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Ising instability of a Holstein phonon mode in graphene
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We study the thermal distribution of phonons in a honeycomb lattice. Due to the two electronic bands there
are two out-of-plane phonon modes with respect to the two sublattices. One of these modes undergoes an Ising
transition by spontaneously breaking the sublattice symmetry. We calculate the critical point, the renormalization
of the phonon frequency and the average lattice distortion. This transition might be observable in doped graphene
by Raman scattering and transport experiments.
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Transport measurements have revealed many interest-
ing properties of the two-dimensional material graphene.1–6

More recently, Raman scattering has become an addi-
tional experimental method to study physical properties of
graphene.7–10 It provides a deeper insight into the elastic
properties of the honeycomb lattice of carbon atoms and
the related electron-phonon interaction. Since the latter is
important also for some of the unusual transport properties,
these results are of great value for a better understanding of
graphene.

Recent experiments on hydrogenated graphene (graphane)
have revealed additional Raman spectral lines due to hydrogen
atoms,10 indicating that there is an important electron-phonon
interaction between the conduction electrons and the lattice
formed by the hydrogen atoms. Another mechanism that might
change the band structure is the graphene-substrate interaction
in epitaxial graphene, which can lead to a band opening due
to breaking the graphene sublattice symmetry.11 These results
indicate that doping can alter the properties of graphene by
changing the band structure as well as by modifiying the elastic
properties due to phonons.

Theoretical studies of the electron-phonon interaction in
graphene at zero temperature came to a mixed conclusion.
Although the electron-phonon coupling is remarkably strong
in terms of a renormalization of the lattice vibrations, its
effect on transport properties is rather weak.5,12 In particular,
the out-of-plane optical mode (ZO phonon) has almost no
effect on transport at all.13 Some experiments also provide
evidence that transport properties are not much affected by
phonons.14 This requires a better understanding of the electron-
phonon interaction and its consequences for the transport
properties.

In this Brief Report we will explain that the ZO phonon
mode can play an important role by spontaneously breaking
the chiral (sublattice) symmetry of graphene. This effect is
accompanied by an Ising transition which is associated with a
softening of the optical phonon mode.

Model. The dynamics of phonons of a honeycomb lattice
is complex and can be described by a number of phonon
modes.5,12,13,15,16 For simplicity, we focus here on optical
phonons, coupled to the electrons by a Holstein interaction.13

Then in a tight-binding description, electrons coupled to
optical (Einstein) phonons at frequency ω0 are described by

the Holstein Hamiltonian as

H = ω0

∑
r

b†rbr +
∑
r,r′

hr,r′c†rcr′ + α
∑

r

f (br + b†r)c†rcr.

(1)

Here c
†
r (cr) are the electron creation (annihilation) operators

and b
†
r (br) are the phonon creation (annihilation) operators.

Usually the Holstein model has a linear electron-phonon cou-
pling f (x) = x. However, geometric constraints can enforce
a mirror symmetry, where the coupling should be symmetric
with respect to out-of-plane distortions in the two directions.
This effect can be taken into account by a quadratic coupling
f (x) = x2.17

The conventional approach to determine the properties
of a coupled system of phonons and electrons is based
on a self-consistent evaluation of the self-energy (Migdal
approximation).18,19 The latter provides an effective (or
renormalized) energy and its imaginary part provides an
effective scattering rate. Such a static approximation might
be insufficient in a two-dimensional system, since it does
not take into account thermal fluctuations.9 Therefore, we
include thermal fluctuations in our approach. To this end, we
replace the phonon operators br, b†r by their quantum averages
br ≈ 〈br〉 ≡ ur and b

†
r ≈ 〈b†r〉 ≡ u∗

r , and replace the phonon
term in the Holstein Hamiltonian by f (vr) = f (ur + u∗

r ).
In this approximation we can keep thermal fluctuations but
ignore quantum fluctuations of the phonons. The electrons, on
the other hand, are studied in full quantum dynamics. This
reduces the grand-canonical ensemble at inverse temperature
β to a functional integral with respect to thermal fluctuations
of the lattice distortions vr and a trace with respect to the
electrons. After performing the trace over the electrons we get
the partition function

