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We study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double-well potential.
Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling
rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes
its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy
levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger
inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.
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I. INTRODUCTION

Ultracold bosonic and fermionic atomic gases in optical
lattices can be used as a toolkit for the investigation of
fundamental condensed-matter-physics models [1]. Recent
experimental work opened a field to study quantum states
in optical lattices, such as superfluid and Mott states [2,3],
where the interparticle interaction can be controlled by a
magnetic field via a Feshbach resonance [4]. Spin-dependent
effects [5–9], frustrated spin systems [1], the formation of
dimers from fermionic atoms [10,11], and mixtures of two
atomic species [12–14] provide opportunities for creating and
studying even more complex quantum states.

Optical lattices are robust and free of phonons. On the
other hand, the electron-phonon interaction in a solid leads to
rich physics. It is important for superconductivity, the Peierls
instability, polaron effects, and many other phenomena. With
more progress in atomic and laser physics, the coupling of
ultracold atoms in an optical lattice to bosonic degrees of
freedom may be achieved and thus can mimic the dynamics
of electrons in the presence of phonons. Recently, ultracold
atoms confined to an optical resonator were proposed to study
the effect of coupling between the atoms and the photon field,
which leads to an effective Hubbard Hamiltonian with long-
range interaction [15] and to an interesting phase diagram [16].
Bose-Fermi mixtures can also provide an insight into the role
of bosons in the dynamics of fermions, where the condensed
bosons lead to fermionic pairing [17] and fermion charge-
density waves [18]. An interesting example of the latter are
dimer states. They have been discussed in solid-state systems
[19], in the Holstein-Hubbard model [20], and, recently, for an
ultracold Bose gas with ring exchange [21].

More recently, ultracold gases were employed to study
the dynamics of quantum states, including the “collapse and
revival” behavior [22]. Here it is important to distinguish
between small systems with a few atoms and many-body
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systems with a large number of atoms [1]. For instance, it
was observed experimentally that, in a small system with two
spin-1/2 atoms, the spin dynamics and the particle dynamics
are completely separated, similar to the spin-charge separation
in one-dimensional systems [23,24]. Another example of
restricted dynamics in small atomic systems are entangled
squeezed states in a Bose-Einstein condensate, whose atoms
are distributed over a small number of lattice sites [25].
Both observations indicate that the dynamics of small atomic
systems can be restricted to a subspace of the entire Hilbert
space available for the model Hamiltonian. This can also
mean that the system never reaches the ground state of the
Hamiltonian if it was prepared in a state that does not have
an overlap with the ground state. For two spin-1/2 atoms
in a double well, described by a Hubbard model, this is a
direct consequence of the fact that the eigenstates do not
mix pairs of singly occupied sites with pairs of empty and
doubly occupied sites [26]. On the other hand, mixing of
these states in a macroscopic system, enforced by inelastic
scattering with other atoms, can lead to a first-order quantum
phase transition from singly occupied sites to doubly occupied
sites. This was observed in a mixture of light and heavy
atoms, where the latter are in a Mott state [20]. This case
can be described by a Bose-Fermi model that is known in
solid-state physics as the Holstein-Hubbard (HH) model [27].
Adjusting physical parameters, such as the optical-lattice
parameters (frequency and amplitude of the laser field) and the
fermion-fermion interaction through a Feshbach resonance,
enables us to prepare such a system not only in the ground
state but also in its excited states and to study its dynamics.
Although in a small system there is no phase transition for the
ground state, dynamic properties of excited states can change
qualitatively due to inelastic scattering described by the HH
model. Among other effects, there is renormalization of the
tunneling rate, known as the polaron effect, which was recently
also discussed for an ultracold Bose gas [28].

