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Optical conductivity of graphene in the presence of random lattice deformations
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We study the influence of lattice deformations on the optical conductivity of a two-dimensional electron gas.
Lattice deformations are taken into account by introducing a non-Abelian gauge field into the Euclidean action
of two-dimensional Dirac electrons. This is in analogy to the introduction of gravitation in four-dimensional
quantum field theory. We examine the effect of these deformations on the averaged optical conductivity. Within
the perturbative theory up to second order we show that corrections of the conductivity due to the deformations
cancel each other exactly. We argue that these corrections vanish to any order in perturbative expansion.

DOI: 10.1103/PhysRevB.83.155115 PACS number(s): 72.80.Vp, 73.22.Pr

I. INTRODUCTION

Graphene, a two-dimensional (2D) sheet of carbon atoms
forming a honeycomb lattice, has outstanding electronic
properties.1–3 This is due to the fact that there are two bands
that touch each other at two Dirac nodes. Moreover, the low-
energy quasiparticles of undoped graphene experience a linear
dispersion around two Dirac nodes. Transport properties,
characterized by the longitudinal conductivity at the Dirac
nodes, are quite robust and do not vary much from sample
to sample. Exactly at the Dirac point a minimal conductivity
has been observed in a number of experiments.1,2,4 There are
two important questions regarding this minimal conductivity:
(i) is the value of the minimal conductivity “universal” (i.e.,
independent of additional modifications of the graphene sheet
such as ripples or impurities) and (ii) what is its actual value
in units of e2/h? A discrepancy between the calculated con-
ductivity of Dirac fermions and the experimentally observed
minimal conductivity of graphene by a factor of roughly 1/π

has been the subject of a substantial number of publications.
The central idea is that either disorder5–8 or electron-electron
interaction9–12 may affect the value of the minimal conduc-
tivity. Moreover, the value of minimal conductivity at low
temperatures depends on the order of various limits (e.g.,
frequency ω → 0 and temperature T → 0) and is related to the
scaling property σmin(ω,T ) = σmin(ω/T ).13 Below we employ
the zero-temperature formalism which suggests T → 0 and
ω → 0. This yields for the dc limit of the ac conductivity the
value π/2.7,9,13

An additional problem in terms of disorder is that it is
not clear what role is played by different types of disorder.
Since disorder, depending on its type, may break different
internal symmetries of the Dirac Hamiltonian, a classification
according of the different types is crucial. On the other
hand, the origin of disorder in graphene can be different. In
addition to impurities inside the graphene sheet and in the
substrate, the deformation of the lattice (e.g., ripples) might
be the main source of disorder.14–16 In general, it is believed
that surface corrugations11,17,18 may influence the electronic
transport properties of graphene. It is crucial to notice that
lattice deformations do not break the chiral symmetry at the
Dirac point, in contrast to potential disorder or a random gap
caused by a random deposition of hydrogen.19 Therefore, it is
expected that this type of disorder has a rather weak effect on

transport properties.20 This is supported by calculations where
the lattice deformations are approximated by an uncorrelated
random vector potential in the Dirac Hamiltonian.21 This
type of disorder has no effect on the minimal conductivity.5

More recently, however, a more general theory of lattice
deformations with long-range correlations revealed a dramatic
increase of the minimal conductivity for weak disorder.17 In
this paper, we study a similar model by an alternative approach
to check whether or not this dramatic increase of the minimal
conductivity can be reproduced.

First we consider the deformation of the graphene sheet in
three dimensions and show that in the continuum limit the
dynamics of the electrons on the two-dimensional surface
is defined by the so-called induced Dirac action presented
in Ref. 22. In our approach the internal deformations of the
graphene sheet and the deformations perpendicular to the sheet
direction are unified into one schema, while in the approach
developed in Refs. 17, 21, and 23–25 there are separate internal
(2D) gravity and additional non-Abelian gauge fields. The
deformations of the sheet in three dimensions by local SO(3)
rotations of the basic vectors in our approach carry the degrees
of freedom of the additional gauge field.

Then we develop a replica-trick-based field theory to take
the random character of surfaces into account and to calculate
the average optical conductivity by a perturbative expansion.
Our main result is that the random lattice deformations do not
affect the robust character of minimal conductivity, contrary
to the result presented in Ref. 17.

