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The electronic properties of graphene, a two-dimensional crystal of carbon
atoms, are exceptionally novel. For instance, the low-energy quasiparticles
in graphene behave as massless chiral Dirac fermions which has led to the
experimental observation of many interesting effects similar to those
predicted in the relativistic regime. Graphene also has immense potential to
be a key ingredient of new devices, such as single molecule gas sensors,
ballistic transistors and spintronic devices. Bilayer graphene, which consists
of two stacked monolayers and where the quasiparticles are massive chiral
fermions, has a quadratic low-energy band structure which generates very
different scattering properties from those of the monolayer. It also presents
the unique property that a tunable band gap can be opened and controlled
easily by a top gate. These properties have made bilayer graphene a subject
of intense interest. In this review, we provide an in-depth description of the
physics of monolayer and bilayer graphene from a theorist’s perspective.
We discuss the physical properties of graphene in an external magnetic
field, reflecting the chiral nature of the quasiparticles near the Dirac point
with a Landau level at zero energy. We address the unique integer quantum
Hall effects, the role of electron correlations, and the recent observation
of the fractional quantum Hall effect in the monolayer graphene. The
quantum Hall effect in bilayer graphene is fundamentally different from
that of a monolayer, reflecting the unique band structure of this system.
The theory of transport in the absence of an external magnetic field is
discussed in detail, along with the role of disorder studied in various
theoretical models. Recent experminental observations of a metal–insulator
transition in hydrogenated graphene is discussed in terms of a self-
consistent theory and compared with related numerical simulations. We
highlight the differences and similarities between monolayer and bilayer
graphene, and focus on thermodynamic properties such as the compress-
ibility, the plasmon spectra, the weak localization correction, quantum Hall
effect and optical properties. Confinement of electrons in graphene is non-
trivial due to Klein tunnelling. We review various theoretical and
experimental studies of quantum confined structures made from graphene.
The band structure of graphene nanoribbons and the role of the sublattice
symmetry, edge geometry and the size of the nanoribbon on the electronic
and magnetic properties are very active areas of research, and a detailed
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review of these topics is presented. Also, the effects of substrate interac-
tions, adsorbed atoms, lattice defects and doping on the band structure of
finite-sized graphene systems are discussed. We also include a brief
description of graphane – gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.

Keywords: monolayer graphene; bilayer graphene; Dirac fermions; quan-
tum Hall effect; electron-electron interaction; plasmon dispersion; zero-
field transport; metal-insulator transition; quantum dots; graphene
nanoribbons; edge-states; graphane
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1. Introduction

Everything about graphite involves a mix of the very old and very young. Known to
man since ancient times (ca 1500CE), graphite is as ubiquitous as the lead in a pencil,
and yet the subject of our current review, graphene, being a single atomic layer
of graphite, was isolated only in 2004! That discovery marked the beginning of the
academic equivalent of a gold rush which has become a major topic of research for the
condensed matter and materials physics community, along with chemists, electrical
engineers and device specialists. Several thousand papers have been written in the past
couple of years that have attempted to explain every aspect of the electronic properties
of graphene. There are review articles, long and short (see, e.g. [1–5]), special journal
issues [6] and popular magazine articles (see, e.g. [7]). This development at ‘Mozartian
speed’ is primarily due to the fact that a two-dimensional system of electrons in
graphene behaves rather uniquely as compared to its counterpart in semiconductor
systems. In fact, many of the fundamental properties of graphene that were crucial for
the present developments were already reported in the early part of the past century,
merely waiting to be confirmed experimentally until now.

In graphene, one finds a new class of low-dimensional system, only one atom
thick, with vast potential for applications in future nanotechnology. Our review is
organized as follows. In this section, we introduce graphene by describing its crystal
structure, and discussing its band structure via the frequently-used tight-binding
model. We also discuss the low-energy properties of this material, and in particular
we focus on the linear (Dirac-like) nature of the energy dispersion near the edges of
the Brillouin zone, and on the chiral nature of the low-energy electrons. We also
briefly discuss fabrication techniques for graphene, and whet the appetite for study
of this material by describing some of the devices utilizing the unique properties of
graphene which have already been created in the laboratory.

Section 2 deals with the quantum Hall effect, i.e. quantization of Hall
conductance as a function of the magnetic field or the electron density, that was
initially discovered in conventional non-relativistic two-dimensional electron sys-
tems. The effect is a direct manifestation of the Landau quantization of electron
dynamics. An electron system in graphene, being a two-dimensional system, also
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shows Landau quantization of electron motion and the corresponding quantum
Hall effect, which has been observed experimentally. The relativistic massless nature
of the energy dispersion law in graphene results in striking differences between the
quantum Hall effect observed in graphene and in conventional two-dimensional
systems. In graphene, the quantum Hall effect can be observed even at room
temperature, while in non-relativistic systems it is observable only at low temper-
atures. The quantized Hall effect in graphene occurs not at integer values as in the
conventional Hall effect, but at half-integer values. Such anomalous behavior of the
quantum Hall effect is due to massless relativistic nature of the charge carrier
dispersion and the electron–hole symmetry of the system. In addition to anomalous
half-integer values of the Hall conductance, a rich structure of Hall plateaus has been
observed experimentally. This structure is associated with the lifting of valley and
spin degeneracy of the Landau levels. Different many-body mechanisms of lifting of
the degeneracy of the Landau levels have been proposed in the literature. These
mechanisms are reviewed in detail. The specific features of the many-particle
excitations of the quantum Hall states, the fractional quantum Hall effect in
graphene and the unique structure of the quantum Hall state edge states are also
discussed in this article.

In Section 3, we discuss specific aspects of bilayer graphene, and try to highlight
the similarities and differences between this and the monolayer material. We
introduce experimental techniques for distinguishing the number of layers in a
graphene flake. We present the tight-binding formalism in order to derive the
quadratic low-energy spectrum, and to discuss the influence of trigonal warping
and the formation of a band gap. We describe the quantum Hall effect and the
formation of the zero-energy level with doubled degeneracy, which is unique to this
system. The interactions between electrons are fascinating in this material,
and several properties are distinct from both the monolayer and traditional two-
dimensional electron systems, and we describe the formation of spin-polarized
and other ordered states. The interactions between electrons and phonons are also
important (e.g. in the context of Raman scattering experiments), so we briefly
describe the phonon anomalies and the electron–phonon interaction. Lastly, we
review some of the proposals for devices which utilize bilayer graphene in their
design.

Electronic properties that are intimately related to electron–electron interactions,
namely, the compressibility and plasmon dispersion in a two-dimensional electron
gas shows unique behavior in graphene. The compressibility of a two-dimensional
electron gas is an important physical quantity which can be deduced from the ground
state energy. It provides important information about the electron correlations,
the chemical potential, the stability of the system, and so on. In Section 4, we discuss
the unique behavior of the electron compressibility in monolayer and bilayer
graphene. In that section, we also describe the excitation spectra of graphene in the
presence of the spin–orbit interaction (SOI) within the random-phase approximation
(RPA). The SOI opens a gap between the valence and conduction bands and between
the intraband and inter-band electron–hole excitation continuum (EHC) of the
semimetal Dirac system. As a result, one sees a dramatic change in the long-
wavelength dielectric function of the system. An undamped plasmon mode appears
in the EHC gap reflecting the interplay between the intraband and interband electron
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correlations. In undoped bilayer graphene, the static screening effect is anisotropic
and much stronger than that in monolayer graphene. The dynamic screening shows
the properties of a Dirac gas in the low-frequency limit and of Fermi gas in the
high-frequency limit. A similar transition from the Dirac gas to the Fermi gas is also
observed in the plasmon spectrum. In doped bilayer graphene, the plasmon spectrum
is quite similar to that of Fermi gas for momentum less than half the Fermi
momentum while becoming softer at higher momentum. We close this section with
a discussion of the properties of graphene in a strong external electromagnetic field
(EMF). The possibility of inducing valley-polarized currents by irradiating gapped
bilayer graphene is described.

In Section 5, we review the transport behavior of monolayer and bilayer graphene
in the absence of an external magnetic field, focusing on properties in the vicinity of
the charge neutrality points. Beginning with the classical Boltzmann approach, we
compare the latter with the more general linear-response (Kubo) approach. The
effect of electron–electron and electron–phonon interactions as well as the effect of
different types of disorder are discussed. Of all these effects, disorder seems to be the
most important. We present and compare several schemes of approximation:
perturbation theory, self-consistent and saddle-point approximations and numerical
simulations. Finally, the properties of a random gap and a related metal–insulator
transition are investigated.

Quantum dots (QDs) or artificial atoms [8,9] are crucial building blocks in many
nanoscale semiconductor applications. Their unique properties, such as superior
transport and tunable optical spectra, originate from their zero dimensionality,
which results in discrete energy spectra and sharp density of states. In conventional
‘non-relativistic’ semiconductor systems, the natural way to realize nanoscale QDs is
through a confinement potential or as nanoscale islands of semiconductor material.
In both cases the QDs have discrete energy spectra and electrons are localized within
the QD regions. In graphene, the massless relativistic nature of the dispersion law
results in unique properties of graphene QDs. That is, the above two approaches of
the realization of QDs have very different outcomes in graphene. While the QDs as
isolated islands of graphene have been successfully realized experimentally and have
all the properties of zero-dimensional systems with discrete energy spectra, the
conventional QDs realized through the confinement potential do not exist in
graphene. This is due to Klein’s tunnelling, which provides an efficient escape
channel from a confinement potential of any strength. Therefore electrons in
graphene cannot be localized by a confinement potential. Different approaches have
been proposed to overcome this problem: generation of an electron effective mass
through interaction with a substrate, introducing a confinement potential in a
double-layer system, in which electrons have non-zero mass under applied gate
voltage, or considering special types of confinement potentials, e.g. smooth
cylindrically symmetric potentials, for which not the problem of localization but
the problem of efficient electron trapping is discussed. In Section 6, we review
different approaches to overcome the Klein’s tunnelling and realize graphene QDs
through a confinement potential. Even for QDs realized as islands of materials, the
graphene islands show some unique properties. Although the main manifestations of
a two-dimensional quantization, such as the Coulomb blockade and discrete energy
spectra, are observed in experiments, the graphene nanoscale islands show specific
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features. Such features are degenerate zero-energy edge states with unique magnetic
properties, specific energy level statistics related to the Dirac billiard and so on.
These special properties of nanoscale graphene islands are also discussed. Finally, we
also present a brief review of QDs in bilayer graphene.

In Section 7, we review the band structure of graphene nanoribbons which is
known to be modified by the presence of edges where the alteration of the sp2

network due to the mixture of the sp and sp2 hybridization occurs. The nature of the
zigzag edges impose localization of the electron density with the maximum at the
border carbon atoms leading to the formation of flat conduction and valence
bands near the Fermi level when the wave vector, k� 2�/3. The localized states
are spin-polarized and in the case of ordering of the electron spin along the zigzag
edges, graphene can be established in ferromagnetic or antiferromagnetic phases.
The antiferromagnetic spin ordering of the localized states at the opposite zigzag
edges breaks the sublattice symmetry of graphene that changes its band structure
and opens a gap. Because the energetics, localization and spin ordering of the
edge states can be modified by the size of graphene nanoribbon, edge geometry,
orbital hybridization at the edges and an external electric field, their influence on
the electronic and magnetic properties of graphene are discussed. Finally, we turn
to finite-sized bilayer graphene systems, e.g. nanoribbons, and describe how the
confinement and edge structures affect the properties of this system.

Graphene in the real world would interact with a substrate and the surrounding
environment. If these interactions cause an imbalance of the charge or spin
distribution between graphene sublattices or modify the graphene lattice, the
sublattice or lattice symmetry of graphene will be broken, resulting in a change of the
electronic and magnetic properties of the graphene. The edges of graphene are
chemically active and prone to structural modifications and interactions with gas
dissolved in the environment, thereby influencing the properties of graphene as well.
Therefore, in Section 8, we discuss the influence of the changes brought by the
external sources into the electronic and magnetic properties of graphene and
prospects of their manipulation in a controllable way.

1.1. A sheet of molecular chicken wire

Graphene can be considered as the building block of many carbon allotropes. It is
a two-dimensional crystal with hexagonal structure consisting of a bipartite lattice
of two triangular sublattices (Figure 1a). Each atom is tied to its three nearest
neighbors via strong � bonds that lie in the graphene plane with angles of 120�. The �
bond is a result of the sp2 hybridization of the 2s, 2px, and 2py orbitals for the three
valence electrons. The fourth valence electron is in the 2pz orbital that is orthogonal
to the graphene plane. A weak � bond is formed by the overlap of half-filled 2pz
orbitals with other 2pz orbitals. The transport properties of graphene are determined
by these delocalized � electrons.

The crystal structure of graphite consists of layers of graphene, with strong
intralayer covalent coupling and weak interlayer binding. The weak interlayer
coupling supposedly arises due to van der Waals interaction (the separation between
the adjacent layers (0.34 nm) is much larger than the nearest neighbor distance
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between two carbon atoms (acc¼ 0.142 nm)) and the particular bonding mechanism

along the direction normal to the plane. Similarly, if a graphene sheet is rolled up
along one axis, it forms a carbon nanotube and it can be formed into a ball to create

a fullerene. Due to this, graphene has long been considered a starting point for band
structure calculations of graphite [10] and carbon nanotubes, and also for the

calculation of their magnetic properties [11,12]. In what follows, we shall present a
very brief description of the band structure. A detailed description can be found, for

example in [13,14].
As mentioned above, graphene is a honeycomb lattice of carbon atoms. It is a

bipartite lattice with two sublattices A and B that are triangular Bravais
lattices (Figure 1a). Considering only the xy plane, the unit vectors in real

space, ~a1 and ~a2, and the reciprocal lattice vectors ~b1 and ~b2 are shown in Figure 1.
The real space lattice vectors are written as

~a1 ¼
a

2

ffiffiffi
3
p

, 1
� �

, ~a2 ¼
a

2

ffiffiffi
3
p

, �1
� �

,

where a ¼ j~a1j ¼ j~a2j ¼ 0:246 nm is the lattice constant. The corresponding unit
vectors in the reciprocal lattice are

~b1 ¼
2�

a

1ffiffiffi
3
p , 1

� �
, ~b2 ¼

2�

a

1ffiffiffi
3
p , �1

� �
,

with a reciprocal space lattice constant 4�=
ffiffiffi
3
p

a. The first Brillouin zone is a hexagon

(Figure 1b), where the corners are called the K points. The six corners form two
inequivalent groups of K points, traditionally labelled K and K0.

The energy dispersion of � electrons in graphene was first derived in 1947 by

Wallace [10] within the tight-binding approximation. In this case, the wave function
of graphene is a linear combination of Bloch functions for sublattice A

�A ¼
1ffiffiffiffi
N
p

X
~RA

ei
~k� ~RA’ð~r� ~RAÞ;

and an equivalent function �B for the B sublattice. Here N is the number of unit

cells, ~RA are the positions of the atom A and ’ð~r� ~RAÞ is the 2pz orbital of the atom
at ~RA. The sum runs over all unit cells, i.e. all possible lattice vectors.

Figure 1. (a) Graphene lattice in real space, and (b) the corresponding reciprocal lattice.
The unit cell of graphene contains two atoms A and B. The first Brillouin zone is drawn as
shaded hexagon. The basis vectors of the direct lattice and the reciprocal lattice are ai and bi,
i¼ 1, 2, respectively. The high-symmetry points �, M and K in the Brillouin zone are also
indicated.
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In the nearest neighbor approximation (every A site has three nearest B sites, and
vice versa), the energy eigenvalues can be obtained in a closed form [13,14]

Eðkx, kyÞ ¼ ��0 1þ 4 cos

ffiffiffi
3
p

kxa

2
cos

kya

2
þ 4 cos2

kya

2

� �1
2

, ð1Þ

where �0 is the transfer integral between the nearest neighbors. The energy dispersion
of two-dimensional graphene according to this formula is plotted in Figure 2(a) as a
function of the wave vector ~k. The upper half of the curves is called the �* or the
anti-bonding band while the lower one is � or the bonding band. The two bands
degenerate at the two K points given by the reciprocal space vectors
~K ¼ ð2�=aÞð1=3, 1=

ffiffiffi
3
p
Þ and ~K0 ¼ ð2�=aÞð�1=3, 1=

ffiffiffi
3
p
Þ points where the dispersion

vanishes. This is also the Fermi energy level EF in intrinsic (undoped) graphene.
There are two atoms per unit cell and hence there are two electrons per unit cell.
The lower � band is therefore completely filled, which leaves the upper �* band
completely empty.

The derivation of this formula neglected the overlap integral between electron
orbitals on adjacent lattice sites. Restoring this additional parameter introduces
an electron–hole asymmetry to the � bands away from the K points. This is shown
in Figure 2(b) for parameters quoted in [13].

A full description of the band structure in graphene should also include the
consideration of the � bands, since they are the lowest energy bands near the center
of the Brillouin zone. However, since most transport properties of bulk graphene
are determined by the low-energy band structure near the K points, we mention them
only in passing. A description of their inclusion in the tight-binding model can be
found in [13], and the presence of these bands within first-principles calculations are
discussed in Section 7.

1.2. Massless Dirac fermions

We now describe how the tight-binding model discussed in the previous section yields
the famous massless Dirac fermions which have made the study of monolayer

Figure 2. (a) Energy dispersion relation for graphene, drawn in the entire region of the
Brillouin zone. Since we ignore the coupling between the graphene sheets, the bands depend
only on kx and ky. The � band is completely filled and meets the totally empty �* band
at the K points. Near these points both bands have linear dispersion as described in the text.
(b) The dispersion along the high-symmetry points �MK.
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graphene so enticing. In this Section, we give a brief overview of the main points:

detailed discussion of these results will be given where appropriate in the rest of this

review. As noted above, the Fermi energy corresponds to E ¼ 0 at the K points.

The low-energy properties, corresponding to the electronic states near the Fermi

energy, can be described by expanding the energy dispersion around the K points.

Writing the graphene wave vector ~q ¼ ~Kþ ~k, such that j ~kja� 1, one can write a

Taylor expansion of E�ð~qÞ near ~K which yields

E�ð
~kÞ ¼ �

ffiffiffi
3
p

2
�0ak ¼ �vF�hk,

where vF ¼
ffiffiffi
3
p
�0a=2�h � 106 ms�1 is the Fermi velocity. This velocity is independent

of the carrier density, therefore the energy dispersion corresponds to two cones

meeting at the K point (see the inset to Figure 2a) with linear dependence on the

wave vector. The corresponding density of states is

�ðEÞ / jEj,

i.e. the density of states is linear and vanishes at zero energy. This is a direct

consequence of the linear dispersion near K, in marked contrast to conventional

two-dimensional electron gas, where the density of states is a constant.
The unique band structure of graphene just described, brings about profound

changes in the electronic properties of the system. In the continuum limit and in the

effective-mass approximation, the Hamiltonian in the vicinity of the K point is [15]

HKð
~kÞ ¼ �hvF

0 kx � iky

kx þ iky 0

� �
¼ �hvF ~� �

~k ¼ �HT
K0 ð
~kÞ, ð2Þ

where the ~� ¼ ð�x, �yÞ is a vector of Pauli matrices. The Hamiltonian therefore

describes two-dimensional massless neutrinos [15] with a linear energy dispersion,

E�(k)¼�vF�hk. The wave functions of these relativistic-like (Dirac) particles have

a spinor structure. For the K and K0 points, they are (without normalization)

�K

s, ~k
¼ ei

~k�~r s
ei� ~k

� �
; �K0

s, ~k
¼ ei

~k�~r ei� ~k

s

� �
, ð3Þ

where s¼þ1 for the upper band (electrons) and �1 for the lower band (holes),

tan � ~k ¼ ky=kx. The upper and lower terms correspond to the quantum mechanical

amplitudes (or pseudospin) of finding the particle on one of the two sublattices,

A and B. There is a convenient alternative representation of the graphene

Hamiltonian which allows the Hamiltonians of the two valleys to be combined

into one expression. The basis is written as {�A, �B} in the K valley with index �¼ 1,

and {�B, �A} in the K0 valley with �¼�1. Then, the Hamiltonian and wave functions

for either valley can be written as the 2	 2 matrix

H�ð
~kÞ ¼ ��hvF

0 kx � iky
kx þ iky 0

� �
; ��

s, ~k
¼ ei

~k�~r �s
ei� ~k

� �
: ð4Þ

Interestingly, in graphene, the pseudospin direction is associated with the

momentum of the particles. This means that the wave functions in the vicinity of the
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K and K0 points (Dirac points) are chiral, or helical fermions. One consequence
of this is that any backscattering, i.e. scattering of particles from the wave vector ~k to
� ~k; is suppressed [16]. Particles have opposite chirality in the K or K0 valleys or
in the electron or hole bands. The energy bands in the vicinity of these Dirac points
are two cones meeting at k¼ 0 (Figure 3). The charge carriers in graphene are usually
described as massless Dirac fermions [17]. Experimental observation of full Dirac
cone dispersion has been reported recently [18]. The transformation of electrons
in graphene to relativistic-like objects have led to many novel effects: anomalous
integer quantum Hall effect, Klein’s paradox, novel effects at the edges, etc. They are
all subjects of our present review.