Tr e−βH ≈
∫

det(1 + e−βh)e−βS0D[v] ≡ Z, (2)

with the phonon dispersion

S0 = ω0

2

∑
r

�v2
r . (3)

It is convenient to introduce a sublattice representation for
the tight-binding Hamiltonian h, since the graphene unit cell
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FIG. 1. The two out-of-plane modes: the μ′ mode (left-hand
figure) and the m mode (right-hand figure). The arrows indicate the
distortions of the carbon atoms according to Eq. (9).

contains two atoms, each of them having one π orbital. This
gives a two-component wave function, and the electronic
Hamiltonian can be expressed by 2 × 2 (Pauli) matrices whose
matrix elements refer to the A and B sublattices:

he =
(

−μ t̂

t̂T −μ,

)
≡ h1σ1 + h2σ2 − μσ0, (4)

with h1 = (t̂ + t̂ T )/2, h2 = i(t̂ − t̂ T )/2, and with the chemical
potential (bare Fermi energy) μ. In case of the honeycomb
lattice t̂ is a matrix that connects nearest-neighbor sites on the
lattice

t̂r,r′ = t

3∑
j=1

δr′,r+aj
, (5)

where r is on sublattice A and r + aj is on sublattice B. Thus
t̂ describes an electronic hop from sublattice B to sublattice A
and vice versa for t̂ T .

The linear electron-phonon coupling reads in this sublattice
representation as (spatial dependence of the distortions are
implictly assumed)

he-ph = α

(
vA 0
0 vB

)
= ψσ0 + φσ3, (6)

where ψ = α(vA + vB)/2 and φ = α(vA − vB)/2. For
quadratic coupling this reads

he-ph = α

(
v2

A 0
0 v2

B

)
= 1

α
[(ψ2 + φ2)σ0 + 2ψφσ3]. (7)

It should be noticed that each of the two phonon modes couples
linearly to σ3. The out-of-plane modes ψ and φ break the chiral
symmetry of he. Due to the rescaled phonon modes Eq. (3)
becomes

S0 =
∑

r

(
ωψψ2

r + ωφφ2
r

)
, ωψ = ωφ = ω ≡ ω0

α2
. (8)

Eventually, the combined electronic Hamiltonian h = he +
he-ph reads

h = h1σ1 + h2σ2 + (μ′ − μ)σ0 + mσ3, (9)

where μ′ = ψ , m = φ for linear coupling and μ′ = (ψ2 +
φ2)/α, m = 2ψφ/α for quadratic coupling (See Fig. 1).

Z of Eq. (2) serves as a generating function that allows us to
get, for instance, the static electronic Green’s by differentiation
of ln Z as

Gr,r′ = 1

Z

∫
(1 + e−βh)−1

r,r′e
−βSD[φ,ψ], (10)

with S = S0 − β−1 ln det(1 + e−βh). It is important to notice
that e−βS = e−βS0 det(1 + e−βh) is a non-negative function.

Therefore, e−βS/Z is a probability density for the phonon field.
Then the static one-particle Green’s function can be rewritten
as an average 〈· · ·〉ph with respect to the distribution e−βS/Z:20

Gr,r′ = 〈
(1 + e−βh)−1

r,r′
〉
ph. (11)

Without an electron-phonon interaction the distribution of
lattice vibrations is exp(−βS0) such that the average lattice
distortion vanishes: 〈φ〉ph = 〈ψ〉ph = 0. A nonzero 〈μ′〉ph

presents a shift of the Fermi energy, whereas a nonzero 〈m〉ph

would break the sublattice symmetry. An interesting question
is whether or not a coupling to electrons can create a nonzero
average distortion. From the symmetry point of view this
should not be the case for m because the system is invariant
under the transformation m → −m. This is a consequence of
the fact that the distribution e−βS/Z is invariant under the
unitary transformation U = (σ1 + σ2)/

√
2:

UhU † = h1σ2 + h2σ1 + (μ′ − μ)σ0 − mσ3. (12)

This means for h in Eq. (9) an exchange of h1 with h2 and a sign
change m → −m. Since the system is assumed to be isotropic,
only the sign change remains. This is the invariance under a
Z2 (Ising-like) transformation, where 〈m〉ph �= 0 represents a
typical problem of spontaneous symmetry breaking.