II. THE MODEL

We depart from a model of hopping fermions on the regular
2D honeycomb lattice. A honeycomb lattice has a natural
partition into two triangular sublattices and we mark electronic
fields associated with sites of the sublattices as (ψ̄�n,α,ψ�n,α),
α = 1,2. The action of electrons hopping on a line with the
lattice spacing |�e| reads

S[ψ̄,ψ] = i
∑
t,�n

(ψ̄t,�nγ0∂tψt,�n + ψ̄t,�nγ2ψt,�n+�e),

but when fermions change hopping direction in two-
dimensional space, the fields should also be rotated by a
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FIG. 1. Hopping vectors on a regular honeycomb lattice.

corresponding angle (Fig. 1). On the honeycomb lattice
(Fig. 2), we have

S[	̄,	] = i
∑
t,�n,i

(
	̄t,�nγ0∂t	t,�n + 	̄t,�nγ2	

′
t,�n+�ei

)
,

(1)

	t,�n =
(

ψt,�n,1

ψt,�n,2

)
, i = 1,2,3,

where γ0,γj (j = 1,2) are Dirac matrices which are related to
usual Pauli matrices via γ1 = σ2, γ2 = −σ1, and γ0 = σ3 and
fields

	 ′
�n+�e1

= 	�n+�e1 = e�e1·�∂	�n, (2a)

	 ′
�n+�e2

= ei 2π
3 γ0	�n+�e2 = ei 2π

3 γ0e�e2·�∂	�n, (2b)

	 ′
�n+�e3

= e−i 2π
3 γ0	�n+�e3 = e−i 2π

3 γ0e�e3·�∂	�n, (2c)

are rotated by ±4π/3 and translated by �e2,3 spinor representa-
tions of the rotation group SO(3). In the paper by Semenoff,26

it was shown that the spectrum of low-energy excitations of the
hopping fermions on a honeycomb lattice (corresponding to
the continuum limit of the model) coincides with the spectrum
of Dirac fermions in three-dimensional (3D) space. Below
we show that the continuum limit of the action of fermions
hopping on a honeycomb lattice, Eq. (1), is defined by the Dirac
action in three-dimensional coordinate space. This allows us

e1        

e2

e3

FIG. 2. (Color online) Regular honeycomb lattice.

to construct the continuum limit of the generalized hopping
model on the randomly deformed lattice.

In order to find a continuum limit of the action Eq. (1),
one expands the translational operators e�ei ·�∂ � 1 + �ei · �∂ and
substitutes Eq. (2a) for 	’s into the action Eq. (1). Then after
some simple algebra one obtains

S = i
∑
t,�n

	̄t,�n

(
γ0∂t + 3

4
γ i �μi · [

←−
∂ − −→

∂ ]

)
	t,�n (3)

→ i

∫
d2ξdt	̄

(
γ0∂t + 1

2
γ i �μi · [

←−
∂ − −→

∂ ]

)
	, (4)

where we introduced orthonormalized vectors �μ1 = (�e2 −
�e3)/

√
3 and �μ2 = �e1. In line (4), we have rescaled the fields and

coordinates as 	 → 2/3	, ξ → 3ξ/2, t → t , and μi → μi . It
is clear from Eq. (4) that vectors �μa = μi

a(�ξ )êi (a = 1,2), with
êi (i = 1,2), representing an orthonormal basis in the flat space
play the role of tetrads (vielbein) in a 2D plane with arbitrary
coordinates ξi (i = 1,2). Indeed, consider deformation of the
honeycomb lattice (cf. Fig. 3) and attach to the sites new
coordinates ξ ′

i . Then the vectors μi
a (a = 1,2, i = 1,2) are

connected with the same vectors in the old coordinate ξi

(i = 1,2) via

μi
a(�ξ ) = ∂ξ ′

j

∂ξi

μj
a(�ξ ′). (5)

We now regard the vectors μa
i as vielbeins in a 2D plane which

obey the orthogonality relation μa
i μa,j = δij and we define the

metric μa
i μ

a
j = gij . After integration by parts in Eq. (3) and

using the relation μ̂iμ̂j = gij + i√
g
εijγ0 with μ̂i = γ aμa

i and
g = det[gij ], one obtains

S[	̄,	]

= i

∫
d2ξ dt	̄

(
γ0∂t + γ aμj

a

[
∂j − i

2
γ0j

])
	, (6)

where j = i
2
√

g
εabμ

k
a∇jμk,b is a standard spinor connection

corresponding to the vielbein μ
j
a and ∇j denotes a covariant

derivative. For a scalar function f it reduces to a usual partial
derivative, ∇if = ∂if , while for a vector-valued function fj

e 1
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e 3

FIG. 3. (Color online) Random honeycomb lattice.
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it is ∇ifj = ∂ifj + k
ijfk , where k

ij represent Christoffel
symbols.