Our interest is to study the effect of inelastic scattering of
two spin-1/2 fermionic atoms in a double-well potential with
repulsive Hubbard interaction and an additional scattering with
a heavy (bosonic or fermionic) atom (e.g., 87Rb or 40K) in
each potential well (see Fig. 1). The heavy atoms (HAs) are
harmonic oscillators, at least at low energies, and their energy

043615-11050-2947/2011/83(4)/043615(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.043615


E. S. ANNIBALE, O. FIALKO, AND K. ZIEGLER PHYSICAL REVIEW A 83, 043615 (2011)

J

FIG. 1. (Color online) Two LFAs in a double well potential with
one HA in each well. The LFA can tunnel from one well to the other
one. The wells can be singly occupied (left panel) or one well can be
doubly occupied and the other one empty (right panel).

levels are represented by horizontal lines. Each of the HAs with
mass M has a harmonic oscillator spectrum with level spacing
proportional to

√
V0/M , where V0 is the intensity of the laser

field that creates the periodic potential. The level spacing of the
light fermionic atoms (LFAs) is characterized by the tunneling
rate J through the inner barrier of the double well. Thus, the
quantum dynamics is characterized by an exchange of energy
between the tunneling (kinetic) energy of the light spin-1/2
atoms and the lowest harmonic oscillator levels of the HAs.
A double-well potential can be realized by superimposing two
periodic potentials with different periodicity. This allows us to
tune the inner potential barrier (i.e., the tunneling rate of the
light atoms) between the two wells.

The tunneling of these HAs is neglected, since the potential
barrier between the wells is sufficiently high. Excitations are
only due to collisions with other atoms. For this purpose two
LFAs (e.g., 6Li), prepared in two hyperfine states denoted
|↑〉 and |↓〉, are added to the system. These atoms can tunnel
because of their low mass and can scatter from the HAs. During
the scattering process the HA can also transfer energy to the
LFAs. Moreover, the light fermions experience local (on-site)
repulsion.

The paper is organized as follows: The Holstein-Hubbard
model is introduced and discussed in Sec. II. In Sec. III
we introduce a restricted model with at most one phonon
excitation per well. Then in Sec. IV the effective Hamiltonian
of the unrestricted Holstein-Hubbard model is defined and
its spectral properties are studied and compared with those
of the restricted model of Sec. III. Based on this effective
Hamiltonian we study the dynamics of the quantum states in
a double well, the spectral density, and the spin imbalance in
Sec. V.

II. HOLSTEIN-HUBBARD MODEL

The atomic mixture of LFAs and HAs can be well described
by the Holstein-Hubbard model [27]:

H = −J
∑
〈j,j′〉

∑
σ=↑,↓

c
†
jσ cj′σ + H.c. +

∑
j

[ω0b
†
j bj

+ g(b†j + bj)(nj↑ + nj↓) + Unj↑nj↓]. (1)

The first term describes the tunneling of LFAs with spin σ

(= ↑,↓) between nearest-neighbor wells. These are defined

by fermionic creation and annihilation operators c
†
jσ and cjσ ,

respectively. The HAs form a Mott state and are presented
as harmonic oscillators at each well with eigenfrequency ω0,
assuming that an HA in one well is excited independently
of the HA in the other well. Thus, they can be considered
as local phonons and are described by the bosonic creation
and annihilation operators b

†
j and bj. The phonons couple to

the light atoms with strength g ∼ 〈e|V̂ |f 〉, where V̂ is the
interaction between LFAs and HAs, |f 〉 denotes the ground
state of an HA, and |e〉 denotes the first excited state. The
fourth term describes the interaction between two LFAs in the
same well, where U is a local repulsive interaction between
the LFAs.

This lattice model describes the quantum phase transition
in a half-filled system from singly occupied lattice wells
(Néel state) to a mixture of doubly occupied and empty wells
(dimer state). Now we restrict the lattice model to the two
sites of the double-well potential, choosing the coordinates
j = 1,2 for the wells. Ignoring the tunneling of the LFA and
applying a unitary transformation to the remaining part of the
Hamiltonian, we can decouple fermionic and bosonic degrees
of freedom and get the transformed local Hamiltonian [20]

Hγ =
∑
j=1,2

[
ω0b

†
j bj + γ nj↑nj↓ − g2

ω0
(nj↑ + nj↓)

]
, (2)

where γ = U − 2g2/ω0 is the effective Hubbard coupling. For
a system with two fermions the ground-state energy of Hγ is
given by

E0 = ε − γj, (3)

with ε = U − 4g2/ω0 and 2j is the number of singly occupied
wells. The coupling γ controls two different regimes: for
γ > 0, the ground state has two singly occupied wells
(j = 1) and energy −2g2/ω0, while for γ < 0, there is one
doubly occupied well and one empty well (j = 0) and the
energy is ε. Thus, at γ = 0 there is a transition, where the
system changes from two singly occupied wells to a doubly
occupied well and an empty well. Moreover, both states are
degenerate even for γ �= 0 because the local Hamiltonian Hγ

does not determine how the spins and the empty and doubly
occupied wells are distributed in the double-well potential.
Tunneling in the Hamiltonian H lifts these degeneracies [27].