1.3. How it’s made

Monolayer, bilayer and few-layer graphenes1 are primarily fabricated in one of three
ways. Although this review will focus on the theoretical study of graphene, we shall
briefly describe these methods here.2

The first method is the mechanical exfoliation of single layers from a bulk
graphite sample [21,22]. Due to its weakly-bound layered structure, dry cleaving
of highly oriented pyrolytic graphite or single graphite crystals has been very
successfully utilized by Novoselov et al. to synthesize single-, double- and triple-layer
flakes up to 10 mm in size. This technique (also called the Scotch tape method)
involves peeling flakes from bulk graphite using adhesive tape [21], or cleavage
by mechanical rubbing [22]. The number of layers in the resulting flakes can be
determined by optical spectroscopy and Raman spectroscopy [23] (Section 3.1).
The technical details about the preparation and characterization can be found in the
excellent review article by the pioneers of this technique [1]. Mechanically exfoliated
graphene flakes were important in determining most of the fundamental properties
of Dirac fermions that are expected in an isolated graphene plane.

Exfoliated graphene can be processed to create samples of suspended graphene
[24–26] where the monolayer flake is not in contact with a substrate. These samples
can be created either by placing a metal grid on top of exfoliated graphene [24] or
by depositing metallic electrodes [25,26] before etching away the silicon dioxide

Figure 3. Dirac cones at the Dirac points.
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substrate from below the graphene. The measured electron mobility is as large
as 185,000 cm2V�1 s�1 at 100K [26] and 230,000 cm2V�1 s�1 at 5K [25]. This is
approximately a factor of 10 higher than the largest reported mobility in exfoliated
graphene, and matches predictions based on the measurement of phonon-induced
disorder and extrapolation from transport measurements on exfoliated graphene
samples [27].

The other main route to fabricate graphene samples has been developed by
de Heer et al. [28–31]. In this method, hexagonal silicon carbide crystals are heated
to approximately 1300�C in ultra-high vacuumwhich allows the Si atoms to evaporate
from the surface leaving behind a purely graphitic film. The properties of the residual
film vary depending on which face of the SiC crystal is used in the procedure. If the
SiC(0001) (silicon-terminated) face is used, high-quality graphene films are deposited
which show Dirac cones in their low-energy band structure, although interaction
between the graphene and the substrate induces n-type doping which shifts the
Fermi energy above the Dirac point. Experimental data suggests that the graphene is
covalently bound to the substrate via a buffer layer [32] which does not show
graphene-like � bands due to the additional strain caused by a dilated C–C bond
length in this layer [33]. In contrast, when the SiC(000�1) (carbon-terminated) face is
used, the graphene is not seperated by a buffer layer, but is bound directly to the
substrate by weak dispersion forces. Also, multi-layer graphenes grown on this face
still exhibit the monolayer-like linear low-energy dispersion because the layers
show rotational disorder which minimizes the interactions between them.
Magnetospectroscopy of few-layer carbon-face epitaxial graphene [34] also showed
the Landau level dispersion characteristic of graphene monolayers. It has been
suggested that the interaction between the graphene and the SiC(0001) substrate is not
the same for the two sites in the graphene unit cell [35]. This has the effect of opening
a band gap at the Dirac points of
0.26 eV, although this is still controversial as other
authors [33,36] claim that many-body effects are the cause of this gap.

Lastly, chemical vapor deposition can be utilized to grow thin graphite films
[37,38], and graphene layers [39] which may be patterned and transferred to
semiconducting or insulating substrates. In this method [40], hydrocarbon gas is
placed near a metal foil surface where the hydrocarbon molecules can be decomposed
and carbon atoms are dissolved into the metal. The foil is then allowed to cool
(at a predetermined rate) and a carbon film may be formed on the surface. This film
can be transferred to a polymer or semiconducting substrate via chemical etching [39].
Graphene monolayers grown in this way can be fully coherent over step edges in the
underlying substrate and contain few defects [41,42]. The large size of flakes
produced and accompanying high mobility (
4000 cm�2V�1 s�1) make chemical
vapor deposition a very promising avenue for the future industrial fabrication of
graphene devices.

1.4. Graphene devices

The relatively short life of experimental research in graphene has limited the number
of proposals for devices which might utilize this material. We briefly introduce some
device concepts which have been implemented experimentally.
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Obviously, the first concept is that of the graphene field effect transistor (FET),
but as this is discussed elsewhere in this review, we do not dwell on it now. A
comprehensive report on the current state of graphene transitor devices has been
written by Lemme [43]. However, two variants do deserve to be mentioned, and they
are the high-frequency performance of graphene FETs, and single-electron transis-
tors (SETs). Lin et al. [44] demonstrate that a graphene transistor with a gate length
of 150 nm may have peak cutoff frequency of 26 GHz, representing a significant step
towards utilizing graphene in high-frequency applications, although the authors
found the regular 1/f behavior of the gain, suggesting that graphene cannot change
the operational paradigm of these devices. Other works on high-frequency FETs
have been published by Meric et al. [45] and Moon et al. [46]. Also, Stampfer et al.
[47] fabricated a fully-tunable single electron transistor from a monolayer graphene
nanoribbon and extracted device characteristics from the observed Coulomb
diamonds. Additionally, room-temperature spin transport has been measured
through graphene transistors [48], with spin polarization to be approximately 10%.

The adsorption of gas molecules on the surface of a graphene flake changes the
Hall resistivity, and this effect has been used to develop graphene-based chemical
sensors [49]. Micrometer-sized sensors were fabricated which were sensitive to the
attaching or detaching of a single gas molecule, producing step-like changes
in the resistance. The high sensitivity is a result of the impact of the adsorption on the
electronic properties of the graphene flake, which is discussed in detail in Section 8.2.

The mechanical properties of graphene may also be employed in the creation of
devices. For example, Bunch et al. [50] have created the ‘world’s thinnest balloon’
and claim that it is impermeable to gases. They suggest that this property may be
utilized in membrane sensors for pressure changes in small volumes, as selective
barriers for filtration of gases, as a platform for imaging of graphene-fluid interfaces
and for providing a physical barrier between two phases of matter. Similarly,
Stolyarova et al. [51] demonstrated that gaseous bubbles can be trapped between a
graphene monolayer and the surface of an SiO2 substrate, and subsequently
manipulated by an AFM tip. This has the potential to be applied in ‘lab-on-a-chip’
devices.

Graphene may also be used as a novel information storage device, as suggested
by Standley et al. [52]. Retention times of over 24 h, and operation over many
thousands of cycles without significant degradation of the device were reported.
Finally, the high transparency, large conductivity, high chemical and thermal
stability and good flexibility make ‘graphene window devices’ [53] a natural
candidate for solar cells and other next-generation optoelectronic devices. Blake
et al. [54] argued that graphene, with its low resistivity, high transparency and
chemical stability would offer improved durability and simpler technology for future
optoelectronic devices.

The properties of graphene are so fascinating that there are reports of attempts
to recreate many of those exotic properties in a high-mobility modulated two-
dimensional electron gas confined in an AlGaAs/GaAs quantum well [55]. The
electronic dispersion in this hexagonal superlattice is expected to be Dirac-like
with the pseudospin degree of freedom. Creation of such artificially engineered
systems has the obvious advantages over natural graphene because of the possibility
to tune the parameters. This would provide unique opportunities to study
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Dirac-fermion physics in a conventional two-dimensional electron gas confined in
semiconductor systems nanopatterned with honeycomb geometry.

The physics of graphene is a challenging and fascinating subject at the nanoscale.
Its impact is already felt both in fundamental scientific research and potential
industrial applications. From Dirac electrons in condensed matter to future
‘valleytronics’ in graphene nanodevices, graphene has unleashed limitless potential
to impact our lives as we look through the magical quantum world at the nanoscale,
a world that is not much different from an Alice-in-Wonderland world that plays by
its own rules.3 We are yet to completely understand most of those rules, but we hope
that this review will help understand some.

2. Graphene in a magnetic field

2.1. Landau levels in graphene

Just as for non-relativistic particles, the motion of relativistic charges in graphene in
a strong perpendicular magnetic field is quantized, which results in discrete energy
levels (Landau levels). In a conventional electron gas (non-relativistic) Landau
quantization produces equidistant energy levels, which is due to the parabolic
dispersion law of free electrons. In graphene the electrons have relativistic dispersion
law, which strongly modifies the Landau quantization of the energy levels and the
positions of the levels.

The Landau quantization of the energy levels in graphene in a perpendicular
magnetic field has been studied [11] within the tight-binding model [56,57] and within
the effective-mass relativistic model [15,58]. The tight-binding approach is the more
fundamental one and it is valid for a wider energy range. In many applications of
graphene in a magnetic field only the low-energy processes are important, which can
be efficiently described within the effective-mass approximation.

The effective-mass Hamiltonian of a single electron in graphene in a uniform
perpendicular magnetic field has a form of a 4	 4 matrix [15,58]

HDirac ¼ vF

0 �x � i�y 0 0

�x þ i�y 0 0 0

0 0 0 �x þ i�y
0 0 �x � i�y 0

0
BB@

1
CCA, ð5Þ

where ~� ¼ ~pþ e ~A is the generalized momentum and ~A is the vector potential.
In the above expression we disregard the spin of the electron, taking into account
the fact that all energy levels obtained will have additional twofold degeneracy due to
spin. For a single electron this degeneracy can be lifted by the Zeeman interaction.

The four-component wave functions corresponding to the Hamiltonian (5) have
the form

� ¼

�K
A

�K
B

�K0

A

�K0

B

0
BBB@

1
CCCA, ð6Þ
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where �K
A and �K

B are envelope wavefunctions at A and B sites for the valley K,

and �K0

A and �K0

B are envelope wavefunctions at A and B sites for the valley K0. For a

magnetic field orthogonal to the graphene layer, the vector potential can be chosen

in the Landau gauge, ~A ¼ ð0,BxÞ. Then the eigenfunctions of the Hamiltonian (5)

are labelled by (j, n, k). Here j¼K, K0 is the valley index, which describes the valley

pseudospin, n¼ 0, �1, �2, �3, . . . is the Landau level index and k is the wave vector

along the y axis. If we take into account the electron spin then we need to multiply

the wavefunction (6) by the two-component spin function.
The Hamiltonian (5) can be easily diagonalized, which results in the discrete

Landau energy level. The energies of the Landau levels depend only on the index n

and have the following form:

"n ¼ �h!Dirac
B sgnðnÞ

ffiffiffiffiffiffi
jnj

p
, ð7Þ

where !Dirac
B ¼

ffiffiffi
2
p

vF=lB and lB ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB
p

is the magnetic length. The Landau level

index, n, can be positive or negative. The positive values correspond to electrons

(conduction band), while the negative values correspond to holes (valence band).

This expression shows that, in contrast to the case of conventional 2DES, the

Landau levels in graphene are not equidistant and the largest energy separation

is between the zero and the first Landau level. The typical energy separation between

the Landau levels in graphene achieved in experiments is much larger than the

corresponding inter-level separation in normal 2D layers. For example, the energy

difference between the lowest Landau levels (n¼ 0) and the next Landau levels

(n¼�1) is DE� 400K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðTeslaÞ

p
, which for B¼ 20 Tesla is 1800K. In what follows,

we will see that such a large electron energy gap allows one to observe the quantum

Hall effect in graphene, even at room temperature.
The wavefunctions corresponding to the Landau levels (7) are given by the

following expressions [15,58]:

�K
n,k ¼

Cnffiffiffiffi
L
p expð�ikyÞ

sgnðnÞð�iÞ�jnj�1,k

�jnj,k

0

0

0
BBBBB@

1
CCCCCA, ð8Þ

for valley K and

�K0

n,k ¼
Cnffiffiffiffi
L
p expð�ikyÞ

0

0

�jnj,k

sgnðnÞð�iÞ�jnj�1,k

0
BBBBBB@

1
CCCCCCA
, ð9Þ

for valley K0. Here Cn¼ 1 for n¼ 0, and Cn ¼ 1=
ffiffiffi
2
p

for n 6¼ 0,

�n,k ¼ ð2
nn!

ffiffiffi
�
p

lBÞ
�1

2e�z
2=2Hn½ðx� kl2BÞ=lB� ð10Þ
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is the standard wavefunction for a non-relativistic electron at the nth Landau level,

Hn(x) are the Hermite polynomials, and

sgnðnÞ ¼
0 ðn ¼ 0Þ,

n=jnj ðn 6¼ 0Þ:

	
ð11Þ

In terms of the occupation of the sublattices A and B, the wavefunctions (8,9)

have an interesting property. Specifically, the wavefunctions at Landau levels n 6¼ 0

always have non-zero amplitudes on both sublattices A and B, while the

wavefunctions at the Landau level n¼ 0 have non-zero amplitude only on one

sublattice: B sublattice for valley K or A sublattice for valley K0. This property of the

wavefunctions of the Landau levels in graphene makes the n¼ 0 Landau level very

special for different magnetic applications of graphene.
Taking into account the spin degree of freedom, we can conclude that each

Landau level has fourfold degeneracy, which corresponds to twofold degeneracy due

to spin and twofold degeneracy due to the valley, i.e. the flavor [59], or valley

pseudospin [60]. The above description is a single-electron picture of pure graphene.

In a many-electron system of real graphene the inter-electron interactions and

disorder are important and can introduce splitting of the levels and lift their

degeneracy. These topics will be discussed below.
In the presence of an uniform electric field, Lukose et al. [61] predicted that the

Landau levels are profoundly modified, leading to a collapse of the spectrum when

the value of the electric to magnetic field ratio exceeds a certain critical value.
Experimentally, the Landau levels in graphene have been observed by measuring

cyclotron resonances of the electrons and holes in infrared spectroscopy experiments

[34,62,63], and by measuring tunneling current in scanning tunneling spectroscopy

experiments [64–66]. In infrared spectroscopy experiments the Landau level optical

transitions were studied. There is a crucial difference between the Landau level

optical transitions for non-relativistic electrons in conventional 2DES and relativistic

electrons in graphene. For non-relativistic electrons there is the Kohn theorem,

which states that the energy of Landau level transitions is equal to the cyclotron

energy, regardless of the number of electrons (i.e. the filling factor of the Landau

levels), and uninfluenced by the inter-electron interactions. The frequencies of all

optical transitions in non-relativistic system are equal to the cyclotron frequency.

In the graphene system the Kohn theorem [67] is not applicable. In this case, the

frequencies of optical transitions are influenced by the interaction between electrons

and the number of electrons, i.e. the filling factor. Since the Landau levels in

graphene are not equidistant, all frequencies of optical transitions in graphene are

different from each other. The cyclotron optical transitions in a graphene system are

of two types: (i) intraband transitions, i.e. transitions between the electron (hole)

states; (ii) interband optical transitions, i.e. transitions between the electron and hole

states (conduction and valence bands). Since in graphene both conduction and

valence bands have the same symmetry, the optical transition selection rule has the

same form for both intra- and inter-band transition, and is given by the relation [63]

Dn ¼ jn2j � jn1j ¼ �1: ð12Þ
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For example, the allowed optical transitions (absorption) from the Landau level
n¼�1 are n¼�1! n¼ 0 (intra-band transition) and n¼�1! n¼þ2 (inter-band
transition). In usual non-relativistic systems the selection rule for inter-band optical
transitions is n1¼ n2.

In scanning tunnelling spectroscopy experiments, the Landau levels are directly
observed as the pronounced peaks in the tunnelling spectra [64–66]. From the
positions of these peaks the energy of the Landau levels are directly extracted. In
Figure 4, typical experimental results of scanning tunneling measurements are
shown, where the peaks in the tunneling differential conductance reveal the positions
of the Landau levels.

From the experimentally measured cyclotron resonances, the electron Fermi
velocity has been obtained [34,62–66]. The electron velocity vF� 1.1	 106ms�1 was
obtained in [34,62–64], but a smaller value vF� 0.79	 106ms�1 was reported in [65].
The reduction of vF in [65] was attributed to electron–phonon interaction due to
strong coupling with the graphite substrate.

The effective-mass approximation of the electron dynamics in graphene in a
uniform magnetic field is valid only at low energies, i.e. for low-lying Landau levels.
The properties of higher Landau levels can be described within the tight-
binding model [56,57]. The Hamiltonian of the tight-binding model has the following
form:

Htight-binding ¼
X

"ic
y

i ci þ
X
5i,j4

tijc
y

i cj, ð13Þ

Figure 4. Direct measurement of Landau quantization in epitaxial graphene. Data points
show the tunnelling differential conductance spectra versus sample bias of Landau levels
in multilayer graphene at B¼ 5 Tesla. Landau level indices are marked. The grey line shows
a fit to a series of Voigt line shapes at the Landau level peak positions. Inset: Landau
level peak position versus square root of Landau level index and applied field from the
peak position in A. Errors in peak positions are smaller than the symbol size (Reprinted figure
with permission from D.L. Miller et al., Science, 324, p. 924, 2009 [64]. Copyright � (2009)
The American Association for Advancement of Science.).
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where ci is the electron annihilation operator. The magnetic field in the tight-binding

model is incorporated through the Peierls substitution

cyi cj! cyi cj exp

Z j

i

~Ad~r

� �
: ð14Þ

The Landau levels within the tight-binding model have been obtained numerically

[56,57]. The results of the calculations show that the effective-mass approximation is

valid at low energies, "9 1 eV, but at higher energies there are deviations from

Equation (7). For example, at B¼ 30 Tesla the deviation from Equation (7) occurs at

the Landau level n¼ 5 (Figure 5). At high energies the magnetic field also affects

the degeneracy of the levels [57]. For example, at energies "0 2.5 eV the valley

degeneracy is lifted, resulting in twofold (spin only) degeneracy of the Landau levels.
The non-linear features of the energy dispersion law in graphene have been

studied experimentally by magneto-optical transmission spectroscopy [68]. The

graphene system has been studied in magnetic fields up to 32 Tesla and within the

energy range from the far infrared to the visible. It was found that the low-energy

part of the energy spectrum is well described by the linear relativistic equation, while

at energies higher than 0.5 eV the deviation from the linear dispersion was observed.