An important remark is necessary here. The spinor con-
nection j , given following Eq. (6), is defined up to a
local U(1)-gauge transformation related to the rotation of the
vielbeins μk

a in the tangential plane. On compact surfaces (e.g.,
a torus), such gauge transformations may have a nontrivial
boundary contribution which can create field configurations
with a nontrivial topology. This situation is typical for the
topological insulators. However, here we do not consider
compact spaces, and such types of topological boundary effects
are not relevant for our analysis.

Let us now consider deformations of the honeycomb lattice
in a three-dimensional space.22,27 This means that two γa (a =
1,2) matrices in a tangent plane become γ matrices in a SO(3)
rotated plane which is tangent to a curved surface at the point
ξi :

x̂a(ξi) = U (ξi)
−1γaU (ξi). (7)

As shown in Ref. 22, local rotations by U (�ξ ) produce a 2D
surface embedded in 3D Euclidean space if

U−1∂μU = 1
4 (x̂a∂μx̂a + n̂∂μn̂), (8)

where x̂a = μ
μ
a ∂μxαγα and n̂ = nαγα (α = 0,1,2) being the

tangent and normal to the surface 3D vectors at the point
ξ , respectively. This occurs because Eq. (8) fulfills the
Gauss-Codazzi equations,27,28 which represent the necessary
conditions for the surface xα to be embedded in 3D Euclidean
space.

Then we should also rotate fermionic fields by the same
matrices 	 → U	, after which the action becomes

S = i

∫
d2ξ dt	̄U−1

(
γ0∂t + γ aμμ

a

[
∂μ − i

2
γ0μ

])
U	,

(9)

where μ = iTr(n̂U−1∂μU ) is the spinor connection on the
surface xα . By use of Eq. (7), this expression can be simplified
essentially (see details in Refs. 22 and 27), acquiring the form

S[	̄,	] = i

∫
d2ξ dt	̄

(
γ0∂t + 1

2
√

gγ̂ μ[
←−
∂μ − −→

∂μ ]

)
	,

(10)

where

gνμ = ∂νx · ∂μx = ∂νx
α∂μxα (11)

is the metric on the surface xα(�ξ ) induced by its embedding in
3D Euclidean space, g denotes its determinant, and

γ̂ μ = ∂μx · γ = ∂μxaγa (12)

represents the induced Dirac matrices.22 In a flat space, i.e.,
for x(�ξ ) = x0 + êμξμ, the induced metric reduces to a usual
diagonal matrix. One can call action Eq. (10) the induced Dirac
action since the matrices γ̂ μ are induced by embedding. The
expression in Eq. (10) is a generalization of 2D action Eq. (4)
to 3D space.

III. EFFECTIVE ACTION FOR SMALL CORRUGATIONS

Performing integration by parts in Eq. (10), we arrive at

S = i

∫
d2ξ dt	̄(γ0∂t + √

gγ̂ μ[∂μ + μ])	. (13)

Here, the quantity

μ = 1
2 γ̂ ν∇μγ̂ν (14)

plays the role of an induced spinor connection, where ∇μ

denotes the operator of covariant differentiation and is defined
as 22,27

∇μ(· · ·) = 1√
g

∂μ(
√

g · · ·).