III. DOUBLE WELL WITH AT MOST ONE PHONON
EXCITATION PER WELL

Even for a double well with two fermions, the Hilbert space
of the Hamiltonian in Eq. (1) has infinite dimensions due to the
phonon excitations. For nonzero tunneling rate J this becomes
a difficult problem. However, to study qualitatively the effect of
inelastic scattering, we can restrict the phonon excitations. This
case might also be relevant for our physical realization when
the harmonic oscillator frequency is large in comparison with
the tunneling rate J . For J = 0 the four lowest eigenvalues are
degenerated in pairs, as shown in the left panel of Fig. 2. The
ground state has a cusp, but it does not coincide with the exact
ground state for J = 0 given in Eq. (3). A nonzero tunneling
rate J lifts the degeneracy and all four eigenvalues are distinct
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FIG. 2. (Color online) Model without tunneling (J = 0): Four degenerate eigenvalues of the two-site problem with at most one phonon
excitation (left panel) and the four lowest poles of the resolvent of Eq. (4) with the effective Hamiltonian Heff in Eq. (5) (right panel) for U = 2
and ω0 = 50. Curve 1 (curve 2) represent levels with two singly (one empty and one doubly) occupied wells. Left panel: The two curves cross
at g ≈ 7.6. The energy of the ground state has a cusp, but it does not coincide with the exact ground state for J = 0 given in Eq. (3). Right
panel: The two curves cross at the smaller value g = 5

√
2 ≈ 7.07.

now (cf. left panel of Fig. 3). We notice that, for large values
of g, the curves do not merge (i.e., the distances between the
first and third and the second and fourth curves, respectively,
remain nonzero).

IV. EFFECTIVE HAMILTONIAN FOR MANY
PHONON EXCITATIONS

Now we consider the full Holstein-Hubbard Hamiltonian
in Eq. (1) and treat its spectral properties in an approximative
manner. The main idea is to study the evolution of the quantum
system |�t 〉 = e−itH |�0〉, beginning with the initial state |�0〉.
The evolution is a walk through the entire Hilbert space that
is accessible for the Hamiltonian. The recursive projective
method (RPM) organizes this walk by projecting iteratively on
a sequence of subspaces. The main advantage of this method
is that the walk visits each subspace only once [26,29,30]. The
approximation method within the RPM consists of ignoring
some part of the Hilbert space that contributes with a low
probability to the walk and leads to an effective Hamiltonian.

Details of the application of the RPM to the Holstein-Hubbard
Hamiltonian can be found in Ref. [20]. In the following we start
from the effective Hamiltonian that was derived in Ref. [20]
to study the dynamics of the LFA in the double-well potential.
The advantage of this method is that it enables us to study the
effect of finite tunneling of the LFA as well as the effect of an
arbitrary number of phonon excitations.

In order to derive an effective Hamiltonian, we project
the full Hilbert space of the Hamiltonian in Eq. (1) onto the
Hilbert space spanned by the four Fock states |↑,↓〉, |↓,↑〉,
|0,↑↓〉, and |↑↓ ,0〉 with a projector P0, such that the resolvent
of the projected Hamiltonian is given by

G0(z) = P0(z − H )−1P0 = [z − Heff(z)]−1
0 . (4)