For example, at the highest studied energy of 1.25 eV, the deviation from the linear

dispersion is around 40 meV.
The parameter which controls the magnetoelectronic properties of graphene

within the tight-binding model is the magnetic flux passing through a hexagonal ring

of the graphene lattice [69]. As a function of this flux the energy dispersion, the

density of states, and magnetoabsorption spectra all have the oscillating behavior

[69]. The lattice model of graphene in a magnetic field, introduced beyond the Peierls

substitute, was studied in [70,71]. Taking into account the higher order magnetic

terms, i.e. the diamagnetic shift and shrinkage of the wave functions, in the lattice

Hamiltonian these authors found lifting of two-fold degeneracy of the lowest Landau

levels in high magnetic fields.

Figure 5. The variation of the low Landau-level energies with square root of magnetic
field. The Landau-level energy are obtained within the effective-mass approximation
(solid lines) and tight-binding model (symbols). Magnetic field is in Tesla (T) (Reprinted
from Physica E, 40, J.H. Ho et al., Landau levels in graphene, 1722–1725 [57]. Copyright �
(2008), with permission from Elsevier.).
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2.2. Anomalous quantum Hall effect

2.2.1. Experimental observation of the quantum Hall effect in graphene

Just as for the conventional non-relativistic electron systems [72,73], the Landau
quantization of the energy levels in graphene results in the quantization of the Hall
conductance, i.e. the quantum Hall effect. In the quantum Hall effect regime, the
Hall conductance exhibits a plateau when the Fermi energy, EF, falls between the
Landau levels. Every time the Fermi energy crosses a Landau level, the Hall
conductance, �xy, jumps by an amount of gs e

2/h, where gs is the degeneracy of the
Landau level. In graphene, each Landau level has fourfold degeneracy due to valley
and spin, i.e. gs¼ 4. Based on this simple picture of the quantum Hall effect,
we expect that the Hall conductance in graphene should show plateaus at �xy¼
(4e2/h)N, where N is an integer. It so happens that the unique properties of the lowest
Landau level (n¼ 0) introduces a shift in quantization of the Hall conductance. This
shift is related to the electron–hole symmetry of the graphene layer. The Landau level
with n¼ 0 is robust, i.e. it has zero energy regardless of the value of the magnetic
field, and it has the properties of both electrons and holes. This quantum anomaly
of the n¼ 0 Landau level makes this level effectively twofold degenerate for electrons
and twofold degenerate for holes [74]. As a result, the quantization of the Hall
conductance occurs at half-integer values

�xy ¼ ð4e
2=hÞ Nþ

1

2

� �
: ð15Þ

The half-integer (or anomalous) quantum Hall effect corresponds to the filling
factors 	 ¼ 4ðNþ 1

2Þ ¼ �2, � 6, � 10, . . .. This sequence of filling factors is different
from that of the conventional semiconductor quantum Hall effect (where the
plateaus are at 	¼�4, �8, �12, . . .) and this anomalous behavior gives the
phenomenon its name (see, e.g. [75]). This quantization rule can be derived from
the Kubo formalism [76–79] applied to relativistic electrons in graphene [74,80–82].
The half-integer quantum Hall effect has been observed experimentally [17,83–85].
The typical experimental results for the magnetoresistance and Hall resistance are
shown in Figure 6. The Hall resistance shows plateaus at filling factors 	 ¼ 4ðNþ 1

2Þ,
while the magnetoresistance vanishes. A good quality sample studied in [85]
(mobility of electrons was higher than 104 cm2V�1 s�1) allows one to observe
plateaus at large filling factors. The quantum Hall effect is clearly seen at filling
factors 	¼�2 and 	¼�6. A developing plateau at 	¼ 10 is also visible.

An important breakthrough has occured recently. The quantum Hall effect
has been observed in epitaxial graphene layers grown on silicon carbide [86,87],
thus illustrating the similarity of fundamental electronic properties of epitaxial and
exfoliated graphene films. The growth conditions and electrical characteristics of
epitaxial graphene films strongly depend on the type of the face of SiC. The growth
of graphene on the C-face is rapid and results in graphene films with high mobility
around 20,000 cm2V�1s�1 [86]. The formation of graphene films on the Si-face is
slower and can be easily controlled, but the mobility of the carrier is much smaller
with the typical value around 1500 cm2V�1 s�1. For the high-mobility epitaxial
graphene on the C-face, the quantum Hall plateaus corresponding to filling factors
	¼ 2, 6, 10, and 14 have been observed [86]. For low-mobility epitaxial graphene
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grown on the Si-face, only the lowest quantum Hall effect with filling factors 	¼ 2, 6,
and 10 have been reported [87]. These results bring epitaxial graphene a step closer
to becoming a scalable platform for graphene-based electronics.

One important difference between the quantum Hall effect in graphene and that
in usual non-relativistic systems is that the quantum Hall effect in graphene survives
even at room temperature [83,84,88]. The reason for such robust behavior of the
quantum Hall states is the large activation energy, i.e. the cyclotron energy. For
example, at B¼ 45 Tesla the energy gap is 2800K, which exceeds the thermal energy
at room temperature by a factor of 10. The quantum Hall effect has been observed at
room temperatures even in a sample with low mobility, 
¼ 4000 cm2V�1 s�1 [83].
These properties of the quantum Hall effect in graphene are in stark contrast to what
we have seen in non-relativistic systems, where the quantum Hall effect can be
realized only at low temperatures and in samples with high electron mobility.

In [89,90] the activation energies of the quantum Hall states have been extracted
from the Arrhenius plots (temperature dependence). The excitation gaps for 	¼�2
and 	¼ 6 quantum Hall states have been analyzed. The excitation gaps are affected
by the Landau level broadening, which depends on the magnetic field and the
strength of the disorder. Without any Landau level broadening the excitation gaps
are equal to the energy gaps between the nearest sharp Landau levels. The
broadening of the Landau levels introduces a constant offset of the excitation gaps
from the theoretical value for the sharp Landau levels (Figure 7). For the quantum
Hall state at 	¼ 6, the experimental results are consistent with the picture of broad
Landau levels with the broadening around 400 K. The 	¼�2 gap, however, behaves
totally differently. For example, at a high magnetic field the 	¼�2 gap, approaches
the bare Landau-level separation. This behavior can only be explained by the unique
nature of the n¼ 0 Landau level: with increasing magnetic field the n¼ 0 Landau
level becomes very sharp. The density of states, which illustrates the sharp nature of
the n¼ 0 Landau level, is shown schematically in Figure 7.

Figure 6. Hall resistance (Rxy) and magnetoresistance (Rxx) versus the magnetic field at
T¼ 30mK. The vertical arrows and the numbers on them indicate the values of the
corresponding filling factor, 	, of the quantum Hall state. The horizontal lines correspond to
h/e2	 values. The inset shows the quantum Hall effect for a hole gas, measured at 1.6K
(Reprinted with permission from Y. Zhang et al., Nature, 438, p. 201, 2005 [85]. Copyright �
(2005) Nature Publishing Group.).
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At large magnetic fields, B4 20 Tesla, and in high-mobility samples (mobility as
high as 5	 104 cm2 V�1s�1), new quantum Hall plateaus at filling factors 	¼ 0, �1,
�4 have been reported in the literature [86,91,92]. The new quantum Hall plateaus
are shown in Figure 8 with clear quantization of the Hall resistance and vanishing

Figure 7. Energy gap between two Landau levels as a function of magnetic field for 	¼ 2 (full
triangles), 	¼�2 (open circles), and 	¼ 6 (full squares) as deduced from the Arrhenius plots.
The dashed and dotted lines are the expected (theoretically) energy gaps for sharp Landau
levels. The inset shows schematically the density of states for a sharp n¼ 0 Landau level and
broadened higher Landau levels for electrons and holes at 30 Tesla. The form and width of the
higher Landau levels were extracted from the experimental data. Extended states are
represented by the white areas, localized states by the dashed areas (Reprinted figure with
permission from A.J.M. Giesben et al., Physical Review Letters, 99, 206803, 2007 [89].
Copyright � (2007) by the American Physical Society.).

Figure 8. Rxx and Rxy measured in the device shown in the left inset, as a function of gate
voltage,Vg, atB¼ 45 T andT¼ 1.4K.�Rxy is plotted forVg4 0. The numbers with the vertical
arrows indicate the corresponding filling factor, 	. Gray arrows indicate developing quantum
Hall states at 	¼�3. ns is the sheet carrier density derived from the geometric consideration.
Right inset: Rxx and Rxy or another device measured at B¼ 30 T and T¼ 1.4 K in the region
close to theDirac point. Left inset: an optical microscope image of a graphene device used in this
experiment (Reprinted figure with permission from Y. Zhang et al., Physical Review Letters,
96, 136806, 2006 [92]. Copyright � (2006) by the American Physical Society.).
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magnetoresistance. Such plateaus originate from lifting of the fourfold degeneracy
of the Landau levels. The quantum Hall effect at 	¼ 0, �1 indicates that the fourfold
degeneracy of the Landau level n¼ 0 is completely lifted [86,91,92], so that the Hall
conductance, �xy, increases in steps of e2/h as the Fermi level passes through the
Landau levels. The fact that only 	¼�4 quantum Hall plateaus are observed means
that the fourfold degeneracy of the Landau levels n¼�1 is only partially resolved.
The experiments in a tilted magnetic field [86,92] show that for the Landau level n¼ 1
the twofold spin degeneracy is lifted, leaving the twofold valley degeneracy
unbroken.

To distinguish the origin of the broken symmetry (either spin or valley),
experiments in a tilted magnetic field have been performed [91]. The spin splitting,
which is related to the Zeeman energy, depends on the total magnetic field, while the
valley (sublattice) splitting depends only on the perpendicular component of the
magnetic field. This is because the valley splitting is caused by the electron–electron
interaction and the corresponding ground state is the valley ferromagnet (see the next
section). The results of magnetotransport measurements show that the minimum
magnetoresistance, which is determined by the inter-level splitting, depends on the
total magnetic field for 	¼�4, and depends on the perpendicular component of the
magnetic field for 	¼�1 [91]. These results show that the states 	¼ 0 and 	¼�1
arise from the lifting of the spin and valley degeneracy of the Landau level n¼ 0,
respectively [91]. The order of the lifting of the degeneracy of the Landau levels n¼ 0
and n¼�1 in graphene is illustrated in Figure 9.

Although the behavior of the Hall conductance, �xy, is consistent with the lifting
of the degeneracy of the Landau level n¼ 0, the properties of the magnetoresistance,
Rxx, are unexpected. For the usual quantum Hall effect in non-relativistic systems
the magnetoresistance, Rxx, shows a minimum at the quantum Hall plateaus and
activated behavior as a function of temperature. Such a behavior is observed in
graphene for 	¼�1 Hall states, but the 	¼ 0 Hall state does not show the minimum
resistance [91]. There is also no activated behavior at 	¼ 0. In Figure 10 the
magnetoresistance of a graphene sample is shown for three values of magnetic field.

Figure 9. Schematic illustration of the hierarchy of the lifting the degeneracy of the Landau
levels in strong magnetic fields. Here n is the Landau level index and 	 describes the
corresponding quantum Hall effect. The arrows next to the lines illustrate the direction of the
spin at the corresponding energy levels. The fourfold degeneracy of the Landau level n¼ 0
is completely lifted. For the n¼�1 Landau levels only the twofold spin degeneracy is lifted
and each level remains twofold valley degenerate.
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The magnetoresistance maximum (not minimum) is clearly seen at zero filling factor
(zero bias).

The 	¼�1 are the usual quantum Hall states with a minimum resistance and
activation behavior. The activation energy at 	¼�1 has a non-linear magnetic field
dependence, which was attributed to the many-body effects indicating a many-body
origin of the 	¼�1 states [91].

A detailed analysis of the 	¼ 0 quantum Hall state has shown that this state can
be in two phases: metallic or insulating, which are characterized by finite and
infinitely large values of the magnetoresistance, Rxx [93,94], respectively. The
transition from the metallic to the insulating phase occurs with increasing magnetic
field at some critical value Bc. In all samples studied in [94] the critical magnetic field
is around Bc� 30 Tesla. The actual value of the critical magnetic field depends on the
disorder strength in a non-trivial way, namely, with increasing disorder the critical
magnetic field increases [94]. The phase transition of the 	¼ 0 quantum Hall state
was identified as the Berezinskii–Kosterlitz–Thouless phase transition, for which the
magnetic field plays the role of the effective temperature. In two-dimensional systems

Figure 10. The magnetoresistance Rxx (a) and Hall conductivity �xy (b) versus gate voltage,
V0g, at 0.3K with the magnetic field fixed at 8, 11, and 14T. Peaks of Rxx at finite gate voltage
correspond to the filling of the n¼ 1 and n¼ 2 Landau levels. At zero bias voltage the peak
in Rxx grows to 190 k� at 14 Tesla. The inset shows the sample with Au leads deposited.
The bar indicate 5mm. Panel (b) shows the quantization of Hall conductance at the values
ð4e2=hÞðnþ 1

2Þ. At 0.3K, �xy¼ 0 in a 2-V interval around V 0g ¼ 0 (Reprinted figure with
permission from J.G. Checkelsky et al., Physical Review Letters, 100, 206801, 2008 [93].
Copyright � (2008) by the American Physical Society.).
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such a transition is described by the XY model. Within this model the ordered phase

is destroyed at the transition point by unbinding of pairs of topological excitations,

the corresponding separation (correlation length), �, depends on the deviation of the

magnetic field (effective temperature) from the critical value in the following form:

� ¼ a exp½b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B=Bc

p
�, ð16Þ

where a is the lattice constant and b is a number of the order 1. The expression (16)

fits the experimental data [94], which indicates that at 	¼ 0 the system shows the

Berezinskii–Kosterlitz–Thouless phase transition to a high-field insulating ordered

state.
Recent experiments performed in ultraclean suspended graphene samples [95,96]

illustrate an insulating nature of the 	¼ 0 quantum Hall state. The device is fully

insulating at high magnetic fields (B4 5 Tesla) and at low temperature (T5 10K),

while at higher temperature the system shows an activated behavior with an energy

of 60K [96]. The distinctive features of the suspended graphene compared to the

graphene on substrate are very high quality of graphene samples and enhanced inter-

electron interaction strength. The enhancement of the electron–electron interactions

is due to the small value of dielectric constant (�¼ 1) of suspended graphene.
A strong increase in low-temperature resistivity, �xx, in graphene samples with a

relatively large amount of disorder have been observed in [97]. In terms of the

conductivity, the graphene system at the charge neutrality point has shown a zero-

value plateau in the Hall conductivity, �xy, and a minimum in the longitudinal

conductivity, �xx. Such a behavior was explained in [97] as due to opening of a gap,

e.g. due to the Zeeman splitting, in the density of states at the n¼ 0 Landau level.

Due to the presence of large disorder, the opening of the gap was observed only for

the n¼ 0 Landau level, for which the width of the Landau level is much smaller

compared to that in higher Landau levels.

2.2.2. Symmetry breaking: theoretical models

Experimental observation of the 	¼ 0, �1, �4 quantum Hall effect opens the

question of a mechanism of a symmetry breaking in graphene, which results in lifting

of the degeneracy of the Landau levels and the additional quantum Hall plateau. The

problem of symmetry breaking in graphene systems in a magnetic field has been

studied theoretically in detail [59,75,98–111]. A review of the different aspects of

spontaneous symmetry breaking in graphene is available in [107]. Here we discuss

only the main mechanisms of symmetry breaking and lifting of the Landau level

degeneracy in graphene. In general, the following mechanisms can break the

symmetry in graphene quantum Hall systems: (i) disorder can lift the twofold valley

degeneracy. (ii) Electron–electron interactions can lift both valley and spin

degeneracies. For example, the exchange part of the electron–electron interaction

favors the quantum Hall ferromagnetic state. (iii) Zeeman interaction, which is an

explicit symmetry breaking term in the Hamiltonian. The Zeeman interaction can lift

only the spin degeneracy. (iv) Explicit terms in the Hamiltonian, which can lift the

valley symmetry. These terms originate from the graphene lattice structure.
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2.2.3. Symmetry breaking: disorder effects

Within the noninteracting electron system the main mechanism of symmetry

breaking is the interaction with the disorder potential, which introduces the inter-

valley coupling and splits the valley subbands. Such a potential should be short-

ranged with the length scale of the order of the lattice constant [75,105]. An example

of a short-range potential is a scatterer localized at a particular A or B site with a

random amplitude. Such a potential introduces the following term into the

relativistic Hamiltonian (5)

UðrÞ ¼

1 0 z�Az
0
A 0

0 0 0 0

z0�AzA 0 1 0

0 0 0 0

0
BBB@

1
CCCAus� ~r� ~RA

� �
þ

0 0 0 0

0 1 0 z�Bz
0
B

0 0 0 0

0 z0�BzB 0 1

0
BBB@

1
CCCAus� ~r� ~RB

� �
,

ð17Þ

where zX ¼ ei
~K ~RX , z0X ¼ ei

~K0 ~RX , X¼A, B and us ¼ ð
ffiffiffi
3
p

a2=2ÞUs, Us is the random

amplitude of the on-site potential. The first and second terms in Equation (17)

correspond to the scatterer on sites A and B, respectively (Figure 11).
It is easy to see that the short-range potential (17) has very different effects on

the lowest Landau level, n¼ 0, and on higher Landau levels, jnj4 0. Indeed, the

amplitudes of the wavefunctions in the n¼ 0 Landau level is non-zero only on one

Figure 11. Main panel: divergence of the maximum magnetoresistance, R0, at the Dirac point
with B at T¼ 0.3, 1.5, 5, and 27K. At 27K, the increase in R0 is quite moderate (to 190 k�
at H¼ 31 Tesla). At T¼ 0.3K, however, R0 exceeds 20 M� above 27T. The curves at 0.3 and
1.5K undergo a 1000-fold increase (40 k� to 40M�) in the narrow field interval
17� 27T. In high B, the 5K curve deviates significantly from them. The inset shows the
behavior of R0 versus B in greatly expanded scale (	100) (Reprinted figure with permission
from J.G. Checkelsky et al., Physical Review B, 79, 115434, 2009 [94]. Copyright� (2009) by the
American Physical Society.).
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of the sublattices, either A or B. As a result the intervalley matrix element of the

potential (17) is zero for the states of the lowest Landau level, n¼ 0. Therefore, if the
Landau level mixing is disregarded then the random on-site (short-range) potential
does not lift the valley degeneracy for the n¼ 0 Landau level [105]. For higher

Landau levels even the on-site potential introduces intervalley coupling, which
results in lifting of the valley degeneracy. If the Landau level mixing is taken into

account then even at the lowest Landau level, the short-range potential introduces
the intervalley coupling [75].