Let us derive the asymptotic action for small corrugations
of the graphene sheet. In this case the surface x can be
asymptotically represented as

x(ξ1,ξ2) ≈ x0 + êμξμ + x′(ξ1,ξ2). (15)

Plugging Eq. (15) into Eq. (11), we obtain the asymptotics of
the metric tensor:

gνμ ≈ δνμ + ενμ + εμν, (16)

where

ενμ = êν · ∂μx′. (17)

Thus the metric tensor is in general neither diagonal nor
symmetric. Its determinant is found using the common
relations

g ≈ 1 + 2ε11 + 2ε22 = 1 + 2ενν, (18)

and correspondingly its square root is
√

g ≈ 1 + ενν . (19)

Using Eqs. (12), (15), and (19), we arrive at the effective
action for small fluctuations ε:

S0[	̄,	; ε] ≈ i

∫
d2ξ dt	̄ (γ0∂t + [1 + ενν]γ̃ μ∂μ)	

+ i

2

∫
d2ξ dt	̄ γ̃ μ∂μενν	, (20)

with induced γ matrices γ̃ μ = e
μ
a γ a . For further purposes, we

associate the spatial fluctuations with a bosonic field,

ενν = �(�ξ,t),

and its gradient with a static vector-disorder-like term:

∂μενν = ∂μ�(�ξ,t) = Bμ(�ξ,t).

Hence the action formally becomes

S0[	̄,	; �,B] ≈ i

∫
d2ξ dt	̄ (γ0∂t + γ̃ μ∂μ)	

+i

∫
d2ξ dt�	̄ γ̃ μ∂μ	

+ i

2

∫
d2ξ dt	̄ γ̃ μBμ	. (21)

The action derived this way reproduces the ansatz action
considered in Ref. 17.

155115-3



A. SINNER, A. SEDRAKYAN, AND K. ZIEGLER PHYSICAL REVIEW B 83, 155115 (2011)

Below we consider topologic defects in the flat space.
Technically that means that we replace zweibeins e

μ
a by a

unity matrix. We are ultimately interested in the effect of this
sort of the disorder on the optical conductivity. In order to
perform such calculations we have to make some suggestions
regarding the correlators of the introduced quantities. One
usually requires the vector disorder fields Bμ to be Gaussian
correlated, i.e.,

〈Bμ(�ξ,t)〉 = 0, (22)

〈Bμ(�ξ,t)Bν(�ξ ′,t ′)〉 = g2
0δμνδ(t)δ(t ′)δ(�ξ − �ξ ′), (23)

which guarantees that the vector associated with the random
disorder is static. In Fourier space these expressions read with
the shorthand Q = (q0,q):

〈Bμ(Q)〉 = 0, (24)

〈Bμ(Q)Bν(Q′)〉 = g2
0(2π )2δμνδ(q + q ′). (25)

From Eqs. (23) and (25), we are led to the correlators of the
scalars �, since we have an exact relationship

〈Bμ(Q)Bν(Q′)〉 = i2qμq ′
ν〈�(Q)�(Q′)〉, (26)

which leads to

〈�(Q)�(Q′)〉 = g2
0

q2 + μ2
(2π )2δ(q + q ′), (27)

where we have introduced an infrared cutoff μ of the order of
the inverse lattice spacing in order to avoid long-wavelength
divergences. The inverse Fourier transform yields, for the
〈��〉 correlator,

〈�(�ξ,t)�(�ξ ′,t ′)〉 = g2
0δ(t)δ(t ′) log |μ(�ξ − �ξ ′)|. (28)

The disorder propagator in Eq. (27) depends only on the
spatial momenta q and q ′ and a 2D integration should be
performed when averaging over them. In order to keep our 3D
notation uniform, we augment Eq. (27) by a δ function of both
frequencies q0 and q ′

0:

〈�(Q)�(Q′)〉 = g2
0

q2 + μ2
(2π )4δ(q0)δ(Q + Q′). (29)

Furthermore, we always assume

〈�(�ξ,t)〉 = 〈�(Q)〉 = 0. (30)

The Fourier transform of Eq. (20) expressed in terms of the
scalar fields � only reads

S[	̄,	,�] = −
∫

Q

	̄Q(q0γ0 + γ · q)	Q

−
∫

Q

∫
P

�P 	̄P+Q(P + Q,P,Q)	Q,

(31)

where γ · q = γ μqμ. The two-particle vertex is obtained from
Eq. (31) in the limit � → 0 by performing a second-order
functional derivative with respect to the Grassmann fields:

(P,Q) = (2π )3δ(P − Q)G−1
0 (Q), (32)

where

G−1
0 (Q) = q0γ0 + γ · q (33)

represents the inverse free propagator and correspondingly

G0(Q) = q0γ0 + γ · q

q2
0 + q2

(34)

the free Dirac propagator. The three-particle vertex function
(K

	̄
,K�,K	) follows from Eq. (31):