The effective Hamiltonian for the double well can be
evaluated recursively by the RPM. Under the assumption that
the LFA tunneling rate J is small compared to the other
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FIG. 3. (Color online) Model with tunneling (J = 1): Four eigenvalues of the two-site problem with at most one phonon excitation (left
panel) and the four lowest poles of the resolvent of Eq. (4) with the effective Hamiltonian Heff of Eq. (5) (right panel) for U = 2 and ω0 = 50.
Left panel: Curves 2 and 3 cross at g ≈ 7.6. For very large values of coupling g the distance between curves 1 and 3 as well as between curves
2 and 4 remains nonzero. Right panel: Curves 2 and 3 cross at g ≈ 7.1. For very large values of coupling g the distance between curves 1 and
3 as well as between curves 2 and 4 vanish as ∼τ 2/|γ |. This is due to the polaron effect, which accounts for rescaling of the single fermion
tunneling J → τ = Je−g2/ω2

0 .
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parameters of the system (e.g., J � ω0, J � U , and J � g)
the recursion relation can be truncated, which gives [20]

Heff(z) ≈
∑

σ,σ ′=↑,↓

[
−τc

†
1σ c2σ + K1(z)c†1σ c2σ c

†
2σ ′c1σ ′

+ K2(z)c†1σ c2σ c
†
1σ ′c2σ ′ + H.c.

+ γ

2
(n1σ n1σ ′ + n2σ n2σ ′)

]
, (5)

where the indices 1 and 2 represent the left and right sites
of the double well, respectively. This Hamiltonian describes
three different tunneling processes, namely the tunneling of
single fermions with rate τ (first term), the exchange of spins
with rate K1(z) (second term), the tunneling of fermionic pairs
with rate K2(z) (third term), and the onsite interaction between
fermions with strength γ (fourth term). The tunneling rate J

of single fermions in Eq. (1) is now renormalized as

τ = e−g2/ω2
0J, (6)

which is the well-known polaron effect [27]. The spin-
exchange parameter K1 and the pair tunneling parameter K2

are given by the expressions [20]

K1(z) = 2τ 2
∞∑

m=1

1

m!

(
2g2

/
ω2

0

)m

z − 2ε + 2γ − ω0m
(7)

and

K2(z) = 2τ 2
∞∑

m=1

1

m!

(−2g2
/
ω2

0

)m

z − 2ε − ω0m
. (8)

In order to avoid the singularities of the coefficients K1 and
K2, we assume that ω0  U,g, which is valid for a deep and
tight double-well potential.

The energy levels of the system is given by the poles of
Eq. (4). Thus the variable z is fixed by solving the equation

det[z − Heff(z)] = 0. (9)

To solve this equation we first diagonalize the 4 × 4 effective
Hamiltonian Heff for a fixed parameter z and find its eigen-
values λj (z) (j = 1, . . . ,4). Then we solve z = λj (z) for each
of the four eigenvalues λj (z) to determine the poles of the
resolvent in Eq. (4). An eigenstate |E〉 (with Heff|E〉 = E|E〉)
can be written as a linear combination of the four Fock states
as

|E〉 = a1(z)|↑,↓〉 + a2(z)|↓,↑〉 + a3(z)|0,↑↓〉
+ a4(z)|↑↓,0〉, (10)

where the coefficients aj (z) run over all possible poles z. In
this Fock-state basis the Hamiltonian in Eq. (5) reads

Ĥeff(z) =

⎛
⎜⎜⎜⎝

K1 + ε − γ −K1 −τ −τ

−K1 K1 + ε − γ τ τ

−τ τ K1 + ε K2

−τ τ K2 K1 + ε

⎞
⎟⎟⎟⎠ ,

(11)

whose eigenvalues and coefficients [of the corresponding

nonnormalized eigenvectors in the form of Eq. (10)] are

λ1(z) = K1(z) − K2(z) + ε, a1 = a2 = 0, a3 = −1,

a4 = 1, (12)

for doubly occupied lattice sites and

λ2(z) = −γ + ε, a1 = a2 = 1, a3 = a4 = 0. (13)

for singly occupied lattice sites. There are also states with
a mixture of singly and doubly occupied sites: Using � =√

16τ 2 + [−K1(z) + K2(z) + γ ]2, we have

λ3(z) = 1
2 [3K1(z) + K2(z) − γ − � + 2ε], (14)

with

a1 = −K1(z) +K2(z) + γ + �

4τ
= − a2, a3 = a4 = 1, (15)

and

λ4(z) = 1
2 [3K1(z) + K2(z) − γ + � + 2ε], (16)

with

a1 = −K1(z) +K2(z) + γ − �

4τ
= − a2, a3 = a4 = 1. (17)