From now on we focus on the case with linear coupling,
which is relevant for graphene on a substrate. The quadratic
coupling would give similar results because the mechanism
of spontaneous symmetry breaking is identical for both
couplings.

In previous calculations only the ψ mode was taken into
account, whereas the φ mode has been neglected by assuming
φ = 0.12,13 Indeed, a solution with 〈φ〉 = 0 always exists
due to the symmetry in Eq. (12). However, spontaneous
symmetry breaking is possible. This would be associated with
an instability of the 〈φ〉 = 0 solution. Although the symmetry-
breaking solution is not available from a simple perturbation
theory, the latter can be employed to analyze the stability
of the symmetry-preserving solution. For this purpose we
evaluate the shift of the phonon frequency α2ωψ → ω0 + δω0,
α2ωφ → ω0 + δω3 for q = 0 (i.e., at the 
 point of the
Brillouin zone). In second-order perturbation theory in α

(Refs. 5,12, and 13) this gives for our model δω0 ∼ −const/β
and

δω3 = − α2

2πβt2
ln

[
cosh(βt�) + cosh(βμ)

1 + cosh(βμ)

]
, (13)

where � = 2
√

π is the momentum cutoff. Thus the renormal-
ization of ω0 of the ψ mode vanishes at low temperatures.
The situation is different for the φ mode. Although δω3 also
decreases with decreasing temperature, it has a nonzero value
in the limit of zero temperature (cf. Fig. 2). Then the solution
φ = 0 is stable (unstable) if ω0 + δω3 � 0 (<0). An unstable
situation with negative renormalized phonon frequency of a
different mode was also found by Castro Neto et al.5

In order to find a stable solution for ω0 + δω3 < 0 we must
go beyond perturbation theory. One possibility is to extend
the second-order calculation by a partial resummation of the
perturbation series to all orders of α. This would provide a self-
consistent calculation for the phonon modes. However, it is
more convenient here to use a saddle-point (SP) approximation
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FIG. 2. Frequency shift δω3/α
2 in units of 1/t vs inverse

temperature βt for μ/t = 0,3,6 (from bottom to top) from Eq. (13).

for the φ,ψ integration in Eqs. (2) and (10). This calculation
can be extended to include fluctuations around the SP solution.
The latter allows us to analyze the stability of the SP solution,
to identify possible instabilities, and to determine the phonon
dispersion.

The SP approximation is based on the variational equation
δS = 0, where the SP equation reads

βωφj = ∂

∂φj

ln[det(1 + e−βh)] (j = 0,3), (14)

with φ0 = ψ and φ3 = φ. Now we assume that the SP solution
ψ,φ is uniform in space. Thus our SP solution is a mean-field
approximation. This allows us to diagonalize the argument
of the trace term in Eq. (14) using a Fourier representation.
Moreover, we now approximate the Hamiltonian he by its low-
energy Dirac behavior he ∼ k1σ1 + k2σ2. Then the eigenvalues
of h are λ± = ψ − μ ±

√
φ2 + t2k2 and the SP equations read

ωψ = −1 −
∫ �

0

sinh[β(μ − ψ)]

D(ψ,φ)

k dk

2π
, (15)

ωφ =
∫ �

0

φ√
φ2 + t2k2

sinh(β
√

φ2 + t2k2)

D(ψ,φ)

k dk

2π
, (16)

with

D(ψ,φ) = cosh[β(μ − ψ)] + cosh(β
√

φ2 + t2k2). (17)

The integration in Eq. (16) can be performed and gives

ωφ = 1

2πβt2
φ ln

[
cosh(β

√
φ2 + t2�2) + cosh(βμ̄)

cosh(βφ) + cosh(βμ̄)

]
,

(18)

with the renormalized chemical potential μ̄ = μ − ψ .
If the mean-field solution φ = 0 is unstable, we have to

find a solution φ �= 0 of Eq. (18). This can be obtained from
a quadratic equation after an expansion of Eqs. (15) and (18)
for small φ and μ̄. Then the equation for φ reads