(K
	̄

; K�,K	) = (2π )3δ(K
	̄

− K� − K	)

× 1
2γ · (k� + 2k	). (35)

Furthermore, we have to augment Eq. (31) by the interaction
between fermions and the radiation field,

Sopt[	̄,	,A] = −
∫

P

∫
Q

AP 	̄P+Qγ0	Q, (36)

which suggests the presence of an electric field applied to the
graphene sheet. Interaction Eq. (36) gives rise to the optical
conductivity due to polarization of the charge carriers. The
corresponding bare vertex is defined as

0(K
	̄
,KA,K	 ) = (2π )3δ(K

	̄
− KA − K	)γ0. (37)

The full action acquires the form

S̄[	̄,	,�,A] = S[	̄,	,�] + Sopt[	̄,	,A]. (38)

The electron-gauge boson interaction renormalizes the elec-
tronic spectrum and therefore should have an effect on the
response to the radiation field.

IV. OPTICAL CONDUCTIVITY OF GRAPHENE

We consider first clean graphene. The corresponding
Euclidean action is obtained from Eq. (38) if we assume
� = 0:

S0[	̄,	; A] = −
∫

Q

	̄Q(q0γ0 + γ · q)	Q

−
∫

P

∫
Q

A(P − Q)	̄P γ0	Q. (39)

The optical conductivity of a 2D Dirac electron gas can be
calculated from the electronic polarization 9,12

σ0 = 4k0 lim
k→0

1

2

∂2

∂k2
�(K), (40)

where �(K) denotes the irreducible polarization. The factor
4 in front of this expression arises from taking both spin and
valley degeneracy into account. To leading order it is given by
the diagram shown in Fig. 4. Algebraically we have for the
polarization bubble

�(K) =
∫

P

Tr{γ0G0(P )γ0G0(K + P )}, (41)

K−K

P+K

P

FIG. 4. Bare polarization bubble.

155115-4



OPTICAL CONDUCTIVITY OF GRAPHENE IN THE . . . PHYSICAL REVIEW B 83, 155115 (2011)

with the bare Dirac propagators G0(Q) defined in Eq. (34).
We give some details of the calculation in the Appendix. The
irreducible polarization is obtained as

�(K) = 1

16

k2√
k2 + k2

0

, (42)

and the optical conductivity in SI units is

σ0 = 1

4

e2

h̄
= π

2

e2

h
. (43)

In what follows we calculate corrections of the conductivity
in Eq. (43) due to lattice deformations described in Sec. III. To
leading order in momenta the renormalized inverse fermionic
propagator can be written as

G−1(Q) = G−1
0 (Q) − �(Q) ≈ Z−1

0 q0γ0 + Z−1
1 γ · q (44)

with renormalization factors

Z−1
0,1 = 1 − γ0,μ

∂

∂q0,μ

�(Q)|Q=0

= γ0,μ

∂

∂q0,μ

G−1(Q)|Q=0, (45)

where �(Q) denotes the fermionic self-energy. However, the
dressed electron-photon vertex can be written in the following
form:

̃0(Q) ≈ ẽγ0 + O(Q), (46)

where ẽ denotes the renormalization of the elementary charge
due to lattice deformations, such that the effective renormal-
ized action reads

S̃0[	̄,	; A] ≈ −
∫

Q

	̄Q

(
Z−1

0 q0γ0 + Z−1
1 γ · q

)
	Q

−ẽ

∫
P

∫
Q

A(P − Q)	̄P γ0	Q. (47)

The effect of the lattice defects on the optical conductivity
can be calculated from the dressed polarization shown in Fig. 5.
The dressing effect of the lattice defects is taken into account
by replacing the bare Green’s functions G0 in Fig. 4 by the full
propagators G defined in Eq. (44) and bare vertices γ0 by the
dressed ones ̃0 from Eq. (46). Algebraically we obtain

�̃(K) =
∫

P

Tr{̃0G(P )̃0G(K + P )}

= 2ẽ2

Z−2
0

∫
P

p0(p0 + k0) − α2 p · ( p + k)[
p2

0 + α2p2
]
[(p0 + k0)2 + α2(k + p)2]

,

(48)