In the right panels of Figs. 2 and 3 we plot the four lowest poles
of the resolvent of Eq. (4) with the effective Hamiltonian Heff

of Eq. (5) as functions of g. In particular, in Fig. 3 curve
1 represents a solution of z = λ3(z), curve 2 a solution z =
λ2(z), curve 3 a solution of z = λ1(z), and curve 4 a solution
of z = λ4(z). These four poles are compared with the four
eigenvalues of the restricted model with at most one phonon
excitation of Sec. III, shown in the left panels of Figs. 2 and 3.

If there is no tunneling (i.e., J = 0) we get degenerate states
and only two different eigenvalues which cross each other are
available (see Fig. 2). The ground state thus has a cusp at
g = √

Uω0/2 ≈ 7.1 and coincides with the exact ground state
of the Holstein-Hubbard model for vanishing tunneling given
in Eq. (3). This was not the case when we considered the
exact solution with only one phonon excitation in the previous
section.

A nonzero tunneling lifts the degeneracies and leads to a
unique ground state. The eigenvalues for nonzero tunneling
and for U = 2 and ω0 = 50 are shown in Fig. 3. The two
lowest excited states still cross at around g ≈ 7.1, while the
ground state is unique and thus the system does not exhibit the
transition discussed in Sec. II. As a consequence of the polaron
effect, the renormalized tunneling rates τ , K1, and K2 vanish
for large g. This implies for the eigenvalues the asymptotic
behavior

λ1 ∼ λ4 ∼ −4g2/ω0, λ2 ∼ λ3 ∼ −2g2/ω0. (18)

This is also visible in the right panel of Fig. 3, while for the
exact two-site problem with at most one phonon excitation
(previous section), the eigenvalues do not merge for large
coupling g (cf. left panel of Fig. 3).

We plot the coefficients ai [see Eq. (10)] for the ground state
of the effective Hamiltonian in Fig. 4. There is a crossover from
the domination by the singlet states |↑ , ↓〉 (at small coupling
g when the effective interaction is repulsive, γ > 0) to the
domination of the doubly occupied states (at larger coupling
g when the effective interaction is attractive, γ < 0).
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FIG. 4. (Color online) Coefficients ai [see Eq. (10)] for the ground
state of the effective Hamiltonian Heff in Eq. (5) (i.e., curve 1 in the
right panel of Fig. 3) with J = 1, U = 2, and ω0 = 50. They cross
very close to the crossing point of the eigenvalues in Fig. 3. The
domination of the singlet states |↑,↓〉 at small couplings g is changed
by the domination of the dimer states for large values of g.

To discuss the consequences of the crossing on observable
dynamic quantities we study in the next section the dynamics

of the quantum states and the spin imbalance of the LFAs. This
investigation includes the spectral density of the model.

V. DYNAMICS IN A DOUBLE-WELL POTENTIAL

The description of the dynamics of our quantum system is
based on knowledge of the energy levels, the initial quantum
state, and the overlap of the energy eigenstates with the initial
quantum state. In other words, if the system with energy levels
Ej is prepared initially in state |�0〉, its quantum state |�t 〉
evolves in time as

|�t 〉 = e−itH |�0〉 =
∑

j

e−itEj |Ej 〉〈Ej |�0〉. (19)

The energy levels Ej and the overlap with the initial state
〈Ej |�0〉 can be described by the spectral density. This will be
discussed in the next section.