Disorder-induced intervalley coupling and mixture in the lowest Landau level
results also in anomalous electron localization properties [110]: increasing the

strength of the on-site random potential introduces delocalization, instead of
localization in the lowest Landau level. This anomalous behavior is closely related to
the Landau level mixing and it is correlated with the disorder-induced valley

depolarization of the Landau level states [110] due to mixing of the valleys.
In the lowest Landau level, the intervalley coupling can be introduced even

without the Landau level mixing through the randomness in the hopping intergral
between two neighboring sites [104,105,112]. Such randomness can be realized

through the local lattice distortion or due to scatterers localized between the neigh-
boring sites. The shift from t to tþ�t in the hopping integral between the neighboring

atoms at sites A and B results in the following potential term in the relativistic
Hamiltonian [105]

UðrÞ ¼

0 z�AzB 0 z�Az
0
B

z�BzA 0 z�Az
0
A 0

0 z0�AzB 0 z0�Az
0
B

z0�B zA 0 z0�B z
0
A 0

0
BB@

1
CCAuh� ~r� ~ri
 �

, ð18Þ

where uh ¼ ð
ffiffiffi
3
p

a2=2Þ�t. It is easy to see that even in the lowest Landau level the

intervalley matrix elements are non-zero.
The randomness in intervalley hopping integrals can be reformulated in terms of

an effective random magnetic field [104]. If the variations of the hopping integrals

between the site j and the nearest neighbor sites (there are three such sites) are �ti,
i¼ 1, 2, 3, then a vector potential for valleys K and K0 at point j is [104]

aX ¼
c

e

X
i¼1,2,3

�tie
i ~X~ei , ð19Þ

where X¼K or K0. Such a vector potential introduces a random magnetic field, �h,
pointing in the z direction (orthogonal to the graphene layer), which results in a

Zeeman-like interaction for the pseudospin order parameter. The typical fluctuation
of the random magnetic field is around 0.1–1 Tesla [104]. Although the weak random
magnetic field, �h, is orthogonal to the graphene plane, it produces an easy-plane

anisotropy which favors the XY valley ferromagnetic state [104]. The XY
ferromagnetic system shows the Berezinskii–Kosterlitz–Thouless transition to the

ordered state. Due to the valley anisotropy-induced random magnetic field,
the twofold valley degeneracy of the Landau level is lifted. The Zeeman energy
lifts the twofold spin degeneracy. Taking into account both the effective random
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magnetic field and the Zeeman interaction, we obtain a complete lifting of the

fourfold degeneracy of the Landau level. In the lowest Landau level the valley

anisotropy induced by the random magnetic field is around few degrees of Kelvin at

an uniform magnetic field of 30 Tesla, while the Zeeman splitting at B¼ 30 Tesla is

around 50K. This energy scale is consistent with the hierarchy of lifting the

degeneracy of the n¼ 0 Landau level, as shown in Figure 9. Therefore the 	¼ 1

quantum Hall state is valley and spin polarized while the 	¼ 0 state is spin-polarized

and valley-unpolarized.
The disorder in graphene not only results in valley symmetry breaking but also

destroys the quantum Hall effect as in non-relativistic systems. The effect of disorder

on the existence of the quantum Hall states and electron localization in a strong

magnetic field has been studied numerically within the tight-binding model with

random on-site potential [99,106,110]. The corresponding Hamiltonian has the

following form:

Htight-binding ¼
X

"ic
y

i ci þ t
X
5i,j4

cyi cj, ð20Þ

where the hopping integral t is assumed to be constant and the disorder is introduced

through the randomness in the values of the on-site energies, "i. In this approach,

the mixing between the Landau levels is taken into account automatically and the

intervalley coupling is introduced for all Landau levels. It was found that the most

robust quantum Hall state against the disorder strength is the 	¼�2 state [99] for

a system without symmetry breaking and the 	¼�1 state [106] for a system with

lifted degeneracy of the Landau levels.

2.2.4. Symmetry breaking: the effect of electron–electron interaction

The disorder potential does not affect the twofold spin degeneracy. The simplest

mechanism of breaking the spin symmetry is the Zeeman interaction, g
B B, which

splits the single particle spin levels. The g-factor of electrons in graphene is close to 2,

resulting in the Zeeman energy g
BB� 1.5B[Tesla] K. Another mechanism of

breaking the spin symmetry is related to the long-range Coulomb interaction

through the formation of the ferromagnetic state [59,98,101,103,106]. The quantum

ferromagnetic state is stabilized by the exchange part of the Coulomb interaction.

This symmetry breaking mechanism works well for both spin and valley symmetries.
In the case of the valley symmetry the Coulomb interaction Hamiltonian has also

explicit lattice symmetry-breaking terms [59,101,103]. These terms can be obtained

from the exact expression for the Coulomb repulsion Hamiltonian within the lattice

model

HS ¼
1

2

X
~x, ~x0

Vð~x� ~x0Þnxnx0 , ð21Þ

where V(r) is the Coulomb interaction potential and nx is the total electron number

operator. Rewriting the above expression in the continuum approximation, one can

                 287



obtain the following terms in the interaction Hamiltonian in a continuum theory
[59,103]:

(i) SU(4) spin and valley symmetric Hamiltonian, HS.

HS ¼
1

2

Z
d2 ~xd2 ~x0�totalð~xÞVð~x� ~x

0Þ�totalð~x
0Þ, ð22Þ

where �total is the total electron density operator.
(ii) Valley symmetry breaking term, HBS,1, is due to backscattering processes

and has the following form [59,103]:

HBS,1 ¼ �u2 JyþJþ þ Jy�J�

h i
, ð23Þ

where u2� (4/3)a2(e2/4��a0), Jþ ¼  
y

K,A K0,B and J� ¼  
y

K,B K0, A. Here

X,A and  X,B are annihilation operators for valley X¼K, K0 corresponding
to sublattices A and B, respectively.

(iii) Valley symmetry breaking term, HBS,2, reflects the lattice-scale physics
[59,103]. These terms originate from the fact that the two sublattices are
shifted with respect to each other. As a result, two electrons at the same
continuous point interact stronger if they belong to the same sublattice than
if they belong to different sublattices. This symmetry breaking term has the
following form:

HBS,2 ¼ �

Z
d2 ~x

X
~r

v1ð~rÞ�stagð~xþ ~rÞ�stagð~xÞ: ð24Þ

Here ~r corresponds to the positions of sites of one of the sublattice, �stag is the
staggered electron density between sublattices A and B [59,103] and

v1ð~rÞ ¼

ffiffiffi
3
p

a2

8
Vð~rþ 1=

ffiffiffi
3
p

ŷÞ � VðrÞ
h i

; ð25Þ

for r 6¼ 0. This symmetry breaking term is algebraically small and is of the order of
(a/lB) compared to the Coulomb energy, (e2/�lB) [59,101,103], where a is the lattice
constant in graphene. This lattice symmetry breaking term can also be understood
in terms of the analogy of the two valley system and the usual bilayer non-relativistic
electron system. Here each layer corresponds to a single valley, and the distance
between the layers is of the order of the lattice constant, a. Therefore, the asymmetry
is controlled by the small parameter a/lB
 0.03 at B� 30Tesla. The interaction
described by the Hamiltonian HBS,2 is short-ranged, but one should be careful when
dealing with the lowest Landau level, n¼ 0. As we discussed in the previous section,
at the lowest Landau level the short-range interaction does not introduce the
intervalley coupling, i.e. the intervalley matrix element is zero. Therefore, when
considering the lowest Landau level the finite range of the interaction potential v1
should be taken into account. As a result, the valley symmetry breaking term
becomes additionally suppressed by a factor of a/lB in the lowest Landau level
[59,103]. There are also interaction-induced umklapp scattering processes, which also
introduce the valley symmetry breaking terms. These processes are exponentially
small in a/lB and are considered in [101].
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The SU(4) symmetric interaction Hamiltonian (22) results in spin and valley
ferromagnetic ordering, i.e. spontaneous symmetry breaking at corresponding
Landau filling factors [98,106]. The direction of spin or pseudospin ordering in the
quantum ferromagnetic state is determined by small explicit symmetry breaking
terms in the Hamiltonian. Such symmetry breaking terms can result in easy axis or
easy plane ferromagnetic states with ferromagnetic order perpendicular or parallel
to the graphene layer, respectively [59,103]. In the case of spin, the explicit symmetry
breaking term is the Zeeman Hamiltonian, which results in easy axis ferromagnetic
ordering.

For valley pseudospin we need to consider the lattice-related symmetry breaking
Hamiltonians (23), (24). It was shown that at odd filling factors the symmetry
breaking Hamiltonian (24) provides the leading symmetry breaking interaction. This
type of Hamiltonian results in easy axis valley ferromagnetic state at the lowest
Landau level (	¼�1 quantum Hall states) and easy plane ferromagnetic state at the
Landau level n¼�1 (	¼ 3 and 5 quantum Hall states) [59,103]. The explicit
numerical analysis of a finite electron system within the tight-binding model with
Coulomb interaction supports this conclusion [106].

The easy axis valley ferromagnetic state at n¼ 0 Landau level (	¼�1) means that
all electrons at filling factor 	¼ 1 occupy one valley only:

	 ¼ �1j i ¼
Y
m

cy"K,m vacj i: ð26Þ

Since the wavefunctions of a single valley at n¼ 0 Landau level occupy only one
sublattice, the easy axis valley ferromagnetic ordering means that the electrons reside
on one sublattice producing a charge density wave. For the easy plane ferromagnetic
state realized at 	¼ 3 and 	¼ 5 the Berezinskii–Kosterlitz–Thouless transition is
expected [59,103]. The effect of the symmetry breaking Hamiltonian (23) has been
studied in [101]. It was shown that this type of valley symmetry breaking term results
in easy-plane valley ferromagnetic ordering.

Disorder suppresses the exchange ferromagnetic ordering and there is a critical
disorder strength above which the corresponding quantum Hall effect is destroyed.
A numerical analysis of the tight-binding model of graphene in a strong magnetic
field shows that the critical disorder strength for the 	¼ 3 ferromagnetic state (n¼ 1
Landau level) is much smaller than the critical disorder strength for the 	¼ 1 state
(n¼ 0 Landau level). A similar conclusion was reached in [98] using the Stoner
criterion for the formation of quantum Hall ferromagnetism. In [98] the inter-
electron interaction was treated within the Hartree–Fock approximation and the
disorder was introduced within the self-consistent Born approximation. Within this
approach the phase diagram (Figure 12), illustrating the sensitivity of quantum Hall
states to the strength of the disorder, was obtained [98].

The stability of exchange-induced ferromagnetic ordering is determined by
the strength of inter-electron interactions. Without the disorder the inter-electron
interactions completely characterize the energy. Formation of the ferromagnetic
ordering within the finite-size system has been studied numerically in [113], where only
the spin degree of freedom was taken into account. For the Landau levels n¼ 0, 1, 2,
and 3 the formation of spin-ordered states, i.e. ferromagnetic states, for a partially
occupied Landau level, the corresponding filling factor 1

2 has been obtained.
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For each quantum Hall state, both the ground state Coulomb energy and the
activation gaps have been found. The activation gap is one of the important
parameters, which characterizes the stability of the corresponding quantum Hall
state with respect to disorder and temperature. Due to the unique structure of the
Landau wavefunctions in graphene, the interaction-induced activation energy
of the spin-ordered states is largest for the n¼ 1 Landau level. These results
illustrate that the electron correlations are dominant for the n¼ 1 Landau level
and the ferromagnetic ordered quantum Hall state should be the most stable. This
behavior is different from the non-relativistic system, where the largest excitation gap
is expected in the lowest Landau level.

The charged excitations of the quantum ferromagnetic states are skyrmions,
which are similar in structure to the skyrmionic states in usual multi-component
non-relativistic systems. The properties of skyrmions at the nth Landau level are
determined by the relative strength of the Coulomb interaction within the nth
Landau level and a symmetry breaking term, e.g. the Zeeman coupling. The
interaction within that Landau level is obtained from the expression (22) by taking
the projection of the Hamiltonian HS onto the nth Landau level. Due to the special
structure of the wavefunctions belonging to different Landau levels (Equations (8)
and (9)), the projection of the Coulomb interaction Hamiltonian onto the nth
Landau level takes the following form [98,101]:

HS,n ¼
1

2

X
�,�0

X
q

2�e2

�q
½FnðqlBÞ�

2�n,�ð�~qÞ��n�n,0 ð~qÞ, ð27Þ

where the form factor is given by the following expression:

F0ðxÞ ¼ L0ðx
2=2Þ ð28Þ

FnðxÞ ¼
1

2
Ln x2=2

 �

þ Ln�1 x2=2

 �� 

, ð29Þ

Figure 12. Phase diagram for SU(4) quantum Hall ferromagnetism in the n¼ 0 and n¼ 1
Landau levels of graphene. The ordered region is bounded by a maximum value of 	s, the ratio
of the density of Coulomb scatterers to the density of a full Landau level. 	s is inversely
proportional to the product of the sample mobility and the external field strength and order
near integer filling factors requires the minimum values for this product indicated on the
right-hand vertical axis (Reprinted figure with permission from K. Nomura and A.H.
MacDonald, Physical Review Letters, 96, 256602, 2006 [98]. Copyright � (2006) by the
American Physical Society.).
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where x¼ qlB, and Lm(x) are the Laguerre polynomials. In the above expressions

(27)–(29), a magnetic field specific Gaussian factor, exp[�(qlB)
2/4], is absorbed in the

definition of the electron density. Therefore the form factors have a polynomial
form [101]. The Gaussian factor can also be introduced not only in the electron

density but also in the form factors themselves [98].
In the usual two-component non-relativistic systems the skyrmionic

excitations exist only in the lowest Landau level (filling factor 	¼ 1). In

graphene the Coulomb interaction is several times stronger than in non-relativistic
systems, e.g. GaAs. As a result, the skyrmion excitations survive even in higher

Landau levels, jnj  3 [59,102]. The charge of such excitations is �1 for any integer

filling [102].
Another interaction-induced mechanism for spontaneous symmetry breaking

was introduced in a series of publications [100,108,109,111]. The order parameter
in this approach is the gap (the Dirac mass) in the energy dispersion of relativistic

electrons. This gap originates from the spontaneous excitonic condensation catalyzed

by the magnetic field (magnetic catalysis). The presence of the gap, D, in the energy

dispersion splits the lowest Landau level, but does not affect the degeneracy of the

highest Landau level. For example, the energies of the lowest Landau levels become
�D and each level is twofold spin degenerate, while the energies of the higher Landau

levels are

"n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hv2FjnjeBþ D2

q
: ð30Þ

Therefore for the higher Landau levels the gap changes only the dispersion

relation, but does not change the level degeneracy. This fact has a straightfor-

ward effect on the quantization of the Hall conductance. Due to the splitting of only
the lowest Landau level, there is an additional Hall plateau at 	¼ 0. Therefore

the graphene system with a dynamically generated gap shows Hall conductance

quantization at 	¼ 0 and 	 ¼ �4ðNþ 1
2Þ. Taking the Zeeman splitting into

account, Gusynin et al. [100] reproduced the quantum Hall effect at 	¼ 0, �1,
�2N, N¼ 1, 2, . . . . The degeneracy of the highest Landau levels is lifted only

by the Zeeman interaction. In Figure 13, a schematic illustration of the

Landau quantization with dynamical excitonic gap, D, and Zeeman splitting, 
BB,

is shown. There are two types of mass order parameters (dynamical gaps),

which can be introduced into the model. The dynamical gaps correspond to
singlet and triplet contributions with respect to the valley symmetry group

[108,109,111]. In general, the dynamical gap order parameters coexist with

quantum ferromagnetic order parameters and should be considered

simultaneously [108].
Generation of the dynamical gap in a strong magnetic field was studied in

[114] within the extended Hubbard model on a honeycomb lattice. The extended

Hubbard model takes into account both on-site and nearest neighbor repulsions. The

transition to the charge density wave state and an antiferromagnetic state has been

illustrated within the model of [114]. Similar to the magnetic catalysis model

[100,108,109,111], the generation of the dynamical gap explains the quantum Hall
effect at 	¼ 0 and �1.

                 291



2.2.5. Symmetry breaking: lattice distortion

The twofold valley degeneracy in graphene can be lifted by an out-of-plane lattice

distortion [115]. In a perpendicular magnetic field the distortion of the lattice can

lower the total energy of the system. This energy includes both the elastic energy

of the lattice and the energy of the electronic system. The distortion of the lattice

is described as the relative shift of the sublattices A and B towards and away

from a substrate by some distance [115]. Due to interaction with the substrate, the

sublattices A and B acquire different on-site energies, which effectively results

in effective mass of electrons in graphene and lower the energy of electron in the

system. Therefore the electrons preferably occupy the sublattice with the lower

on-site energy, spontaneously breaking the valley symmetry.
The gain in the energy of electronic system in graphene due to the distortion

of the lattice is determined by the strength of the distortion and increases with the

magnetic field [115]. This gain should be compared with the energy cost of the

distortion, i.e. with the elastic energy of the lattice. Minimization of the total energy

Figure 13. Schematic illustration of the spectrum of the Hall conductivity in n¼ 0 and n¼ 1
Landau levels for four different cases. (a) D¼ 0 and no Zeeman term. (b) Non-zero D and
no Zeeman term. (c) D¼ 0 and the Zeeman term is taken into account. (d) Both D and the
Zeeman term are non-zero. Thickness of the lines represents the degeneracy 	4, 	2 and 	1
of the level; L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hv2FeB

p
. (Reprinted with permission from V.P. Gusynin et al., Physical

Review B, 74, 195429, 2006 [100]. Copyright � by the American Physical Society.)
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of the system, which includes the elastic energy of the lattice and the energy of
electrons, determines the strength of the spontaneous lattice distortion. A detailed
analysis of the graphene system in a magnetic field shows that spontaneous lattice
distortion lifts the valley degeneracy only in the lowest Landau level, n¼ 0 [115],
while the n4 0 Landau levels remain twofold valley degenerate.

The mechanism of lifting of twofold valley degeneracy based on magnetic-
field-induced lattice distortion crucially depends on the asymmetric interaction of
graphene layer with substrate. If the interaction with substrate is suppressed, e.g. in a
suspended graphene, then the spontaneous lattice distortion does not occur.

The magnetic field can also induce lattice instability and lift the valley degeneracy
in a suspended graphene even without a substrate if the graphene surface is curved.
The example of such a system is the carbon nanotube. A strong magnetic field
perpendicular to the nanotubes axis results in lattice instability towards in-plane or
out-of-plane distortions [116–119]. The in-plane instability has the Kekule pattern,
which is a network of hexagons with alternating short and long bonds.

2.2.6. Edge states in a strong magnetic field

The half-integer quantum Hall effect in graphene can be understood from the
viewpoint of the edge states as well. In the edge state description of the quantum
Hall effect, the Hall conductance is determined by the number of edge state bands
crossing the Fermi level. In graphene there are two main types of edges: (i) armchair
edge and (ii) zigzag edge (Figure 14). Even without a magnetic field, these edges have
different properties, e.g. at the zigzag edge, zero energy surface states are observed.
In a magnetic field the structure of the quantum Hall edge modes also depends on the
type of the edge [104,109,120–125].

Within the continuum model, the difference between the two types of edges
originates from different boundary conditions imposed at the edge. For the zigzag
edges, the wavefunction vanishes on a single sublattice across the edge, while for the
armchair edge, the wavefunction vanishes on both sublattices at the edge [122,123].
To find the structure and the energy dispersion of the edge states, the relativistic
Dirac equation with appropriate boundary conditions should be solved. For each
valley the corresponding wavefunctions are the two-component functions, i.e. ( K,A,

K,B) and ( K0,A,  K0,B) for valleys K and K0, respectively. Excluding one of the

Figure 14. Graphene honeycomb lattice with (a) zigzag and (b) armchair edge terminations.

                 293



components from the Dirac equations, we obtain the system of equations for valleys

K and K0 in the following form [123]:

1

2
�@2y þ ð y� ypÞ

2
þ 1

� �
K,A ¼  K,A; ð31Þ

1

2
�@2y þ ð y� ypÞ

2
� 1

� �
K0, A ¼  K0, A, ð32Þ

where the edge is along the x axis, the vector potential is Ax¼�By, Ay¼ 0, and along

the x axis the wavefunctions are propagating waves, exp(ipxx). Here ¼ ("/"0)
2,

"0 ¼ �hv0ð2eB=�hcÞ
1
2, yp¼�px, and y and px are measured in units of lB and �h/lB,

respectively.
Equations (31) and (32) determine the wavefunctions and corresponding energies

of the Landau levels in graphene. Without any boundaries the Landau quantization

with / n, i.e. " /
ffiffiffi
n
p

, and wavefunctions in the form of Hermite polynomials,

Hn(y� yp), localized at yp, can be obtained from Equations (31) and (32). The

energies of the states do not depend on the electron position, yp, within the layer,

resulting in high degeneracy of the Landau levels. When yp becomes close to the

boundary of the system, the degeneracy of the Landau levels is lifted. Such dispersive

edge states can be obtained from Equations (31) and (32) by introducing the

corresponding boundary conditions.
Then for the armchair edge termination the boundary condition takes the form

K,A ¼  K0, A,  K,B ¼  K0, B ð33Þ

at the boundary and for the zigzag edge the boundary condition is

K,A ¼ 0,  K0, A ¼ 0: ð34Þ

For higher Landau levels, jnj4 0, there is not much difference in the energies of

the edge states between the zigzag and armchair terminations. In both cases, the edge

boundary conditions violate the valley symmetry at the edge, resulting in lifting of

the twofold valley degeneracy at the boundary, shown schematically in Figure 15.