−K K

P+K

P

FIG. 5. Dressed polarization bubble.

where α = Z−1
1 /Z−1

0 . The integration can be performed with
some effort, but we restrict our attempts to a more direct task;
i.e., we calculate only the modified optical conductivity σ̃

analogously to the optical conductivity of clean graphene as
we did before. We take the derivative with respect to k under the
integral and employ the residue theorem in order to integrate
out loop frequency p0. At the end of the calculation we arrive
at

σ̃ = ẽ2Z2
0σ0. (49)

Surprisingly, apart from the vertex renormalization, only
renormalization of the frequency contributes to the modified
conductivity. Therefore, our task reduces to the calculation
of the renormalization factors Z0 and ẽ, which is performed
perturbatively below.

V. CALCULATION OF RENORMALIZATION FACTORS

In order to set up perturbative calculations, we have to
average over the lattice deformations. There are two possible
ways to implement such averaging: the replica-trick and the
supersymmetry approach. The calculation below is based on
the replica-trick approach.

According to the replica trick, we introduce N copies of
fermions 	α (α = 1,2, . . . ,N ) with the same action:

S̄ = −
∫

Q

	̄α
Q(q0γ0 + γ · q)	α

Q

−
∫

Q

∫
P

�P 	̄α
P+Q(P + Q,P,Q)	α

Q

−
∫

Q

∫
P

AP 	̄α
P+Qγ0	

α
Q. (50)

Then we calculate the diagrams describing renormalization of
the fermionic propagator and electron-photon vertex function
and perform the limit N → 0 at the end of the calculation. As
the result of this procedure, all contributions containing factors
proportional to any positive power of N vanish. These include,
for instance, contributions arising from diagrams containing
closed fermionic loops.

The diagrams of the fermionic self-energy to the order 1 in
replicas indices and to order g4

0 in lattice deformation strengths
are shown in Figs. 6 and 7. Correspondingly, the same order
diagrams of vertex corrections are depicted in Figs. 8 and 9.
Retaining only frequency dependence ( p = 0) in the analytical
expressions for these contributions, we obtain for the leading
self-energy contribution (Fig. 6)

�(2)(p0) = g2
0

4

∫
q
1G0(p0,q)2F (q), (51)

Γ Γ1 2

Q

PP

Q−P
= + Σ , Σ ≈

FIG. 6. Dressed fermionic Green’s function and leading-order
diagram of the fermionic self-energy. Dashed lines denote the 〈��〉
correlator and open circles the 	̄�	 vertices.
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Γ Γ1 2

2ΓΓ1

(a)
Q

−Q

P

−P

Γ Γ

Γ

4

1 Γ

3

2

(b)
Q

−Q−P

P

FIG. 7. Second-order self-energy corrections at zero external
momenta.

where 1 = 2 = γ · q, and

F (q) = 1

q2 + μ2
(52)

denotes the momentum-dependent part of the 〈��〉 correlator
defined in Eq. (28). The diagram of the next order in g0 depicted
in Fig. 7(a) reads

�
(2)
1 (p0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(p0,q)2

×G0(p0,q + p)2G0(p0,q)1,

where 1 = γ · q and 2 = γ · (2q + p), while the diagram
shown in Fig. 7(b) gives

�
(2)
2 (p0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(p0,q)2

×G0(p0,q + p)3G0(p0, p)4,

with the vertices 1 = γ · q, 2 = γ · (2q + p), 3 = γ ·
(2 p + q), and 4 = γ · p. Eventually, for the contributions
to the wave-function renormalization factor, we obtain

∂

∂p0

�(2)(p0)|p0=0 = −ê, (53)

∂

∂p0

�
(4)
1 (p0)|p0=0 = −9ê2, (54)

∂

∂p0

�
(4)
2 (p0)|p0=0 = −15

2
ê2, (55)

where we define

ê = g2
0

8π
log

λ

μ
, (56)

with λ denoting some upper momentum cutoff. Therefore, for
the wave-function renormalization to the second order in g2

0 ,
we obtain

Z−1
0 ≈ 1 + ê + 33

2 ê2 + O(ê3). (57)

Now we look at the renormalization of the electron-
photon vertex function. Diagrammatically the leading-order

