē = 1000. The dashed curves are |c0(t)| and
|cN (t)| in the two plots, respectively.

(cf figure 1), where only a part of the spectrum contributes to
the off-diagonal coefficient c̃N (E). This is a kind of Hilbert-
space localization, where transitions to the high-energy part
of the Hilbert space are completely suppressed, similar to
the self-trapping found in the Hartree approximation of the
Bose–Hubbard model [13]. It should be noted, however, that
spectral fragmentation appears at a much weaker interaction
strength than the self-trapping effect. For U ≈ J , which is the
threshold for self-trapping [13], there is only one eigenvalue
with significant weight |〈N, 0|Ej 〉|2 [6]. Thus, it is unlikely
that the two effects are directly connected.

For the double well with mixed interaction the situation
is different due to the existence of two ‘bands’ and the
absence of the double degeneracy. The main consequence
is the absence of a support for the formation of N00N
states because the off-diagonal coefficient cN (t) is strongly
suppressed. From this observation, we can conclude that
the evolutionary entanglement is much more favourable in
the symmetric double well. This is in qualitative agreement
with the results of a multiconfigurational Hartree calculation
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time period of 0.4h̄/U (right panel). The trajectories (|c0(t)|, |cN (t)|) start at 1 on the abscissa (outside the shown plots).
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Figure 6. Distribution P(|c0(t)|, |cN (t)|) of |c0(t)|, cN (t)| over a
time period of 0.4h̄/U for 20 bosons with U/J ≈ 0.026. The axes
are scaled by a factor 100 and the vertical axis is in arbitrary units.
This plot indicates a strong correlation between the two spectral
coefficients, supporting the formation of a N00N state.

for a one-dimensional Bose gas with a Gaussian barrier
in [20].

In conclusion, we have studied the evolution of a bosonic
Fock state |N, 0〉 in a double well and found that a local
particle–particle interaction supports the formation of a N00N
state, provided that the interaction is not too strong. This is
accompanied by a fragmentation of the spectrum. The latter
is characterized by the fact that only eigenstates with energies
less than the energy of the initial Fock state can be reached
in the evolution. This interaction effect causes a Hilbert-
space localization and prevents the evolution of the Fock state
to disappear in the depth of the Hilbert space. This is the
main reason for a favourable creation of a N00N state. The
appearance of a N00N state is suppressed though for strong
interaction because then the restriction of the Hilbert space is
too severe and does not allow us to reach the complementary
Fock state |0, N〉.
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Appendix. Recursive projection method

A sequence of projectors Pj (n � j � 0) is given, defined by
the recurrence relation

P2k+1 = P2k−1 − P2k (n � k � 0),

with initial conditions P−1 = 1, P0 and by the Hamiltonian H
through the properties

P2kHP2k+1 = P2kHP2k+2, P2k+1HP2k = P2k+2HP2k.

(A.1)

The projection of the resolvent (z − H)−1 defines

gk = P2(n−k)(z − H)−1
2(n−k)−1P2(n−k) (0 � k < n),

(A.2)

where (· · ·)−1
2(n−k) is the inverse on the P2(n−k)-projected Hilbert

space. Then, gk satisfies the recurrence relation

gk = (z − hk)
−1
2(n−k) (A.3)

with

hk

=
{

P2nHP2n k = 0

P2(n−k)HP2(n−k) + P2(n−k)Hgk−1HP2(n−k) 1 � k � n.

(A.4)

Of interest here is only the case k = n, where we have from
equation (A.2)

gn = P0(z − H)−1P0.
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For the specific case of the double well we choose
n = N/2 and the projectors

P0 = |N, 0〉〈N, 0| + |0, N〉〈0, N |,
P2 = |N − 1, 1〉〈N − 1, 1| + |1, N − 1〉〈1, N − 1|, . . . ,
PN = |N/2, N/2〉〈N/2, N/2|.
With the Hubbard Hamiltonian of equation (4), the diagonal
terms of the effective Hamiltonian in equation (A.4)
read

P2(n−k)HP2(n−k) = PN−2kHPN−2k

= [U1(N/2 + k)2 + U2(N/2 − k)2]

× |N/2 + k,N/2 − k〉〈N/2 + k,N/2 − k|
+ [U1(N/2 − k)2 + U2(N/2 + k)2]

× |N/2 − k,N/2 + k〉〈N/2 − k,N/2 + k|.
The off-diagonal terms of the effective Hamiltonian in
equation (A.4) read

P2(n−k)HP2(n−k+1) = P2N−2kHPN−2k+2

= −J
√

N/2 + k
√

N/2 − k + 1

× (|N/2 + k,N/2 − k〉〈N/2 + k − 1, N/2 − k + 1|
+ |N/2 − k,N/2 + k〉〈N/2 − k + 1, N/2 + k − 1|).

For U1 = U2 this leads to equations (21) and (22) and for
U1 = −U2 to equations (29), (30) and (31).
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