For the armchair edge the boundary condition introduces inter-valley mixing, while

for the zigzag edge the boundary condition itself violates the valley symmetry,

but does not introduce the mixture between the K and K0 valleys. Thus only for

the zigzag edge the valley indexes, K and K0, can be assigned to the edge states

(Figure 15).
The lowest Landau level (n¼ 0) behaves differently for zigzag and armchair

edges. For the armchair edge, the lowest Landau band disperses and there is one

pair of particle-like and one pair of hole-like edge states [104,109,120–125]. The

appearance of both particle-like and hole-like edge states at n¼ 0 Landau level is a

direct manifestation of the relativistic nature of electrons in graphene and can be

understood from Equations (27) and (28). The solutions of these equations provide

the value of the effective energy, , which is proportional to the square of the real

energy, ¼ ("/"0)
2. Therefore any positive solution of Equations (27) and (28)

produce two real solutions: one with positive energy, " ¼ "0
1
2, and another with the

negative energy, " ¼ �"0
1
2. The states with the positive and negative energies
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correspond to the particle-like and hole-like states, respectively. By counting the
number of edge bands at different positions of the Fermi level, it is easy to see
that the existence of particle-like and hole-like states at the zero Landau level
explains the half-integer quantum Hall effect.

For the zigzag edge, there are two types of edge states: dispersionless (with zero
energy) and current-carrying surface states [104,109,120–125]. These two surface
states belong to different valleys. The existence of zero-energy state can be
understood from the special structure of the electron wavefunctions at the lowest
Landau level. That is, in the K valley the n¼ 0 Landau states reside on the B
sublattice only which automatically satisfies zigzag boundary conditions,  K,A¼ 0.
For the K0 valley we obtain the dispersive states, which satisfy  K0,A¼ 0. Similar to
the armchair edge, such boundary condition result in two types of edge states:
particle-like and hole-like states. The edge states at the lowest Landau level are
shown schematically in Figure 15.

The effect of disorder and electron–electron interactions on the structure of the
edge states have been studied in [124], where edge reconstruction has been observed.
Such reconstruction is more pronounced for a partially occupied Landau level, i.e. in
the regime of the fractional quantum Hall effect.

The properties of the 	¼ 0 quantum Hall state are closely related to the structure
of the edge states at the lowest Landau level [126]. The 	¼ 0 state can be attributed to
either valley or spin splitting. Depending on whether the spin or valley symmetry is
broken, the 	¼ 0 quantum Hall state has completely different properties. The system
becomes either quantum Hall metal or quantum Hall insulator. We consider the
armchair edge termination, for which the lowest Landau band consists of particle-
like and hole-like edge states belonging to two different valleys (Figure 15a). Both
types of states are twofold spin degenerate. Therefore the valley symmetry in this
case is broken near the edge. If the valley symmetry is also broken in the bulk of the
system (Figure 16a), then there are no current-carrying edge states at zero energy
(Fermi level) and the system shows insulating properties. The edge levels in this case
are twofold spin degenerate. If the spin symmetry is broken in the bulk of the
graphene layer (Figure 16b) then at zero energy there are counter-propagating

Figure 15. Graphene energy spectrum shown schematically as a function of momentum, px,
near the armchair (a) and zigzag (b) edges. Here n is the Landau level index. (a) For the
armchair edge the boundary condition at the edge introduces inter-valley mixing. In this case
the valley indexes, K or K0, cannot be assigned to the edge states. (b) For the zigzag edge the
boundary condition violates the valley symmetry and lifts the valley degeneracy. There is
no inter-valley mixture for the zigzag edge and each edge state belongs to a specific valley.
The corresponding valleys are shown by labels K and K0.

                 295



gapless edge modes [126]. In the experiments [92] the 	¼ 0 quantum Hall system
shows a peak in the magnetoresistance near the Dirac point (zero energy). This
observation supports the picture of spin symmetry breaking as the origin of 	¼ 0
quantum Hall state [126]. In [127], a simple technique has been proposed to measure
the chirality of the quantum Hall edge states. This method can be used to clarify the
nature of the edge states at the 	¼ 0 quantum Hall effect.

The properties of counterpropagating edge states of opposite spin at n¼ 0
Landau level have been explored in [128] to explain the results of the experiment
reported in [94], where the transition from the metallic to an insulating 	¼ 0
quantum Hall state was observed. In [128], magnetic impurities were also introduced.
Such impurities can flip the electron spin and introduce backscattering between the
counterpropagating edge states. Each edge model is described as a one-dimensional
Luttinger liquid with Luttinger parameter K. The value of the parameter depends on
the magnetic field strength and the details of the edge potential. In such a system the
Kondo (magnetic) impurities introduce the critical value, Kc, of the parameter K, so
that for K4Kc the system is in an insulating state, while for K5Kc it is in a metallic
phase.

The condition of the existence of the gapless edge states in graphene with
zigzag and armchair edges was analyzed in [109] within the approach based on the
dynamical generation of the Dirac mass gap due to the magnetic catalysis.
The condition is determined by the relative strength of the mass order parameters
and the quantum Hall ferromagnetic order parameters.

2.3. Fractional quantum Hall effect

Observation of the fractional quantum Hall effect [72,73] in high-mobility planar
electron gas at large magnetic fields allows one to study the collective behavior of
two-dimensional electrons. Theoretical aspects of this problem in graphene have
been addressed in a few publications [129–133], where a finite size system has been
studied within the scheme of direct diagonalization of the Hamiltonian matrix or
within the trial-wavefunction approach. The properties of the fractional quantum
Hall effect in graphene can be determined by Haldane’s pseudopotentials, Vm [134],

Figure 16. Energy spectrum of graphene shown schematically as a function of momentum, px,
near the armchair edge for the lowest Landau level: (a) the case of broken valley symmetry
(valley-polarized 	¼ 0 quantum Hall state); (b) the case of broken spin symmetry (spin-
polarized 	¼ 0 quantum Hall state). The arrows next to the lines illustrate the direction of spin
at the corresponding energy levels.
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which are the interaction energies of two electrons with relative angular momen-

tum m. The pseudopotentials for the nth Landau level has the following form

[129,130,132,133]

VðnÞm ¼

Z 1
0

dq

2�
qVðqÞ FnðqÞ½ �

2Lmðq
2Þe�q

2

, ð35Þ

where V(q)¼ 2�e2/(�lBq) is the Coulomb interaction in the momentum space, and

Fn(q) is the form factor corresponding to the nth Landau level (see Equations (28)

and (29)). For non-relativistic electrons in graphene, the corresponding form factors

are Fn(q)¼Ln(q
2/2). Comparing this expression with Equations (28) and (29), it is

possible to see that the inter-electron interactions for the relativistic and non-

relativistic electrons are same for n¼ 0 and different for n4 0.
In Figure 17 the pseudopotentials for relativistic and non-relativistic systems

are shown. The behavior of the relativistic and non-relativistic pseudopotentials are

clearly different. For relativistic electrons, the suppression of the pseudopotential

for n¼ 1 as compared to n¼ 0 occurs only for m¼ 0, while for all other values of m,

we have Vð1Þm 4Vð0Þm . For non-relativistic electrons, there is also a suppression of the

pseudopotential for m¼ 1. The behavior of relativistic pseudopotentials for different

Landau levels is shown in Figure 17(b). At all values of the relative angular

momentum, m, except for m¼ 1, there is a monotonic dependence of the

pseudopotentials on the Landau level index, n: the pseudopotential decreases

with increasing n for m¼ 0 and increases with increasing n for m4 1. In contrast,

for the angular momentum m¼ 1, the dependence of the pseudopotential on the

Landau index is non-monotonic: the pseudopotential has the maximum value

at n¼ 1.
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(b)
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Figure 17. Pseudopotentials calculated from Equation (35) are shown as a function of the
relative angular momentum (a) for relativistic and for non-relativistic two-dimensional
electrons in the first two Landau levels, and (b) for relativistic electrons in various
Landau levels. The energies are measured in units of e2/"lB (reproduced from [129]).
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The special dependence of the relativistic pseudopotential on the angular

momentum and Landau level index has a profound influence on the interaction

energy scale of the fractional quantum Hall states at different Landau levels

[129,130,132,135]. By looking at the values of the pseudopotentials we can reach a

conclusion about the relative strength and stability of the fractional quantum

Hall effect in graphene, as compared to the conventional non-relativistic systems.

For example, since the electron wave functions at the lowest Landau level in

graphene are identical to the lowest Landau level wavefunctions in the conventional

(non-relativistic) electron systems, the relativistic pseudopotentials at n¼ 0 in

graphene are exactly equal to the corresponding pseudopotentials of the non-

relativistic systems [129]. Therefore, without the inter-Landau level coupling, the

properties of the fractional quantum Hall state at n¼ 0 Landau level in graphene are

the same as for the non-relativistic systems. The specific feature of the quantum Hall

system in graphene is that the electrons now have spin and valley degrees of freedom,

which would open up the possibility for spin and valley-polarized or unpolarized

ground states and the corresponding excitations. The relativistic pseudopotentials

at n4 0 Landau levels are different from those in the non-relativistic systems. As a

result, the fractional quantum Hall states at the n4 0 Landau levels should have

different properties compared to the non-relativistic systems [129]. Since at the n¼ 1

Landau level the pseudopotentials are enhanced compared to the non-relativistic

ones, the fractional quantum Hall states at the n¼ 1 Landau level should be more

stable in the relativistic graphene system.
Apalkov and co-workers [129,130] investigated the energy spectra of the

fractional quantum Hall states in graphene for a finite-size system within

the spherical geometry [72], where the magnetic field strength is determined by the

magnetic field fluxes, 2S, though the sphere in units of the flux quanta. Here 2S is an

integer and S is also the angular momentum of the single-electron states. It was

shown that the ground state of 	 ¼ 1
3 and 	 ¼

1
5 are spin and valley polarized at both

n¼ 0 and n¼ 1 Landau levels [130]. The excitation gaps in the fractional quantum

Hall systems are determined by the interaction strength at the corresponding Landau

levels. The results shown in Figures 18 and 19 for 	 ¼ 1
3 and

1
5 quantum Hall states at

n¼ 0 and n¼ 1 Landau levels clearly illustrate the enhancement of the energy scale at

the n¼ 1 Landau level compared to that at the n¼ 0 Landau level. That is, both

valley-polarized and valley unpolarized excitation gaps at the n¼ 1 Landau level are

larger than those at the n¼ 0 Landau level. This enhancement is especially

pronounced for the 	 ¼ 1
3 state, for which the pseudopotential at small values of

the angular momentum determine the inter-electron interaction strength. At 	 ¼ 1
5

the excitation spectra for the n¼ 1 and n¼ 0 Landau levels are almost the same.

Although larger energy gaps at n¼ 1 Landau level are observed for the 	¼ 1/m

states, this is not a general rule for other fractional Hall states. The pseudopotential

at zero relative angular momentum, m¼ 0, is the strongest for the n¼ 0 Landau level.

Therefore, for the fractional quantum Hall states for which the on-site interaction

with m¼ 0 is dominant, the energy gap in the n¼ 0 Landau level is the largest.

An example of such a fractional quantum Hall state is the 	 ¼ 2
3 state. The excitation

gap of the valley-unpolarized 	 ¼ 2
3 state is larger in the n¼ 0 Landau level than that

for the n¼ 1 Landau level.
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The single-particle excitations of the fractional quantum Hall states were studied
in [135] within a numerical approach. It was shown that at 	 ¼ 1

3 the excitations are
valley skyrmions both at n¼ 0 and n¼ 1 Landau levels. A more complicated
situation occurs for the 	 ¼ 2

3 and 	 ¼
2
5 fractional quantum Hall states. The ground

states in these two cases are valley-unpolarized at n¼ 0 Landau level and valley-
polarized in the n¼ 1 Landau level. The single-particle excitations are valley-
unpolarized except at the 	 ¼ 2

5 state in the n¼ 1 Landau level, for which the
excitation has the skyrmion-like valley texture.
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Figure 18. The energy spectra of an eight-electron valley-polarized 	 ¼ 1
3 fractional quantum

Hall system obtained in spherical geometry are shown for different Landau levels: n¼ 0 (stars)
and n¼ 1 (full circles). The flux quanta is 2S¼ 21. (b) The energy spectra of a six-electron
valley-polarized 	 ¼ 1

5 system is shown for different Landau levels: n¼ 0 (stars) and n¼ 1
(full circles). The flux quanta is 2S¼ 25. The energy is shown in units of the Coulomb energy,
"C¼ e2/"lB (reproduced from [130]).
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Figure 19. The energy spectra of a six-electron valley-unpolarized 	 ¼ 1
3 fractional quantum

Hall system obtained in the spherical geometry, are shown for different Landau levels: n¼ 0
(stars) and n¼ 1 (full circles). The flux quanta is 2S¼ 15. The spin-wave excitations are
illustrated by solid (n¼ 1) and dashed (n¼ 0) lines. The energy is shown in units of the
Coulomb energy, "C¼ e2/"lB (reproduced from [130]).
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In [136], the ground state of the electron system with partial filling factor was
studied within a mean-field approach. The competition between the uniform state,
Wigner crystal (with one electron per unit cell) and the bubble crystal (with more
than two electrons per unit cell) was considered. It was shown that at all filling
factors (except integer) the Wigner crystal state has the lowest energy at the lowest
Landau levels, n¼ 0, 1. At n4 1 a bubble crystal with two electrons per unit cell is
realized at intermediate values of the filling factor, while at all other filling factors the
Wigner crystal state occurs. This approach does not take into account the strongly
correlated fractional quantum Hall states (Laughlin liquids) [72,73] realized at
special fractional filling factors, e.g. 	 ¼ 1

3. Such states will have the lowest energy at
these filling factors.

The fractional quantum Hall effect has been recently observed experimentally
[95,96] in specially prepared suspended graphene samples. In such suspended
samples, the disorder, which is usually due to the substrate, is strongly suppressed,
which has made it possible to observe the fractional quantum Hall effect at the filling
factor 1

3 (Figure 20). The fractional quantum Hall state is a strongly correlated
electron state, which at 	 ¼ 1

3 is the Laughlin liquid state [137]. The activation gap of
such a state is determined by the strength of the inter-electron interaction, i.e. by the
Coulomb energy, "C¼ e2/"lB. The activation gap of the 	¼ 1/3 quantum Hall state
was analyzed in [138] based on the two-terminal conductance measurements [95,96].
The activation gap was found to be around 4.4K and the corresponding fractional
quantum Hall effect is clearly visible up to 10K (the fractional quantum Hall effect
in conventional ‘non-relativistic’ systems usually appear at much lower temperatures,
i.e. below 1K). The experimentally obtained activation gap is much smaller than the
theoretically predicted value which, for the experimental parameters of [95,96] is
around 40K [138]. This discrepancy can be attributed to the presence of disorder
in the system. Observation of the strong enhancement of interaction effects in
suspended graphene can be clearly attributed to the small value of the dielectric
constant, "� 1, in suspended graphene.

Figure 20. Gate voltage dependence of resistance for a suspended graphene sample is shown
at different magnetic fields and at temperature 1.2K. The plateaus at 	¼ 1, 2 and 1

3 are clearly
visible. (Reprinted with permission from X. Du et al., Nature, 462, p.192, 2009 [95]. Copyright
� (2009) Nature Publishing Group.)
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3. Bilayer graphene

Bilayer graphene consists of two graphene monolayers, typically arranged in the
Bernal (AB) stacking arrangement. It is a fascinating and complex system in its own
right, distinct from both the monolayer and the traditional two-dimensional electron
system (2DES) even though it shares some characteristics of each. The study of
bilayer graphene started in 2006 with the publication of three papers describing
its properties for the first time [139–141]. McCann et al. [139] demonstrated that
the low-energy band structure of neutral bilayer graphene is gapless and exhibits a
variety of second-order effects, and described an unusual sequence of Landau levels.
Experimental descriptions of this material were published by Ohta [140], who
described the low-energy band structure as well as the formation of a gap at the K
point when a transverse electric field is applied (in this case by negatively charged
dopants), and by Novoselov et al. [141] who measured the quantized Hall
conductance as predicted by McCann and Falko. In addition to the quadratic
low-energy band structure, with its associated effective mass, the chiral nature of the
charge carriers is manifest in the Berry’s phase and other properties. The bilayer
shares many other physical properties with the monolayer, such as the exceptionally
high electron mobility (with mean free path in the sub-micron range), and high
mechanical stability. Massive chiral particles do not exist in standard field theory,
and this makes the bilayer graphene system a promising venue in which the effects
of chirality can be distinguished from those of the Dirac spectrum in comparison
with monolayer graphene and traditional 2DESs. One unique feature of bilayer
graphene is the ability to open a tunable band gap by engineering a potential
difference between the two layers. This may be done either by gating, or by external
dopants. This tunable gap (as opposed to the gap in a 2DES which is an intrinsic
effect of the crystal structure and therefore not tunable), along with the high electron
mobility and simplicity of fabrication techniques opens the possibility of many
applications of bilayer graphene in the construction of devices.

Here we present a summary of the properties of this material, and in particular
seek to show the similarities and differences between it and the monolayer. We begin
in Section 3.1 by discussing the fabrication and identification of bilayer flakes
from an experimental point of view. Then, in Section 3.2, the commonly-used tight-
binding model is introduced including the effective low-energy description.
In Section 3.3 we review the theoretical predictions for the opening of a band gap
at the K points, and discuss the experimental evidence for this gap. When bilayer
graphene is placed in a strong magnetic field, it exhibits a unique integer quantum
Hall effect, and this is reviewed in detail in Section 3.4. The impact of electron–
electron interactions is often neglected in the theoretical work, but they may have
important consequences and we review analytical and numerical studies of their
effects in Section 3.5. Phonon anomalies in this material, and the coupling between
electrons and phonons are discussed in Section 3.6, and finally we present a few of
the devices which have been proposed to utilize bilayer graphene in Section 3.7.

3.1. Sample fabrication and identification

Fabrication techniques for bilayer graphene are similar to those for the monolayer
material. In the case of mechanically exfoliated flakes, the ‘Scotch tape’ part of the
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process deposits many flakes of varying thicknesses onto the substrate, so the process
of identifying which flakes are mono- or bilayers becomes the key part of the
technique. Bilayer samples have also been made on silicon carbide substrates by
the sublimation of the silicon atoms on heating, a process called epitaxial growth.
In this section, we describe the optimization of the visibility of graphene, and in
particular the ideal conditions for distinguishing the number of layers of exfoliated
flakes. We then review other diagnostic techniques, such as atomic force microscopy
and Raman spectroscopy which proved to be useful tools in characterizing graphene.