γ
0+

γ
0

~~Γ0
~

−Q

Q

FIG. 8. Leading-order perturbative contribution to the amputated
electron-phonon coupling vertex. Dashed lines denote the 〈��〉
correlator and open circles the 	̄�	 vertices.

correction is given by the second term on the right-hand side
of the diagram shown in Fig. 8. According to Eq. (49), the main
corrections to the conductivity arise from the momentum-
independent part of the vertex function. We obtain for the
vertices 1 = 2 = γ · q. The algebraic expression for the
diagram depicted in Fig. 8 is given by

̃(1)(0) = g2
0

4

∫
q
1G0(q)0G0(q)2F (q), (58)

which yields, after the evaluation,

̃(1)(0) = êγ0, (59)

where ê from Eq. (56) is introduced and acquires the meaning
of the leading-order elementary charge renormalization.

Second-order vertex corrections can be calculated from
the diagrams shown in Fig. 9. Due to the mirror symmetry,
Figs. 9(c) and 9(d) depicted in the second row should be
counted twice. Let us first consider the contribution that arises
from the diagram depicted in Fig. 9(a) with two parallel ladder
rungs. At zero external momenta, we obtain for the vertices
1 = 4 = γ · q and 2 = 3 = γ · (2q + p). We obtain for
the correction

̃
(2)
1 (0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(q)2G0( p + q)

×0G0( p + q)2G0(q)1, (60)

which, after performing integrations, yields

̃
(2)
1 (0) = 2ê2γ0. (61)

For Figs. 9(b), 9(c), and 9(d), we proceed similarly. In the
case of Fig. 9(b), we have the following expressions for the
vertices: 1 = γ · q, 2 = γ · (2q + p), 3 = γ · (2 p + q),
and 4 = γ · p. Therefore, the expression for this correction
reads

̃
(2)
2 (0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(q)2G0( p + q)

×0G0( p + q)3G0( p)4, (62)

with the result

̃
(2)
2 (0) = 5

2 ê2γ0. (63)

For Fig. 9(c), we have the following vertices: 1 = γ · q, 2 =
γ · (2q + p), 3 = γ · (2 p + q), and 4 = γ · p, whereas the
expression for the correction reads

̃
(2)
3 (0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(q)0G0(q)2

×G0( p + q)3G0( p)4, (64)

which yields the result

̃
(2)
3 (0) = 5

2 ê2γ0. (65)

Finally, Fig. 9(d) an be written algebraically as follows:

̃
(2)
4 (0) = g4

0

16

∫
q

F (q)
∫

p

F ( p)1G0(q)0G0(q)2

×G0( p + q)3G0(q)4, (66)
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0

Γ2

Γ3

1

(a)

Γ

Γ4

Q

−Q

−P

P

γ
0

Γ2

Γ3

(b)

Γ

Γ4

1

Q

−P
−Q

P

γ
0

Γ2

Γ3

(c)

Γ4

Γ1

Q

−Q
−P

P γ 0

Γ2

Γ3

(d)

Γ

Γ4

1

−Q

Q

−P

P γ

FIG. 9. Second-order vertex correction diagrams at zero external momenta. The diagrams in the second row should be counted twice due
to the mirror symmetry.

where the vertices 1,...,4 are given by 1 = 4 = γ · q and
2 = 3 = γ · (2q + p). Evaluation of Eq. (66) yields

̃
(2)
4 (0) = 7

2 ê2γ0. (67)

Hence, the second-order contribution to the vertex function
becomes

̃(2)(0) = ̃
(2)
1 (0) + ̃

(2)
2 (0) + 2̃

(2)
3 (0) + 2̃

(2)
4 (0), (68)

such that the dressed vertex function can be written as a series
in ê:

̃0 = ẽγ0 ≈ (
1 + ê + 33

2 ê2 + O(ê3)
)
γ0. (69)

This expression reproduces exactly the result which we have
obtained for the dressed vertex function in Eq. (57). Therefore,
we obtain from Eqs. (49), (69), and (57) for the modified
conductivity

σ̃ ≈ (1 + O(ê3))σ0; (70)

i.e., the leading correction is of the order g6
0 . However,

we can show to every order in perturbative expansion that
corrections arising from the propagator renormalization are
exactly canceled by their counterparts departing from the
electron-photon vertex renormalization. Consider the defini-
tion of the quasiparticle weight Z−1