A. Spectral density

The probability of the system to return to the initial state is
calculated from the inverse Laplace transform of the projected
resolvent of Eq. (4) [26]:

〈�0|�t 〉 =
∫

	

e−izt 〈�0|[z − Heff(z)]−1
0 |�0〉 dz

2πi
, (20)
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FIG. 5. Spectral density in Eq. (22) for the initial state |�0〉 = |↑,↓〉 and for J = 1, U = 2, ω0 = 50, δ = 0.02, and different values of the
coupling g. We observe three peaks because the fourth eigenstate is orthogonal to the initial state. The central peak represents the dominant
energy level and, for big values of g, the contribution of one peak is very small. The frequencies of the spin imbalance are given by the
difference between the dominant energy level and the other energy levels.
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FIG. 6. Spin imbalance N1,2(t) without inelastic scattering (g = 0, left panel) and with strong inelastic scattering (g = 10, right panel) for
J = 1, U = 2, and ω0 = 50. There are two modes with frequencies ω1 ≈ 3.24 and ω2 ≈ 1.24 (left panel) and ω1 ≈ 3.17 and ω2 ≈ 1.16 (right
panel) that contribute to the dynamics.

where the contour 	 includes all the poles of the resolvent.
The many-body spectral density is then given by

ρδ(E) = − 1

π
Im〈�0|[z − Heff(z)]−1

0 |�0〉, (21)

where z = E + iδ and δ � 1. For a finite-dimensional Hilbert
space it is a rational function with poles z = Ej (j =
0,1,2, . . .):

ρδ(E) = δ
∑

j

|〈�0|Ej 〉|2
(E − Ej )2 + δ2

. (22)

This expression represents Lorentzian peaks at positions Ej

whose heights are |〈�0|Ej 〉|2/δ. Plotting ρδ(E) as a function
of E, we can clearly identify the poles Ej of the resolvent G0

[see Eq. (4)] and the overlap between the energy state |Ej 〉 and
the initial state |�0〉. Here we calculate the spectral density for
the initial state |�0〉 = |↑,↓〉 for different coupling g. Then it
should be noted that the initial state is singly occupied and has
no overlap with the doubly occupied eigenstate of Eq. (12).
The results are shown in Fig. 5 for low energies. We observe
three peaks, which correspond to the energies shown in Fig. 3.
The central peak represents the dominant energy level for the
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FIG. 7. Spin imbalance N1,2(t) at the level crossing g = 7.065 41
for J = 1, U = 2, and ω0 = 50. In this case only one mode with
frequency ω1 ≈ 1.96 contributes to the dynamics.

dynamics. We notice the absence of one peak (corresponding
to curve 3 in Fig. 3), since the state

(|↑↓,0〉 + |0,↑↓〉)/√2
cannot be reached from the initial state �0 = |↑,↓〉. We also
observe that, before (g = 4) and after (g = 10) the crossing
of the eigenvalues, there is one dominant central peak and two
lower peaks. The characteristic frequencies of the dynamics is
the differences between the energies of the central peak and the
other peaks. Close to the crossing point (g = 7.06), the two
other peaks are symmetric with respect to the central peak.
Consequently, only one frequency appears in the dynamics at
the crossing point. This will also be seen in the spin imbalance
of the next section. For big values of g we observe two large
peaks which are very close and a small peak far from the central
peak. This implies a dominating small single frequency, as also
found in the spin imbalance (cf. Fig. 8).

B. Spin imbalance

A recent experimental study of the dynamics of two
spin-1/2 atoms with strong repulsion in a double well has
revealed that, using two singly occupied wells as the initial
state, the single occupation is static while the spin oscillates
periodically between the two wells with two characteristic
frequencies [23,24]. This observation has been interpreted
by effective dynamics based on the Heisenberg model. The
latter can be understood either within a strong-coupling
approximation of the underlying Hubbard model [24] or within
the recursive-projection method for a general coupling [26].
Experimentally this has been seen by measuring the spin
imbalance between the two wells:

N1,2(t) = 1
2 〈�t |n↑1 − n↓1 + n↓2 − n↑2|�t 〉. (23)

In our Holstein-Hubbard model we can vary the coupling
g between the LFA and the HA to realize an additional
interaction. We have already seen in the spectral density that
there is no overlap between the state of singly occupied wells
and a state of a doubly occupied well. From this point of view
we expect a similar behavior as found for the Hubbard model.
However, there is the additional feature; namely, that we can
tune continuously the local atom-atom coupling γ from an
attractive to a repulsive interaction. In this way we also reach
a degeneracy point at which the effective interaction vanishes
(i.e., γ = 0). The existence of only three peaks in the spectral
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FIG. 8. Spin imbalance N1,2(t) for g = 20, J = 1, U = 2, and
ω0 = 50. Large coupling g leaves a slow component with almost
full amplitude and an additional high-frequency modulation with
small amplitude. The slow component oscillates with the frequency
ω2 ≈ 4τ 2/|γ |. This is the direct consequence of the polaron effect,
since it causes the single fermion tunneling to decay exponentially,
τ = Je−g2/ω2

0 .

density of Fig. 5 explains the fact that the spin imbalance
is characterized by only two frequencies (i.e., the difference
between the dominant energy level and the other energy
levels).