3.1.1. Optical identification of exfoliated bilayer graphene

The visibility of graphene is a key issue for the mechanical microcleavage fabrication
technique, and in 2007, four papers were published [142–145] discussing the visibility
of graphene and few-layer graphene on dielectric substrates. Defining the optical
contrast (or visibility) to be

V ¼ ðR� R0Þ=R0,

where R0 is the reflection coefficient of the bare substrate, and R is the reflection
coefficient of the substrate with a graphene flake present, all authors reported that
the visibility of the bilayer is twice as high as that of the monolayer in the visible
frequency range. All authors also recommended using substrates with SiO2 of width
�280 nm. While Blake et al. [142] modelled the enhanced reflection of visible light
due to constructive interference of light caused by the additional optical path length
introduced by the presence of graphene, Abergel et al. [143] gave a complimentary
analysis considering the effect of the conductivity of the graphene flake at the
boundary between the air and the substrate. They gave an analytical condition for
the peak visibility, finding that the frequency of incident light !, the oxide width d,
and dielectric function "o should be arranged such that

! �
c nþ 1

2


 �
�

d
ffiffiffiffi
�o
p

cos�o
, ð36Þ

where n is an integer which labels the resonance, c is the speed of light and
sin �o ¼ sin�=

ffiffiffiffi
�o
p

. This approach was supplemented by Nair et al. [146] in the
publication of measurements of the absorption of visible light by suspended
graphene, showing that the absorption scales linearly with the number of layers
for energies below about 1 eV and that the constant of proportionality is exactly
the fine structure constant �¼ e2/�hc (Figure 21). Abergel et al. [143] noted that
since the optical conductivity of bilayer graphene has a peak at �1� 400meV,
then the visibility of the bilayer will be enhanced with respect to the monolayer
in the far infra-red frequency range. This was subsequently observed by Kuzmenko
et al. [147].

Wang et al. [148] discussed several pertinent differences between the mono-
layer and bilayer optical properties, including the van Hove singularity which
is present in the bilayer, but not in the monolayer. This effect causes the sign
of the peak normalized reflectivity to be opposite in the two materials.
Additionally, the normalized reflectance exhibits a peak when the photon energy is
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equal to the interlayer coupling energy �1 corresponding to the inter-band
excitations becoming accessible. The gate-induced changes in the reflectivity
are also significantly different, with the monolayer showing a difference which is
roughly constant with the photon energy, but the bilayer peaking at �1. Note
that the detail explanation of the theory of optical conductivity can be found
in [149–151].

Ni et al. [152] measured the visibility of multi-layered graphene on an SiO2

substrate, and fitted their data to the bulk graphite refractive index (nG¼ 2.6� 1.3i).
They did not find good agreement between the calculations using Fresnel’s equations
and the experiment, and instead found that the refractive index n¼ 2.0� 1.1i fitted
better.

Abergel et al. [143] also discussed the visibility of graphene on SiC substrates,
Roddaro et al. [144] presented computations of the observed color of the graphene
flakes, Casiraghi et al. [145] discussed Raleigh spectroscopy and flakes with larger
numbers of layers, and also the dependence of the visibility on the aperture size of the
detection device. Gaskell et al. [153] measured the contrast in reflection for graphene
flakes mounted on glass substrates and also found a linear increase in visibility with
the number of layers, linking this to the fine structure constant (Figure 22), after
Nair et al. [146]. Gao et al. proposed a method for flake identification which utilized
the color difference between the substrate and the graphene, and discussed various
alternative dielectric materials for use in the substrate.

Figure 21. (Colour online) Looking through one-atom-thick crystals. (a) Photograph of a
50mm aperture partially covered by graphene and its bilayer. The line scan profile shows the
intensity of transmitted white light along the yellow line. (Inset) The sample design: A 20 mm
thick metal support structure has several apertures of 20, 30, and 50 mm in diameter with
graphene crystallites placed over them. (b) Transmittance spectrum on single layer graphene
(open circles). Slightly lower transmittance for 5 400 nm is probably due to hydrocarbon
contamination. The red line is the transmittance T¼ (1þ 0.5��)�2 expected for two-
dimensional Dirac fermions, whereas the green curve takes into account a non-linearity and
triangular warping of graphene’s electronic spectrum. The gray area indicates the standard
error for the measurements. (Inset) Transmittance of white light as a function of the number of
graphene layers (squares). The dashed lines correspond to an intensity reduction by ��
with each added layer (Reprinted figure with permission from R.R. Nair et al., Science, 320,
1308, 2008 [146]. Copyright � (2008) The American Association for the Advancement of
Science.).
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3.1.2. Atomic force microscopy and miscellaneous diagnostic techniques

Atomic force microscopy is a technique which can be employed to measure the
relative height of a graphene flake above the substrate, and thus determine the
number of layers present in the flake. Obraztsova et al. [156] carried out a statistical
analysis of the atomic force microscopy (AFM) measurements of the height of many
graphene flakes to determine the systematic dependence of the height on the number
of layers. They demonstrated (Figure 23) that the peaks in the histograms of
measured heights occur at 0.35 nm intervals, corresponding to the predicted
interlayer spacing in few-layer graphite flakes. The height of the first layer in a
given flake varies due to the differing strength of interactions between the substrate
and the flake, and the height of graphene in one plateau varies due to the intrinsic
rippling or corrugation of the flake. Their study shows that the flake height is a
reliable way of determining the number of layers on a plateau on a given flake, but
the low throughput of the AFM technique means that other diagnostic techniques
are more promising for the identification stage of the exfoliation fabrication method.

Stacking faults have been observed by Warner et al. [157] in exfoliated bilayer
and few-layer samples by tunnelling electron microscopy (TEM) measurements.
The relative rotation of the layers can be distinguished and the experimental data
is fitted well by considering two decoupled monolayers. High-resolution TEM is a
good tool for determining the stacking faults for flakes up to six layers thick.

When bilayer graphene is deposited on a (metallic) ruthenium substrate [158], the
upper layer is screened from the substrate by the lower layer, which couples strongly
to the metal. The authors claim that the linear band structure is regained in the upper

Figure 22. Left: Measured contrast ratios for 41 unique graphitic flakes. Theoretical contrast
ratios based on the Fresnel theory with m-layer graphene conductance Z0G¼m�� are plotted
as bands for a substrate refractive index ns¼ 1.522 � 0.004. Right: Contrast ratios for each
layer, including error due to camera non-linearity and lamp power fluctuation, compared with
Fresnel theory with reported graphite induces (A) ng¼ 2.675� 1.35i [154], (B) ng¼ 2.52� 1.94i
[155], graphene index reported by Ni et al. [152] (C), and universal conductance (D)
(Reprinted figure with permission from P.E. Gaskell et al., Applied Physics Letters, 94,
143101, 2009 [153]. Copyright � (2009) American Institute of Physics.).
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layer, and that scanning tunnelling microscopy (STM) images of the flake show both
carbon sublattices indicating that the AB symmetry is restored.

3.1.3. Raman spectroscopy

Both the optical imaging and AFM methods of determining the number of layers
in a graphene flake are time-consuming processes. Raman spectroscopy has a much
higher throughput, and is therefore a promising candidate for a much faster
identification technique, and several authors have claimed that it can reliably
distinguish the number of layers in a flake. Raman spectroscopy is intimately related
to the phonon modes in the sample being probed. Ferrari et al. [23] have shown
that the doubly-degenerate 2D peak in monolayer graphene splits into four non-
degenerate modes in the bilayer. This splitting causes the 2D peak to broaden in a
systematic way (Figure 24a), to gain a shoulder on its low-energy tail, and to shift
slightly upward in frequency. This is also seen in experiments carried out by Graf
et al. [159], where spatially-resolved Raman spectroscopy can distinguish between
mono- and bilayer portions of a single flake (Figure 24b). Also noticeable in this
figure is a dramatic increase of intensity, and a slight downward shift (by �3 cm�1) of
the G peak, relative to the monolayer.

The Raman spectrum of two overlapping monolayer flakes has been investigated
by Poncharal et al. [160]. Figure 25(a) shows the G and D band regions of the 633 nm
Raman trace of monolayer and overlapping graphene. There is a slight down-
ward frequency shift and narrowing of the G peak in the overlapping flakes. Figure
25(b) shows the trace for the 2D band in the same flakes, with that of the
Bernal stacked bilayer for comparison. The splitting of the 2D band into four peaks

Figure 23. The atomic force microscopy images of three different arbitrary graphene flakes
and the distribution of the height values over their surface points (Reprinted with permission
from E.A. Obraztsova, A.V. Osadchy, E.D. Obratztsova, S. Lefrant, and I.V. Yaminsky,
Physica Status Solidi b, 245, p. 2055, 2008 [156]. Copyright � (2008) Wiley-VCH Verlag
GmbH & Co. KGaA.).
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in the bilayer is completely absent from the overlapping region. Therefore, the
authors conclude that the coupling between the two layers in the overlapping region
is minimal. However there is an upward shift in the peak frequency, and the peak
is 
20% narrower than in the monolayer case. The authors describe why they think
(in contrast to other works, [161,162]) that neither the renormalization of the
Fermi velocity nor the opening of a gap at the charge neutrality point cause this
frequency shift. Instead, they suggest that the weak coupling between the two
monolayers causes a modification of the phonon spectrum, which manifests in
Raman trace while leaving the electronic spectrum unaltered.

Figure 24. (a) The 2D peak shown in Raman spectra in bilayer graphene (Reprinted figure
with permission from A.C. Ferrari et al., Physical Review Letters, 97, 187401, 2006 [23].
Copyright � (2006) by the American Physical Society.). (b) Raman spectra of single- and
double-layer graphene (Reprinted with permission from D. Graf et al., Nano Letters, 7, 238,
2007 [159]. Copyright � (2007) by the American Chemical Society.).

Figure 25. (Colour online) (a),(b) Raman spectra of a single graphene sheet (black lines),
Bernal bilayer (yellow lines) and two overlapping misoriented graphene sheets (green lines) at
633 nm. (a) G and D band range of the graphene and overlapping configuration. Curves have
been vertically offset for clarity and normalized on the G peak. (b) 2D band region for single
graphene sheet and overlap compared to the Bernal-stacked bilayer. The overlapping
graphene spectrum consists of a single peak clearly shifted compared to monolayer graphene.
It strongly differs from the Bernal-stacked bilayer. Its width (19 cm�1) is smaller than the
monolayer graphene peak (26 cm�1). (c) Raman spectrum at 488 nm (top) and 514.5 nm
(bottom). The difference in Raman shift is reduced compared to the traces at 633 nm in (a, b).
The slight asymmetry is due to experimental shortcomings (Reprinted figure with permission
from P. Poncharal et al., Physical Review B, 78, 113407, 2008 [160]. Copyright � (2008) by the
American Physical Society.).
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3.2. Tight-binding model

In this section we introduce the commonly-used tight-binding model for bilayer
graphene. It is a natural extension of the model used for the monolayer, although
additional complexity is introduced by the various interlayer hopping elements. We
shall describe each of these and the effect that they have on the low-energy spectrum.
Discussion of the interlayer potential is deferred until Section 3.3.

3.2.1. Nearest neighbor and next-nearest neighbor models

The bilayer crystal lattice is shown in Figure 26. The two monolayer lattices
are shown as solid lines for the upper lattice (where the two lattice sites are labelled
by a subscript ‘u’) and the lower lattice in dashed lines (labelled by a subscript ‘l ’).
The two lattices are offset from each other in the xy plane so that the Au sublattice
is directly above the Bl sublattice, and it is between these pairs of atoms that the
interlayer dimer bonds are formed. The Bu and Al atoms are not directly bonded to
the opposite layer. This arrangement is known as Bernal stacking, and is the stacking
arrangement which is most commonly considered. Other possible arrangements are
AA stacking, where the two lattices are directly above each other and bonds form
between the same sublattices, and the turbostratic arrangement where the upper
layer is rotated with respect to the lower layer and so interlayer bonding is haphazard
and noticeably weaker. The AB stacking arrangement was experimentally verified in
epitaxial graphene by Ohta et al. [163].

In order to construct the tight-binding model for bilayer graphene, we follow the
same scheme as for the monolayer. Assuming that the sp2-hybridized electrons are
inert, we consider the pz electrons only, which form the � bands as in the monolayer.4

Since there are four atomic sites per unit cell, the wave function can be written as
a four component spinor in the following basis:

f Al
, Bu

, Au
, Bl
g:

The intralayer nearest neighbor hopping elements (characterized by the vectors such
as ~R in Figure 27(b)) with the transfer integral t (which was also denoted by �

Bl

Bl

Au

Au

Bu
Bu

Al

Al

(a) (b)

Figure 26. The bilayer lattice in (a) isometric, and (b) top-down projections. The upper
(lower) layer is shown in solid (dashed) lines, the interlayer dimer bonds are in grey. The
A atoms in the top layer are directly above the B atoms in the lower layer.

                 307



in Section 2.2) and the next-nearest neighbor hops with vectors like ~R0 and transfer
integral t0 are trivially the same as in the monolayer case, so we concentrate
on describing the various interlayer couplings, which are illustrated in Figure 27(a).
The most important interlayer coupling is the dimer bond between the Au and Bl

lattice sites. The strength of this coupling is parametrized by the transfer integral �1,
and since there is no projection of the vector connecting these two lattice sites on the
xy plane, there is no momentum dependence in the matrix element. The next-nearest
neighbor interlayer couplings are the Al$Bu hops parametrized by �3, and the
Al$Au and Bl$Bu hops parameterized by �4. In each case, the momentum
dependence is the same function f ð ~kÞ as for the intralayer nearest neighbor hops.
Finally, the presence of the dimer bond may induce an additional asymmetry
between the two sublattices within each layer, which we account for this by including
the parameter D. Therefore, the tight-binding Hamiltonian for the � bands of neutral
bilayer graphene can be written as

H� ¼

t0gð ~kÞ �3 f ð
~kÞ �4 f ð

~kÞ
�

tf ð ~kÞ
�

�3 f ð
~kÞ
�

t0gð ~kÞ tf ð ~kÞ �4 f ð
~kÞ

�4 f ð
~kÞ tf ð ~kÞ

�

Dþ t0gð ~kÞ �1

tf ð ~kÞ �4 f ð
~kÞ
�

�1 Dþ t0gð ~kÞ

0
BBBB@

1
CCCCA, ð37Þ

where f ð ~kÞ ¼
P3

i¼1 expði
~k � ~RiÞ, gð ~kÞ ¼

P6
i¼1 expði

~k � ~R 0iÞ, and the superscript asterisk
denotes complex conjugation. The values of the transfer matrix elements which
appear in the Hamiltonian are still controversial. It seems that they may vary
between exfoliated and epitaxial graphene, and theoretical calculations do not
currently agree completely with experimental measurement. In Table 1 we collect the
values as currently known. The most thorough experimental determination of
the tight-binding parameters was carried out by Kuzmenko et al. [164], who used
infra-red spectroscopy to compare detailed reflection spectra with the predictions
of the tight-binding model. They fitted their data to nine free parameters, including
the four tight-binding parameters shown in Table 1, the interlayer gap, scattering
rate, temperature and position of the charge-neutrality point. The spectrum

γ
3

γ
4

t

t
γ
1

R

R

(b)(a)

j

Figure 27. (a) Designation of couplings in the tight-binding model of bilayer graphene.
Intralayer couplings are the nearest neighbor (A$B) with energy t, and the next-nearest
neighbor (A$A and B$B) with energy t0. Interlayer couplings are Au$Bl with energy �1; Al

$Bu with energy �3; and Au$Al and Bu $Bl with energy �4. (b) Illustration of the twelve
nearest and next-nearest neighbor lattice sites about site j. The vectors R and R0 appear in the
tight-binding formalism.
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associated with this Hamiltonian is shown in Figure 28, where we have taken the
tight-binding parameters given by Zhang et al. [165].

Mucha-Kruczyński et al. [170] have proposed a method for determining the size
and sign of various tight-binding parameters by utilizing angle-resolved photoemis-
sion spectroscopy (ARPES) data. Variation of the intensity of constant energy maps
reveal the wave function symmetry due to trigonal warping, band gaps and intralayer
site asymmetry. The location of the bottom of the split band immediately gives the size
of the interlayer coupling �1, and for energies greater than �1, the relative intensity of
the signal from the low-energy and split bands determines the sign of this parameter.
The magnitude and direction of the trigonal warping of the low-energy band structure
are set by the ratio �3/�1, so once �1 is accurately known, the analysis of the constant

Table 1. Tight-binding parameters for bilayer graphene, given in eV.

t� � �1 �3 �4 D

Kuzmenko [147] (IR spec.) 0.378
(0.005)

0.015
(0.005)

Kuzmenko [164] (IR spec.) 3.16
(0.03)

0.381
(0.003)

0.38
(0.06)

0.14
(0.03)

0.022
(0.003)

Zhang [165] (IR spec.) 3.0 0.40 0.3 0.15 0.018
Malard [166] (Raman) 2.9 0.30 0.10 0.12
Malard [167] (Raman) 3.0 0.35 0.13 0.13
Min [168] (ab initio) 2.6 �0.34 0.3
Gava [169] (ab initio) �3.4013 0.3963 0.3301 0.1671

Notes: Methods of determination of the parameters include infra-red spectroscopy (IR spec.),
Raman spectroscopy (Raman), and ab initio density functional theory calculations (ab initio).
Note that Min et al. claim that �1 varies slightly with the interlayer potential U. Bracketed
values are stated uncertainties.
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Figure 28. (a) The � bands in bilayer graphene along the high symmetry directions. The tight-
binding parameters are taken from Zhang [165]. We have ignored the intra-plane next-nearest
neighbor hopping parametrized by t0 (i.e. we have set t0¼ 0). (b) The low-energy spectrum
for ky¼ 0 in the nearest neighbor tight-binding model, (i.e. for �3¼ �4¼ t0¼D¼ 0). The bands
are labelled by the pair of values (�,�) (Equation (39)). The higher energy bands (�¼ 1)
are split by �1 from the low-energy bands (�¼�1), which are degenerate exactly at the K
point. In this case, all four bands are isotropic.
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energymaps near the charge neutrality point reveals the sign andmagnitude of �3. The
band gaps can also be characterized, and the relative contributions from the intralayer
asymmetry D and the interlayer bias U can be distinguished.

The Hamiltonian in Equation (37) is valid for the � bands across the whole
Brillouin zone. However, the low-energy properties of bilayer graphene are
determined by the electrons near the Fermi surface, which (for moderate doping
or gating) is located near the six K points. We therefore expand the momentum
dependence of H� near the two inequivalent points, and assign the valley index �
(such that �¼þ1 in the K valley, and �¼�1 in the K0 valley) to be a new quantum
number for the system. This causes the basis to expand to contain eight elements,
not counting the spin degree of freedom. It is convenient to swap the order of the
components in the K0 valley, so that the basis is

f Al
, Bu

, Au
, Bl
g in the K valley, and

f Bu
, Al

, Bl
, Au
g in the K0 valley:

Using this basis, we can write the low-energy Hamiltonian in valley � by expanding
the functions of momentum to the leading order about the K points as

H� ¼

3
4 t
0a2j ~kj2 �v3� �v4�

y �v�y

�v3�
y 3

4 t
0a2j ~kj2 �v� �v4�

�v4� �v�y Dþ 3
4 t
0a2j ~kj2 �1

�v� �v4�
y �1 Dþ 3

4 t
0a2j ~kj2

0
BBBBB@

1
CCCCCA, ð38Þ

where v ¼
ffiffiffi
3
p

at=ð2�hÞ is the Fermi velocity of monolayer graphene, v3 ¼
ffiffiffi
3
p

a�3=ð2�hÞ
and v4 ¼

ffiffiffi
3
p

a�4=ð2�hÞ are the velocities associated with the interlayer hops,
�¼ pxþ ipy, and ~p ¼ �h ~k ¼ �i�h ~r.

In the simplest case (the nearest neighbor approximation), with �3¼ �4¼
D¼ t0¼ 0, we see that the spectrum near the K point is quadratic:

Enn ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2 þ �21=2þ ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2 þ �21=4

qr
; ð39Þ

where �¼�1 refers to the conduction and valence band, and �¼�1 to the low-
energy and split branches illustrated in Figure 28(b). A cross-over to a linear
spectrum occurs at p� �1/2v, corresponding to the electron density nlin � �21=
ð4��h2v2Þ � 4	 1012 cm�2 [139], which is lower than the density at which the higher
energy band becomes occupied: nð2Þ � 2�21=ð��h2v2Þ � 8nlin [139]. The equivalent
energy is approximately �1/5.