0 given in Eq. (45). Since
the lattice deformations are static, all propagators inside the
diagram depend only on the external Matsubara frequency,
which thus becomes an independent parameter. Hence the
derivative with respect to the Matsubara frequency should be
applied to every propagator. Taking such a derivative of an
average free propagator

〈G0(q0,q + k)〉k =
∫

k

q0γ0 + (qμ + kμ)γμ

q2
0 + (q + k)2

, (71)

at zero external momentum and frequency we obtain

∂

∂q0

〈G0(q0,q + k)〉k|Q=0 = −〈G0(0,k)γ0G0(0,k)〉k. (72)

Equation (72) suggests that the expressions under the integrals
must be equal up to an irrelevant constant. Therefore, each
derivative of the free propagator with respect to the external
frequency generates upon sending external momenta and
frequency to zero a bare electron-photon vertex. An irreducible
nth-order diagram of the electronic self-energy contains 2n −
1 electronic propagators. Therefore, by applying a derivative
with respect to the frequency q0 to such a diagram,2n − 1
irreducible corrections to the electron-photon interaction
vertex are generated. This mimics term by term a perturbative

series for the dressed vertex. This can be seen very clearly if we
look at the self-energy diagrams depicted in Fig. 7. Replacing
electronic propagators successively by a bare electron-phonon
interaction vertex and sending external momenta to zero, we
reproduce exactly the vertex-correction diagrams shown in
Fig. 9. We therefore can link each nth (n � 1) term in the
perturbative series of self-energy to the corresponding vertex
function correction:

∂

∂q0

�(n)(Q)|Q=0 = −̃
(n)
0 (0,0,0). (73)

Summing over all n and subtracting γ0 on both sides, we then
can assemble all contributions, arriving at

∂

∂q0

G−1(Q)|Q=0 = ̃0(0,0,0). (74)

On the right-hand side we have the charge renormalization
ẽγ0 defined in Eq. (46), while the left-hand side represents the
wave-function renormalization factor Z−1

0 γ0 due to Eq. (44).
Therefore, Eq. (74) postulates the equality

Z−1
0 = ẽ,

which leads to the exact result for the modified conductivity:

σ̃ = σ0. (75)

Importantly, Eq. (74) is obtained without special emphasis on a
disorder type and is not restricted to the considered type. The
only requirement is that the corresponding term should not
violate the chiral symmetry of the pure graphene Hamiltonian
and it must be a quenched disorder.

VI. CONCLUSIONS

In the present paper we address the question of the effect
that random deformations may have on the transport in
graphene. The common belief is that surface corrugations in
graphene influence its electronic transport properties, mainly
the optical conductivity. It is possible to describe deformations
in graphene by a gauge field that couples to the fermions living
on the two-dimensional sheet. We performed perturbative
calculations of the corrections due to lattice deformations to
the optical conductivity. Our results contrast the suggestions
made in Refs. 17 and 21, where a substantial effect of the
defects on the conductivity is proposed. We have found that
the minimal conductivity is robust with respect to the surface
corrugations.
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APPENDIX

Below be evaluate the irreducible polarization of clean
graphene starting with Eq. (41). Upon performing the trace
over the pseudospin space, we arrive at

�(K) = 2
∫

P

2p0(p0 + k0) − P (P + K)

P 2(P + K)2
,

where PK = p0k0 + p · k. Employing the Feynman
parametrization

1

AB
=

∫ 1

0

dx

[xA + (1 − x)B]2
,

and shifting P → P − xK , we symmetrize the denominator
with respect to P . Therefore, odd powers of P appearing in
the numerator may be dropped. We arrive at

�(K) = 2
∫

P

∫ 1

0
dx

2p2
0 − P 2 + x(1 − x)

[
K2 − 2k2

0

]
[P 2 + x(1 − x)K2]2

.

Exploiting the rotational invariance, we replace p2
0 = P 2/3

and use formulas of dimensional regularization:

∫
ddk

(2π )d
1

(k2 + �)n
= 1

(4π )d/2


(
n − d

2

)
(n)�n−d/2

,

∫
ddk

(2π )d
k2

(k2 + �)n
= 1

(4π )d/2

d

2


(
n − d

2 − 1
)

(n)�n−d/2−1
,

which yields, after integrating out x, the result of Eq. (42).
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