For g = 0 we get the Fermi-Hubbard model without phonon
excitations, which corresponds with the above-mentioned
experiment. In this case, if the initial state is | ↑ , ↓〉 then
the dynamics of spin imbalance are characterized by the
two frequencies U

2 [
√

(4J/U )2 + 1 ± 1] (see [24,26]). The
corresponding spin imbalance for U = 2 is plotted in Fig. 6.

For nonzero coupling g the dynamics is affected by the
presence of phonon excitations but is still characterized by two
frequencies, which are the differences between the second and
the first and the second and the fourth curves in Fig. 3, respec-
tively (i.e., ω1 = λ2 − λ3 and ω2 = λ2 − λ4). Consequently, at
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FIG. 9. Difference  = |ω2 − ω1| between the frequencies of the
modes contributing to the dynamics of spin imbalance. The difference
disappears at the crossing point.

the crossing, the dynamics of spin imbalance shows only one
frequency since the difference between the curves in this case
are equal, as depicted in Fig. 7. For larger couplings g, two
frequency components appear again as is shown in the right
panel of Fig. 6. Thus, measuring the difference between the two
frequencies,  = |ω2 − ω1| provides a method to detect the
crossing point experimentally:  vanishes at the crossing point
as shown in Fig. 9 and the spin imbalance is characterized by
only one frequency. Increasing the coupling g further leaves
a low-frequency component with almost full amplitude and
additional high-frequency modulation with small amplitude.
This is depicted in Fig. 8. The low-frequency component
oscillates with frequency ω2 ≈ 4τ 2/|γ |, where τ is given by
Eq. (6) and γ = U − 2g2/ω0. Thus ω2 → 0 as g → ∞, which
is a direct consequence of the polaron effect.

VI. DISCUSSION AND CONCLUSION

At low energies, the restricted model with at most one
phonon excitation per well has qualitatively the same behavior
as the model with many phonon excitations, described by
the effective Hamiltonian in Eq. (5). This is presented in
Figs. 2 and 3, where the four lowest levels are plotted for both
cases. The main difference, however, is that the Hilbert space
of the model with many phonon excitations is much larger.
Consequently, there are many excited states with energies
higher than those shown in Figs. 2 and 3. However, these states
are not considered here because of their high energies. Due to
the matrix elements K1 and K2 of the effective Hamiltonian
in Eq. (11), these higher levels are closely related to harmonic
oscillator levels with frequency ω0.

Without tunneling (i.e., J = 0) there is a change of the
ground state from single occupancy of the wells (weak
coupling g) to double occupancy of one well (strong coupling
g). This reflects the sign change of the effective coupling
γ = U − 2g2/ω0. In the presence of tunneling (i.e., J �= 0)
the ground state, given by the coefficients of Eq. (15), changes
smoothly upon a change of the coupling g. Its energy is the
lowest solution of λ3(z) = z, where λ3(z) is defined in Eq. (14).
There is a transition due to the crossing of the first and second
excited level (cf. Fig. 3).

The Holstein-Hubbard model is valid when JHA � JLFA,
where JHA and JLFA are the tunneling rates of the HAs
and LFAs, respectively. Moreover, our approximation of
the effective Hamiltonian in Eq. (5) is valid for JLFA �
U and h̄ω0, g ∼ U . Thus, in terms of experimental param-
eters, the following conditions must be satisfied to realize
the results of our calculations: (i) MLFA � MHA, where MLFA

is the mass of the LFAs and MHA is the mass of the HAs,
(ii) V0 > ER, where V0 is the intensity of the laser field and
ER = h̄2π2/(2Md2) is the recoil energy, with d being the
distance between the two wells. Finally, (iii) for the scattering
lengths as of the intra-atomic scattering between the LFAs
as well as the interatomic scattering between the LFAs and
the HAs, we need as/d < (V0/ER)−1/4 to justify the one-band
approximation with local interaction [31].