The qualitative features of this model have been confirmed in optical experiments
by Wang et al. [148] and Kuzmenko et al. [147,164]. Wang et al. spectulated that
disagreements between the predicted and observed reflectivity properties could be
due to excitonic effects altering the optical spectrum. Kuzmenko et al. [147] observed
peaks in the reflectivity associated with the onset of various inter-band transitions,
and were able to extract parameters for the tight-binding model from them. However
there were some features which required additional couplings to be considered in the
tight-binding model before they could be explained, and we shall discuss them later.
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The effects of the interlayer hop parametrized by �4, and the onsite assymmetry D
is shown in Figure 29, where we plot numerical solutions of the Hamiltonian

in Equation (38) with �3¼ t0¼ 0, and various values of �4 and D. We see that �4
introduces a small electron–hole asymmetry, and that D increases the conduction

band energy near the K point. The combined effect is shown in the third panel

of Figure 29. At larger momentum (kxa
 0.1), the combined effects of �4 and

D cancel, leaving the bands almost unchanged.
Note that in this section, the overlap matrix has been neglected (see, e.g. Mucha-

Kruczyński et al. [170], or the book by Saito et al. [13]). This has an effect on the

band structure, including introducing an asymmetry between the electron and hole

bands, although only minimal effect is observed on the low-energy part near the K

points.
An analysis of the real space Green’s function of bilayer graphene near the K

points has been carried out by Wang et al. [171]. They derive analytical expressions

for the Green’s function, and plot the local density of states (LDOS) to compare with

experimental scanning tunnelling microscopy images of bilayer flakes. They predict

that the lattice sites not involved in the dimer bonds have the highest electron density

for electrons with energy below the interlayer coupling �1. This is in contrast to

monolayer flakes where the two lattice sites are equivalent and the LDOS are

identical to each other. The difference in the LDOS, D�0(") is given by

D�0ð"Þ ¼
0 j"j4 �1 ,

S�1
2�t2

j"j5 �1 ,

8<
:

where S ¼ 3
ffiffiffi
3
p

a2=2 is the area of the unit cell in real space.
Lopes dos Santos et al. [162] used the continuum limit of the tight-binding

formulation to consider the effect on the spectrum of a small rotation (parametrized

by the angle �) between the two graphene layers. The main consequence of the
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Figure 29. Detail of the effect of �4 and D (the intralayer site asymmetry induced by the
presence of the dimer bond) on the low-energy spectrum near the K point. In each case
the solid line represents the labelled tight-binding parameters with �3¼ t0¼ 0, and the dashed
lines correspond to �3¼ �4¼D¼ t0¼ 0. The kx momentum is measured from the K point,
and ky¼ 0 throughout.
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rotation is that the Dirac cones in each layer are shifted in momentum space, so that
the doublet of zero energy states in the lower layer cannot couple via the interlayer
dimers to the zero energy states in the upper layer. Instead, they couple to three sets
of finite energy states, at �vDK, where DK¼ 2 sin(�/2). The effect of this altered
coupling is that the Dirac cones are preserved, although their energy is shifted
downward by an amount 6 ~t2? sinð�=2Þ=ðvDKÞ. The Fermi velocity is also renormalized
so that ~v=v ¼ 1� 9 ~t?=ðvDKÞ

� 2
, where ~v is the modified interlayer hopping parameter

at the reciprocal lattice vectors, and this reduced velocity constitutes an experimental
tool for identifying twisted bilayers. The twist also generates an electric potential
difference between the layers, but the absence of coupling between the zero energy
states in each layer prevents the opening of a gap at the Dirac point. Finally, an
electron–hole asymmetry develops, which shifts the Fermi energy away from the
Dirac point at half-filling.

Katsnelson et al. [172] showed that, as in the monolayer, the ripples5 which
are intrisic to graphene [24,173] cause the Hamiltonian to be modified by an
effective gauge field. This induces zero energy states, which the authors prove (via the
Atiyah-Singer theorem) to be topologically protected. The number of these states
is determined by the total ‘flux’ in the sample.

3.2.2. Trigonal warping

The next-nearest neighbor couplings may have important effects in the low-energy
limit. Chiefly, the direct coupling between atomic sites not involved in the dimer
bond (the Al and Bu sites), which is parametrized by the hopping integral �3 causes
the low-energy spectrum to become anisotropic. This effect is called trigonal
warping, is detectable in ARPES measurements [174,175], and has a significant effect
on the weak localization properties of bilayer graphene [176,177]. It is included in the
tight-binding formalism with the transfer integral �3 which leads to the velocity
v3 ¼

ffiffiffi
3
p

a�3=ð2�hÞ. The spectrum associated with the nearest neighbor Hamiltonian
with the trigonal warping terms was given by McCann [139] as

�ð�Þ� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�21 þ v2 þ

1

2
v23

� �
p2 þ ð�1Þ�

ffiffiffiffi
�
p

s
; ð40aÞ

where �¼ 1, 2 represents the lower and higher energy bands respectively, and

� ¼
1

4
�21 � v23p

2

 �2

þv2p2 �21 þ v23p
2


 �
þ 2��1v3v

2p3 cosð3�Þ: ð40bÞ

In Figure 30(a) we show this spectrum for the parameters given by Zhang et al., but
with �4¼D¼ t0¼ 0, so that we reveal the effects of the trigonal warping only. Plotting
the energy along the line ky¼ 0, the spectrum is asymmetrical about kx¼ 0, although
electron–hole symmetry is still present since the sublattice symmetry is not broken.
For small energies, a Lifshitz transition occurs whereby the Fermi surface breaks into
one central region with area Ac���

2/(�hv3)
2 and three elliptical ‘leg’ regions with area

Al�Ac/3. The center of the leg regions are at momenta with magnitude �1v3/v
2

and angles 0, 2�/3, and 4�/3. The electron density at which this transition in
the shape of the Fermi surface will occur is nL� (v3/v)

2 nlin� 1	 1011 cm�2,
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where nlin is the density corresponding to the cross-over from the quadratic to the

linear spectrum, discussed after Equation (39). The trigonal warping has a substantial

effect on the low-energy transport properties of the bilayer.

3.2.3. Effective low-energy theory

In 2006, McCann and Falko [139] introduced a low-energy effective model for

bilayer graphene. In essence, it is an expansion of the Hamiltonian in the parameter

"/�1 which effectively excludes the atomic sites involved in the dimer bond. Starting

from the Hamiltonian in Equation (38), with �4¼ t0¼D¼ 0, and including the

interlayer bias U discussed in Section 3.3, four blocks can be identified:

H11 ¼ � U�z=2þ v3½�xpx � �ypy�
� �

, H22 ¼ ��U�z=2þ �1�x,

H21 ¼ H12 ¼ �vð�xpx þ �ypyÞ:

The 4	 4 Green’s function associated with H� can also be split into 2	 2 blocks,

and the approach taken by McCann was to compute the block G11 involving only

the lower band states, and use it to identify the effective low-energy Hamiltonian.

In particular, using Gð0Þaa ¼ ðHaa � �Þ
�1,

G ¼ H� � �

 ��1

¼
G
ð0Þ�1
11 H12

H21 G
ð0Þ�1
22

!�1
:

Simple evaluation of the equation GG�1¼ 1 gave

G�111 þ � ¼ H11 �H12G
ð0Þ
22H21:
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Figure 30. (a) Effect of inclusion of trigonal warping (solid line) in spectrum. The dashed line
is for v3¼ 0. An asymmetry about kx¼ 0 is introduced, but electron–hole symmetry persists.
The inset shows the very low energy spectrum, and the band overlap of �2meV induced by
the trigonal warping. (b) Isoenergetic lines in momentum space for v3/v¼ 0.1. For E� 1meV
the Fermi surface splits into four pockets.
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Now, the low-energy effective HamiltonianH2 is identified with the Green’s function
G11 as H2 ¼ G�111 þ � so that the Schrödinger equation for this Hamiltonian was
written as

H2 ¼ � ) H11 �H12G
ð0Þ
22H21

h i
¼ � :

Making a Taylor expansion of G
ð0Þ
11 in the small parameters �/�1 and U/�1,

substituting in the Schrödinger equation for the 2	 2 Hamiltonian, moving all terms
containing energy to the right-hand side, and rearranging for H2 gives

H2 ¼ �
v2

�1

0 �y
2

�2 0

� �
þ �v3

0 �
�y 0

� �
þ
�U

2

1 0
0 �1

� �
�
2v2

�21

�y� 0
0 ���y

� �� �
:

ð41Þ

This expression is interesting in a number of ways. Firstly, the kinetic energy now
comes with factors of �2, which ensures that the energy dispersion is quadratic in this
limit. This corresponds to the electrons gaining a finite effective mass at the bottom
(top) of the conduction (valence) band, and the Dirac spectrum disappears.
However, the chirality of the electrons persists because the sublattice pseudospin is
still a relevant degree of freedom. The linear momentum term now carries the
velocity v3
 v/10. Therefore, this term is important at low momentum and its effect
on the band structure (called trigonal warping) is discussed in Section 3.2.2. The final
term in this expression contains contributions to the Hamiltonian from the interlayer
asymmetry potential. Since the decoupled lattice sites retained in this model are in
opposite layers, the low-energy band structure keeps its dependence on U via the first
term in the bracket as it was in the four band case. Further discussion of this term
is deferred until Section 3.3. The second term in the bracket is sometimes called the
kinetic asymmetry, and is due to the depletion of charge on the Au, Bl dimer sites.
Using a more compact notation, this equation can also be written as the final result
of McCann and Falko [139]:

H2 ¼ �
1

2m
ð~� � ~pÞ�xð~� � ~pÞ þ �v3 ~�

t � ~pþ
�U

2
�z þ

�U

2m�1
~� � ~p

 �

�z ~� � ~p

 �

, ð42Þ

where m¼ �1/(2v
2) is the effective mass induced by the curvature of the bands, and

the superscript t denotes the transpose of the matrix.

3.3. Band gap in bilayer graphene

3.3.1. Band gap in the tight-binding model

The symmetry governing the degeneracy of the highest valence and lowest
conduction bands at the K points in neutral bilayer graphene is the inversion
symmetry. If this symmetry is broken, then a gap is expected to appear in the low-
energy spectrum [139,178,179]. This breaking of symmetry can be modelled within
the tight-binding approximation by assuming that the two layers are at different
electrostatic potentials (Figure 31(a)) so that the difference between them is
parametrized by the energy U. The Hamiltonian corresponding to the full bilayer
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system with broken inversion symmetry is given by H¼H0þHU, where H0 is

discussed fully in Section 3.2, and

HU ¼

�U=2 0 0 0

0 ��U=2 0 0

0 0 ��U=2 0

0 0 0 �U=2

0
BBB@

1
CCCA ¼ �U2 �z � �z, ð43Þ

which corresponds to the lower layer being at potential þU/2, and the upper layer at

�U/2. The factor of � is necessitated by the definition of the bases in the two valleys.

The effect of the inclusion of this term is illustrated in Figure 31(b) for the nearest

neighbor tight-binding model. We see that for moderate values of the interlayer

potential (often called the bias potential), a gap does indeed appear at the K point,

but the quadratic profile of the low-energy dispersion is retained. For higher values

of the bias, the quadratic nature is replaced with the ‘Mexican hat’ dispersion [180].

The band structure associated with this simplified Hamiltonian is

�2 ¼ v2p2 þ �21=2þU2=4þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p2ðU2 þ �21 Þ þ �

4
1=4

q
,

where �¼ 1 designates the split bands, and �¼�1 gives the low-energy bands. From

this expression, it is straightforward to compute that the gap exactly at the K point is

U, and that the minimum separation of the conduction band and valence band is

~U ¼
�1Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ �21

q at momentum p2 ¼
U2

4v2
U2 þ 2�21
U2 þ �21

:

The two quantities are labelled in Figure 31(b). Therefore, U� Ũ for bias up to

U¼ 0.2 eV.
In the preceding analysis, the size of that gap was treated as a phenomenological

parameter. In a typical experimental setup, the source of the symmetry breaking is

either a gating arrangement, or a number of dopants placed on one face of the

graphene bilayer. Two studies [178,181] have related the characteristics of the gate

or the dopant concentration to the size of the gap in the context of the continuum

limit of the tight-binding model. We shall discuss first-principles calculations of these

effects in Section 3.3.3. The excess charge density n¼ n1þ n2 is distributed between
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Figure 31. (a) Side-on view of the bilayer lattice, with the interlayer potential U and the
interlayer separation d labelled. (b) Low-energy tight-binding bands for three values of the
gap U, with �3¼ �4¼D¼ t0¼ 0, t¼ 3 eV and �1¼ 0.4 eV. The gap at the K point is U, whereas
the minimum splitting between the bands occurs at Ũ.
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both layers because of the incomplete screening, so that there is a potential energy

difference [178]

U ¼ U0 þ e2n2L
2=Cb ð44Þ

between the two layers. In this expression, U0 is the bare asymmetry parameter which

gives a finite asymmetry at zero density (due to, e.g. uncontrolled doping in the

fabrication process, or interactions between the graphene flake and the substrate),

L2 is the flake area and Cb¼ "r"0L
2/d is the capacitance of the bilayer with dielectric

constant "r. The gap is calculated self-consistently, and Figure 32(a) shows the

calculated value of the gap for three values of the bare asymmetry. Figure 32(b)

shows the densities on the two individual layers for a finite bare asymmetry

U0¼ �1/5¼ 78meV. The result of the screening is to reduce the zero density gap so

that U(0)5U0. In the limiting case �1, �F�jUj, an analytic expression for U(n) can

be derived. Integrating the wave function amplitudes to find the layer density of the

partially occupied bands, the densities are

n1ð2Þ �
sgnð�FÞ p

2
F

2��h2
�

�1U

2��h2v2
�0
�1
þ
�20
�21
�
1

2
ln

�0
�1

� �� �
,

Figure 32. (a) Numerical evaluation of the bilayer asymmetry U(n) for different values of the
bare asymmetry: U0¼ 0 (solid line), U0¼ �1/10¼ 39meV (dashed line) andU0¼ �1/5¼ 78meV
(dotted line), using typical parameter values �1¼ 0.39 eV, d¼ 3.55 Å, "r¼ 1 and
v¼ 8.0	 105ms�1. (b) Layer densities n2 (solid) and n1 (dashed) as functions of n for
U0¼ �1/5¼ 78meV. (c) U(0) as a function of U0 for "r¼ 1 (solid line) and "r¼ 2 (dashed).
(d) The cyclotron mass in units of the bare electronic mass for different values ofU0 as in (a). (e)
U(n), where the solid and dotted lines are the result of the self-consistent procedure for
�1¼ 0.2 eV and �1¼ 0.4 eV, respectively; the dashed line is the unscreened result; the circles
representU(n) measured by ARPES [140]. (f ) Band gap Ũ as a function of density (bottom axis)
and gate voltage (top axis): solid and dashed lines are for the screened and unscreened cases,
respectively. The thin dashed-dotted line is a linear fit to the screened result at small biases. ((a)–
(d) Reprinted with permission from E. McCann, Physical Review B, 74, 161403, 2006 [178].
Copyright � (2006) by the American Physical Society); ((e) and (f) Reprinted with permission
from E.V. Castro et al., Physical Review Letters, 99, 216802, 2007 [181]. Copyright� (2007) by
the American Physical Society.)
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where the ‘ungapped’ energy is �0 ¼ ð�1=2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4v2p2F=�
2
1

q
� 1


. In the limit discussed,

v2p2F � �
2
F þ �1j�Fj so that �0 is independent of U and Equation (44) is used to find

U �
U0 þ e2L2n=ð2CbÞ

1þ�
�
0

�
1
þ

�2
0

�2
1

� 1
2 ln

�
0

�
1

� �h i :
This approximation is valid for intermediate densities U, Ũ�j�Fj5 �1 where �F� �0.
The effectiveness of the screening is given by the parameter �¼ e2L2�1/(2��h2v2Cb),
which depends on the model parameters, as illustrated in Figure 32(c). Here U(0) is
shown as a function of U0 for "r¼ 1 (solid line) and "r¼ 2 (dashed line). It is clear
that the gap increases with the dielectric constant.

According to Castro et al. [181], the screened potential difference between the two
layers is given by

U ¼ 2�
n

n0
þ
Dnðn,VÞ

n0

� �
n0ed

2�0
,

where Dn(n,V ) is the induced charge imbalance between the two layers, which is
calculated through the weight of the wave functions in each layer. This charge
imbalance produces an internal electric field which screens the external one.
Figure 32(e) shows the comparison of the screened and unscreened calculations with
experimental data taken in ARPES measurements by Ohta et al. [140]. The
unscreened model cannot accurately describe the experimental data, whereas the
results of the self-consistent procedure do. The theoretical dependence of the gap on
the electron density is shown in Figure 32(f ), along with a linear fit (valid in the small
gap regime only). The theory predicts saturation of the gap U� �1 at large biases.

Pereira et al. [182] performed an analytical study of the effect of a band gap and
changing electron density on the length of the interlayer dimer bonds. In their model,
the atoms not involved in the bonding are assumed to be static, and a uniform
displacement of the Au and Bl atoms towards each other is considered assuming that
the Fermi energy is in the conduction band. The Mexican hat shape of the band
structure plays a role by changing the topology of the Fermi surface, and introducing
non-monotonicity into the displacement. Two densities,

n� ¼
gAcV

2

4�v2
and n�� ¼

gAcðV
2 þ 2�21 Þ

4�v2

characterize the behavior, where Ac is the area of the unit cell. The quantity n*
designates the density which corresponds to the Fermi level being at the top of the
Mexican hat, and sets the scale for the minimum of the lattice displacement. As the
density is increased further, the displacement saturates with the onset of saturation
being marked by n**. Since there are a number of poorly-known parameters in the
model, the quantitative results are unreliable.

3.3.2. Experimental evidence of gap

Experimental verification of the predicted band structure of gapped bilayer graphene
has been obtained in two ways. Firstly, it has been shown by Ohta et al. [140] that
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n-type doping of a bilayer graphene flake by potassium atoms causes an increase
in the total charge density on the upper layer which generates a static electric field
which was characterized by U. Since the screening length (
4 Å) is comparable to the
interlayer separation (d� 3.4 Å), the screening of this charge is incomplete and a net
dipole field results between the two layers. Ohta and Bostwick [140,179] used ARPES
to determine the low-energy band structure of the bilayer and hence determined
the gap and other band structure parameters. Figure 33(a) shows the evolution of the
four � bands as the concentration of potassium dopants increases. At minimal
doping, the remnant charge asymmetry from the manufacturing process and
substrate interactions causes the bilayer to be slightly positively doped and a small
gap is seen between the middle two bands. For the doping of approximately 0.012
electrons per unit cell, the bilayer is overall charge-neutral and the gap closes.
Increasing the doping further provides overall negative charge density and the gap
reopens. Figure 33(b) shows the evolution of the interlayer potential difference U as
a function of the dopant concentration (filled dots). For moderate dopant density,
the change in the potential is linear and moves through zero at approximately 0.012
electrons per unit cell, precisely coinciding with the closing of the gap. Castro et al.
[181] also demonstrated the existence of a gap by chemically doping a bilayer in the
case of a finite magnetic field.