∂S

∂φ
= �φ + 
φ3 + Cμ̄2φ = 0, (19)

with the coefficients

� = ω − 1

πβt2
ln cosh(βt

√
π ),

C = βτ 2

8πt2
, 
 = β

8πt2

(
1 − τ

βt
√

π

)
,

with τ = tanh(βt
√

π ). Besides the vanishing mean-field solu-
tion φ = 0, there are now the two nonvanishing solutions

φ± = ± 1√



√
−� − Cμ̄2. (20)

The power law with exponent 1/2 is the result of the mean-field
approximation. Due to the Ising-like symmetry of Eq. (12),
the exponent should be 1/8 instead of 1/2.21 However, this
incorrectness may only be important very close to the transition
point.

In a small vicinity around the Dirac point μ̄ = 0, the
SP equation (15) can be linearized and gives for small φ a
renormalized Fermi energy

μ̄ ≈ μ + 1/ω

1 − ln(2)/πβωt2
. (21)

According to the discussion of Eq. (13), a mean-field solution
φ = 0 is unstable when � + Cμ̄2 < 0. For βt  1 we have

� + Cμ̄2 ∼ ω − 1√
πt

+ ln 2

πβt2
+ βμ̄2

8πt2
. (22)

It should be noticed here that with decreasing temperature
� + Cμ̄2 decreases at the Dirac point μ̄ = 0 but it increases
sufficiently away from the Dirac point. Thus, at sufficiently low
temperatures a symmetry-broken mean-field solution exists
only in a small vicinity of the Dirac point.

For the case � + Cμ̄2 < 0 we must replace φ = 0 by one of
the solutions of Eq. (20). Inserting the proper solution into the
expression of the renormalized phonon frequency ∂2S/∂φ2,
we obtain always a non-negative frequency

ωφ = α2 ∂2S

∂φ2
≈ α2|� + Cμ̄2|[1 + �(−� − Cμ̄2)], (23)
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FIG. 3. Renormalized frequency ωφ of the φ mode (in arbitrary
units) vs. Fermi energy μ̄ (in units of

√−�/C) from Eq. (23).
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where �(· · ·) is the Heaviside function. The behavior of the
renormalized phonon frequency is depicted in Fig. 3. This
frequency vanishes as a function of the renormalized Fermi
energy at the critical point μc = √−�/C, provided that � <

0. For μ̄2 < μ2
c we have spontaneous symmetry breaking with

〈φ〉ph �= 0 and for μ̄2 � μ2
c a symmetric phase with 〈φ〉ph = 0.

The softening of the phonons at the critical point should be
observable in Raman scattering. Symmetry breaking, on the
other hand, may appear in the form of a staggered carbon
configuration as in epitaxial graphene11 or in graphane10

and should be observable in transport measurements as a
metal-insulator transition. However, large fluctuations of φ

can destroy the gap even for 〈φ〉ph �= 0, similar to the case of
a quenched random gap.22–24

The values of the model parameters can be compared
with experimental data and band-structure calculations. The
electronic hopping parameter is t ≈ 2.7 eV (Ref. 5) and the
bare phonon frequency is ω0 ≈ 0.1 eV.25 With Eq. (22) we

need α > 1.3
√

tω0 to observe the Ising transition. This would
require α > 0.7 eV. Although there is no reliable estimate for α

in graphene [e.g., α ≈ 0.5 eV (Ref. 12)], we can reduce ω0 for
a given coupling constant α by doping with noncarbon atoms
(e.g., with hydrogen,10 oxygen,26 fluor,27 NO2,28 or organic
molecules29) to satisfy the transition criterion.

In conclusion, we have found that in the Holstein model
for graphene an out-of-plane phonon mode can spontaneously
break the sublattice symmetry if the electron-phonon cou-
pling is α > 1.3

√
tω0, leading to a spatially fluctuating gap

whose mean value is nonzero. This effect is accompanied
by an Ising transition. Although it is not clear whether
this can be observed in pristine graphene, doping with
noncarbon atoms might provide conditions to create such a
transition.
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