In order to realize our model experimentally, we propose
an atomic mixture consisting of 87Rb and 6Li atoms in a
double-well potential, generated by a stationary laser field.
The mass ratio of this atomic mixture is MHA/MLFA = 14.5,
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which clearly satisfies (i). In current experiments, the lattice
parameter d is of the order of the laser wavelength and
ranges typically from 100 nm to 1 µm. For 87Rb atoms,
V0/ER can range from 6 to 44 and the ratio J/U can
achieve small values (e.g., J/U = 0.048) [24]. For deep
wells (V0  ER), one has the following relationships [32]:
(a) J/ER = 4π−1/2(V0/ER)3/4e−2(V0/ER)1/2

for the tunneling
rates JLFA and JHA, (b) U/ER ∼ as/d(V0/ER)3/4 for the local
interaction U , and (c) h̄ω0/ER ∼ (V0/ER)1/2 for the energy
gap h̄ω0. Thus, for the usual experimental parameters, (a) can
be easily satisfied for a proper choice of laser intensity. Since
the scattering lengths as are typically between 10−7 . . . 10−9 m
and the laser wavelength can be adjusted between 10−7 and
10−6 m, (b) and (c) can also be satisfied for both atomic species.

In conclusion, we have studied an atomic mixture of two
heavy atoms and two light spin-1/2 fermionic atoms in a
double-well potential, where the heavy atoms are subject to
the local harmonic oscillator potentials of the wells. This
is modeled using the Holstein-Hubbard Hamiltonian, which
is the simplest system that mimics the presence of phonons
in a solid. We have applied the recursive-projection method,

which reduces the complexity of the full Hilbert space and
leads to an effective fermionic Hamiltonian. We have found a
transition for the light fermions from singly occupied wells to
doubly occupied wells as the coupling between the heavy and
light species is increased. This transition is manifested by the
crossing of the second and third eigenvalues of the effective
Hamiltonian. Moreover, the coupling between the light and
the heavy atoms renormalizes the tunneling of light fermions
between wells, which reflects the polaron effect. The dynamics
is dominated by a spectral density with three peaks. This
implies, for the spin-imbalance dynamics of the light atoms,
a periodic behavior with two characteristic frequencies. These
frequencies coincide at the crossover of the two lowest excited
states. Thus, the oscillating behavior of the spin imbalance can
be used to experimentally detect the crossing point.

ACKNOWLEDGMENTS

This work was supported by Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) and
by the Deutscher Akademischer Austausch Dienst (DAAD).

[1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[2] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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[8] M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger,
Phys. Rev. Lett. 94, 080403 (2005).

[9] G. B. Partridge, Wenhui Li, Y. A. Liao, R. G. Hulet, M. Haque,
and H. T. C. Stoof, Phys. Rev. Lett. 97, 190407 (2006).

[10] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Phys. Rev. Lett.
91, 080406 (2003).

[11] H. Uys, T. Miyakawa, D. Meiser, and P. Meystre, Phys. Rev. A
72, 053616 (2005).

[12] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach,
and W. Ketterle, Phys. Rev. Lett. 93, 143001 (2004).

[13] K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger,
Phys. Rev. Lett. 96, 180402 (2006).

[14] C. Ospelkaus, S. Ospelkaus, K. Sengstock, and K. Bongs, Phys.
Rev. Lett. 96, 020401 (2006).

[15] C. Maschler and H. Ritsch, Phys. Rev. Lett. 95, 260401 (2005).
[16] J. Larson, B. Damski, G. Morigi, and M. Lewenstein, Phys. Rev.

Lett. 100, 050401 (2008).
[17] D.-W. Wang, Phys. Rev. Lett. 96, 140404 (2006).
[18] I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100,

100401 (2008).
[19] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[20] K. Ziegler, Phys. Rev. A 77, 013623 (2008).
[21] C. Xu and M. P. A. Fisher, Phys. Rev. B 75, 104428 (2007).
[22] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature
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