The second method of producing a gap in the low-energy spectrum is to use
electronic gating. Infra-red spectroscopy [183,184] has shown band gaps of up to
250meV (Figure 35) which have a slight nonlinear dependence on both photon
energy and electronic density. An example device is shown in Figure 34(a),
where a top gate is fabricated over an AB-stacked graphene bilayer (Figure 34b).
The presence of this gate and the back gate allow two electrical displacement
fields Db of the back gate and Dt of the top gate (Figure 34c) to be

Figure 33. (Colour online) Variation of states at the K point with increasing potassium
coverage. (a) The image map shows the energy distribution curve at K as a function of
potassium coverage. The blue markers are the fitted positions of the tight-binding � and �*

bands, and the yellow line indicates ED. The closing and reopening of the gap between � and
�* states are clearly shown. (b) The influence of doping concentration on the band parameters
U (filled dots) and �1 (open circles) (Reprinted figure with permission from T. Ohta et al.,
Science, 313, p. 951, 2006 [140]. Copyright � (2006) The American Association for the
Advancement of Science.).
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independently controlled. The average of these fields breaks the inversion symmetry
of the graphene flake and opens the gap at the charge neutrality point. The difference
of these fields leads to a net carrier doping, so that the position of the Fermi level
and the size of the band gap may be controlled independently (Figure 34d). If the
back gate voltage is fixed and the top gate voltage swept, traces such as those
in Figure 34(e) are found, showing that the charge-neutrality point (corresponding to
the peak in the resistance) shifts, and the magnitude of the peak resistance increases
with both increasing positive and negative back gate voltage. This increase in the
peak resistance may be linked to an increasing magnitude of the band gap.

The infra-red spectroscopy measurements show that the absorption peak near
�1� 0.4 eV associated with the inter-band optical transitions splits into two when the
top gate is applied. One peak moves downwards in energy with increasing gate
voltage, the other upwards, as in the left-most panel of Figure 35. This behavior is
explained by noting that peak 1 is due to transitions between the lower and upper
conduction bands, while peak 2 is due to transitions from the upper valence band to
the upper conduction band. Therefore, if a gap is present between the upper valence

Figure 34. Dual-gated bilayer graphene. (a) Optical microscopy image of the bilayer device
(top view). (b) Illustration of a cross-sectional side view of the gated device. (c) Sketch showing
how gating of the bilayer induces top (Dt) and bottom (Db) electrical displacement fields.
(d) Left, the electronic structure of a pristine bilayer has zero band gap (where k denotes the
wave vector.) Right, upon gating, the displacement fields induce a non-zero band gap U and
a shift of the Fermi energy EF. (e) Graphene electrical resistance as a function of top
gate voltage Vt at different fixed bottom gate voltages Vb. The traces are taken with 20V steps
in Vb from 60V to �100V and at Vb¼�130V. The resistance peak in each curve corresponds
to the charge-neutrality point (CNP) where Db¼Dt for a given Vb. (f ) The linear relation
between top and bottom gate voltages that results in bilayer CNPs (Reprinted figure with
permission from Y. Zhang et al., Nature, 459, p. 820, 2009 [184]. Copyright � (2009) Nature
Publishing Group.).
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and lower conduction bands, and the Fermi energy is located in the conduction
band, the energy of the transition associated with peak 1 will decrease, whereas
that associated with peak 2 will increase. The energy gap between the two peaks
is then precisely the band gap. The left-hand plots in both Figure 35(a) and (b) are
experimental data showing exactly this trend. A maximum gap of 
200meV is seen
for a gate voltage of 3.6V. The peaks also broaden because the bands are not exactly
parallel, so a wider range of transition energies are allowed for stronger gating.

As has already been stated, one of the attractive prospects for the utilization
of graphene in technological applications is in ballistic field-effect transistors.
The external tunability of the band gap in the biased bilayer is particularly exciting
in this context, and attempts have been made to implement current-switching devices
using this idea [185]. Transport measurements showed a gate-induced insulating
state and significantly non-Ohmic current–voltage characteristics at low tempera-
tures, but the band gap revealed by these transport measurements was significantly
lower than predicted by theory, and current switching was unobtainable at high
temperature. While these experiments may demonstrate the proof of principle
for these devices, there are still many challenges to be overcome. In addition, the
careful analysis of the low-temperature data revealed that the transport is best
described by disorder induced by variable range hopping in an insulating material
where impurity states localized in the band gap are the predominant mechanism
for transport. Thermally activated transport did not qualitatively explain the
experimental results.

3.3.3. Ab-initio simulations

Various studies have been carried out on the effect of the interlayer electric field
using first principles techniques [168,169,186–188]. There is some confusion in the
literature because for the two main approximations for the exchange and correlation
potentials, the local density approximation (LDA) and generalized gradient

Figure 35. Experimental and theoretical spectra of the IR conductivity in units of �e2/2h for
(a) the hole side and (b) the electron side as a function of photon energy. Charge neutrality
occurs at V¼�0.5V. In the case of hole doping, the traces correspond to V¼�0.5, �0.8,
�1.0, �1.2, �1.4, �1.6, �1.8, �2.0, �2.2, �2.4, �2.6, �2.8 and �3.0V from bottom to top. In
the electron side, the traces are for V¼�0.5, �0.4, �0.3, �0.2, 0.0, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0,
2.4, 2.8, 3.2 and 3.6V. The theoretical data is obtained via the Kubo formula (Reprinted figure
with permission from K.A. Mak et al., Physical Review Letters, 102, 256405, 2009 [183].
Copyright � (2009) by the American Physical Society.).
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approximation (GGA) have been shown to give quantitatively different results for

the optimum interlayer spacing d and the band gap U.
The most thorough study was published by Gava et al. [169] in which they

describe the size of the gap as a function of the doping and the external electric field.

They demonstrate first that the size of the gap is linearly dependent on the charge

imbalance between the two layers, and define the linear coefficient as

Uðn,EavÞ ¼ �ðnÞðn1 � n2Þ, ð45Þ

where n1,2 are the densities on the two layers, and Eav is the applied electric field.

In the absence of electronic screening, � is independent of the doping, and

�bare ¼ de2

2�
0
¼ 30:3	 10�12 cm2 meV. The DFT results within the LDA, GGA and

GW approximations are compared to tight-binding results employing a simple

electrostatic model to account for the screening in Figure 36(a). It is clear from the

Figure 36. (a) � (as defined in Equation (45)) as a function of doping n, for an electronic
temperature of 300 K calculated with DFT-GGA (crosses), and DFT-LDA (pluses),
calculated using the TB model with �0¼ 3.1 eV and �1¼ 0.4 eV (circles) and using the GW
correction (up-triangles). The continuous thick line is the fit of the GW result. (b) Planar
average of the linearly induced charge (per unit volume) �(1) for bilayer graphene in the
presence of an external electric field Eav¼ 1.6	 e/(2"0)10

12 cm�2 for doping level
n¼ 2	 1012 cm�2 (continuous line) and n¼ 38	 1012 cm�2 (dashed line). (c) The symmetric
component, �ð1Þs ; (d) the antisymmetric component �ð1Þa , with respect to each layer, of the
linearly induced charge �(1) shown in (b) for the same doping levels (Reprinted figure with
permission from P. Gava et al., Physical Review B, 79, 165431, 2009 [169]. Copyright � (2009)
by the American Physical Society.).
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figure that while all four estimations give the same qualitative dependence, the tight-

binding approximation gives a significantly higher slope than any of the first

principles results. There are two possible reasons for this discrepancy: The crude

electrostatic model used in the self-consistent process in the tight-binding model, and

systemic differences in the calculated band structures between the first principles and

tight-binding results. The authors demonstrate that both factors play a significant

role. The differences in charge transfer which lead to the reduced screening between

the two models is illustrated in Figure 36(b–d). The linearly induced charge (per unit

volume) is

�ð1Þðz; n,EavÞ ¼
@�ðz; n,EavÞ

@Eav
Eav �

1

2
�ðz; n,EavÞ � �ðz; n, � EavÞ½ �,

where �(z; n, Eav) is the planar average of the charge density (per unit volume) at

doping n and in the presence of an external average electric field Eav. The charge

density �(1) is antisymmetric with respect to z¼ 0 (which corresponds to the point

half-way between the two graphene planes) and is plotted in Figure 36(b). We see

that the electronic screening is characterized by the charge transfer between the

two layers, and an intralayer polarization (which is also present in the monolayer).

The density is decomposed into a symmetric component �ð1Þs and an antisymmetric

component �ð1Þa with respect to each individual layer defined by

�ð1Þs=aðzÞ ¼
1

2
�ð1ÞðzÞ � �ð1Þ sgnðzÞd� z½ �
� �

:

These are shown in Figure 36(c) and (d), respectively. Clearly, these quantities are

related to the inter- and intralayer charge transfer, respectively. The antisymmetric

contribution is very similar to the induced charge in a single monolayer, and is of the

same order of magnitude as the total induced charge in the bilayer. On this basis,

the authors conclude that the intralayer polarization gives an important contribution

to the screening properties of the system. This contribution is not taken into account

in the tight-binding approximation, and is the major contribution to the discrepancy

between these two models. The authors also show that the GW correction adds a

contribution to the density dependence of the linear parameter � (Figure 36a) which

can be explained within a perturbation theory analysis. Also, the temperature

dependence of the linear parameters is small.
Other notable works include the comparison of the AB and AA stacking

arrangements by Huang et al. [188] and Aoki et al. [186], in which they demonstrate

that AB stacking is energetically favorable over the AA arrangement. Also, Min

et al. [168] published the first systematic DFT study of the gapped bilayer, showing

that the size of the gap saturates with increasing interlayer potential. They also claim

that the exchange potential may contribute to the discrepancies between the DFT

and tight-binding results, and that the logarithmic divergence of the screening ratio

at small gate voltage (demonstrated within the tight-binding model by McCann

[178]) is reproduced in their calculations. Yu et al. [189] considered the polarizability

of graphene stacks within the LDA approximation, and they also found the same

qualitative picture sketched above. Specifically, the gap saturation was at approx-

imately 0.25 eV, although the gap size at fields where electric breakdown will start to
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occur in SiO2 was 0.17 eV. They also investigated the distribution of charge between
layers and sublattices, finding that an external field induces a significant electron
concentration on one layer, with a positive charge cloud on the other, and that the
lattice sites not involved in the dimer (�1) bonding have higher density. Finally,
atomistic calculations have been presented by Fiori et al. [187] to assess the
practicality of FET devices implemented in gapped bilayer graphene. They claim that
there is no conceptual issue, but that the band gap is not wide enough to support a
sufficiently high on/off current ratio.

3.4. Quantum Hall effect

The quantum Hall effect in bilayer graphene is a fascinating manifestation of the
massive chiral nature of the low-energy quasiparticles. When a magnetic field with a
large component perpendicular to the graphene plane is applied, the electron
spectrum splits into Landau levels (LLs), just as in a traditional two-dimensional
electron system, or as in monolayer graphene (Section 2.1). However, the form of the
dependence of the energy of these levels on the magnetic field, level index, density
and other parameters are qualitatively different from both of these examples. The
chiral nature of the electrons is reflected in the presence of zero-energy levels, and
the increased Berry’s phase manifests in the doubled degeneracy of these levels.
The quadratic low-energy dispersion is represented by the linear dependence of the
LL spectrum on the magnetic field, and the near-linear dependence on the LL index.
We shall begin in this section by presenting the experimental evidence for the novel
quantum Hall effect in bilayer graphene. Then, in order to describe the behavior of
the low-energy Landau levels, the two band tight-binding model introduced by
McCann et al. [139] will be used in Section 3.4.2 to demonstrate the main features.
The magneto-optical properties are discussed in Section 3.4.3, the trigonal warping is
included in Section 3.4.4 and electron–electron interactions and the perculiar
properties of the zero modes are reviewed in Section 3.4.5.

3.4.1. Experimental picture

The first report of an observation of the quantum Hall effect in bilayer graphene was
given by Novoselov et al. [141]. Using samples obtained by the microcleavage
technique and fashioned into multi-terminal transistor devices, the low-temperature
transport properties were measured in strong magnetic fields. Figure 37(a) shows
typical traces of the longitudinal and transverse resistivities at fixed electron density
as a function of the magnetic field. Plateaus in the Hall resistivity accompanied
by dips in the longitudinal resistivity are clearly seen. The sequence of QHE plateaus
is described by �xy¼ h/4ne2 (where n is an integer designating the level), as would
be expected in a traditional two-dimensional electron system with spin and valley
degeneracies. However, a significant discrepancy with this case is manifest at small
filling factors, as shown in Figure 37(b): the expected level at zero density is not
present, leading to a double-sized step across the zero density point, and indicating
a Landau level with doubled degeneracy relative to the higher Landau levels.
The absence of a plateau at zero energy resembles the behavior of the massless Dirac
fermions observed in the monolayer material (Section 2.2). Figure 37(c–f) shows that
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the height of the �xx peak is only weakly dependent on magnetic field and temper-

ature, which again contrasts starkly with the traditional two-dimensional case.

3.4.2. Tight-binding description of low-energy Landau levels

The main features of the Landau level spectrum are best exhibited in the low-energy

effective model introduced by McCann and Falko [139] and discussed in

Section 3.2.3. The leading term in the two-band Hamiltonian for bilayer graphene is

H ¼ �
1

2m
~� � ~p

 �

�x ~� � ~p

 �

,

which corresponds to the continuum limit of the nearest neighbor tight-binding

theory in the K valley. To account for a magnetic field characterized by the vector

potential ~A, we employ the generalized momentum operator ~p� q ~A, where q¼�e

Figure 37. (a) Hall resistivities �xy and �xx measured as a function of B for fixed
concentrations of electrons n� 2.5	 1012 cm�2 induced by the electric field effect. The
known geometry of the devices allowed the authors to convert the measured resistance into
�xx with an accuracy of better than 10%. (b) �xy plotted as a function of n at a fixed B and
temperature T¼ 4K. Positive and negative n correspond to field-induced electrons and holes,
respectively. �xy crosses zero without any sign of the zero-level plateau that would be expected
for a conventional 2D system. (c–f ) Resistivity of bilayer graphene near zero concentration as
a function of magnetic field and temperature. The peak in �xx remains of the order of h/4e2,
independent of B (c,d) and T (e,f ). This yields no gap in the Landau spectrum at zero energy
(Reprinted figure with permission from K.S. Novoselov et al., Nature Physics, 2, p. 177, 2006
[141]. Copyright � (2006) Nature Publishing Group.).
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such that e4 0 is the electron charge. In that case, the matrix form of the
Hamiltonian becomes

H ¼ �
1

2m

0 ð px þ eAx � ipy � ieAyÞ
2

ð px þ eAx þ ipy þ ieAyÞ
2 0

!
:

We shall work within the Landau gauge defined by ~A ¼ Bx~‘y so that the
magnetic field ~B ¼ ~r 	 ~A ¼ B~‘z. In this case, the � and �y operators correspond
to lowering and raising operators for the basis of magnetic oscillator functions given
by ’m¼ eikyy �m(x). These functions are defined so that

��0 ¼ 0, ��m ¼ �
i�h

lB

ffiffiffiffiffiffiffi
2m
p

�m�1, �y�m ¼
i�h

lB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmþ 1Þ

p
�mþ1, ð46Þ

where lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðeBÞ

p
is the magnetic length, and the indices m� 0 are integers. Using

these relations in the Schrödinger equation gives the spectrum of discrete levels "�
o

and associated wave functions ��
o
as6

"0 ¼ 0, �0 ¼
�0
0

� �
; "1 ¼ 0, �1 ¼

�1
0

� �
;

"�joj�2 ¼ ��h!c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jojðjoj � 1Þ

p
, ��joj�2 ¼

1ffiffiffi
2
p

�joj
��joj�2

!
,

where !c ¼ eB=m ¼ �h=ð2BmÞ ¼ 2�hv2=ð2B�1Þ is the cyclotron frequency in bilayer
graphene. Each of these levels is four-fold degenerate due to the combined two-fold
spin and valley degeneracies. This derivation illustrates the existence of the eight-fold

degenerate zero energy state, since the Hamiltonian 0 �y
2

�2 0

� �
along with the relations

in Equation (46) shows clearly that it is possible to act twice with H on the wave

function �1
0

� �
and return a zero eigenvalue. In the monolayer case (Section 2.1),

the Hamiltonian contains only linear powers of �, so it is possible to act only once to
return the zero eigenvalue. The magnetic field dependence of these levels is contained
entirely in !c¼ eB/m, so that the Landau levels depend linearly on the field, in
contrast to the monolayer where they show

ffiffiffiffi
B
p

dependence. Also, the Landau level
spacing (i.e. the dependence on o) shows that the levels are nearly equally spaced,
apart from the lowest few where the deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jojðjoj � 1Þ

p
from equal spacing is

not small. The eightfold degeneracy in the "¼ 0 Landau levels is unusual amongst
two-dimensional systems, and suggests that electron–electron interactions in a
bilayer could give rise to a number of strongly correlated quantum Hall states.
We defer its discussion until Section 3.4.5.

A more complete picture of the behavior of the Landau levels in bilayer graphene
is given by the full four-band tight-binding model. In this case, the Hamiltonian in
the same basis as used previously, i.e. where the wave function component orders are
swapped between the K and K0 valleys is [190]

H ¼

U0 � �U=2 0 0 �v�y

0 U0 þ �U=2 �v� 0
0 �v�y U0 þ �U=2 �1
�v� 0 �1 U0 � �U=2

0
BB@

1
CCA,
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where U0 is the average potential of the two layers, U is the total energy difference

between the two layers, and as before, �¼ pxþ eAxþ i( pyþ eAy). The eigenvalues

associated with this Hamiltonian are the solutions of the quartic polynomial

Ebðn,BÞ �U0 þ �U=2ð Þ
2
�ðnþ 1Þw2

� 
Ebðn,BÞ �U0 � �U=2ð Þ

2
�nw2

� 
� ðEbðn,BÞ �U0Þ

2
�U2=4

� 
�21 ¼ 0,

where w ¼
ffiffiffi
2
p

�hv=lB. Solutions to this equation cannot be written in a simple form

(as they could for E2 in the zero magnetic field case), so we present numerical

evaluations of the eigenvalues in Figure 38. In this case, the labels of the Landau

levels are defined as follows. The conduction and valence band each have their own

ladder of levels, with indices n¼ 0, 1, . . . . To distinguish one band from another,

we use the label b¼ c, v for the conduction and valence bands, respectively. The

presence of a potential difference between the two layers gives rise to the splitting

of the zero energy LL. The Mexican hat structure of the zero-field energy relation

is replicated in the Landau level spectrum at low fields [175] by the fan of levels

which cross each other in a complicated pattern (see the inset to Figure 38b). Pereira

et al. [190] display a comparison of these levels with those derived from the two band

approximation discussed above. They find that the two-band theory underestimates

the Landau level energy at moderate field, but that the qualitative features of the

levels are the same.
Some particular cases of this equation are easy to evaluate. Firstly, the U¼ 0 case

yields the exact eigenvalues

Ebðn,BÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�h2v2

l2B
þ
�21
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2v2

l2B
þ
�21
2

� �2

þ
2n�21�h2v2

l2B
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Figure 38. (a) The low-energy Landau levels as a function of level index n for zero and finite
gap U at B¼ 10 Tesla. The lifted valley degeneracy is manifest for finite gap. (b) The first eight
Landau levels as a function of magnetic field for zero and finite gap U in the K valley only.
The gap causes additional level crossings at small magnetic field, and it is clear that the n¼ 0
level is constant as a function of field. The inset shows the LL spectrum for low magnetic field,
displaying the additional crossings induced by the interlayer asymmetry. We have taken
�1¼ 0.4 eV, v¼ 1.0	 106ms�1 and U0¼ 0 throughout.

326                   



where b¼ c corresponds to the leading positive sign, and b¼ v to the negative sign.

This expression readily reduces to Ebð0,BÞ ¼ 0, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2v2=l2B þ �

2
1=2

q
for the n¼ 0

levels. In the symmetric case (i.e. when U¼ 0), both bands have E(0,B)¼ 0 as

a solution, restoring the doubly degenerate lowest Landau level.
The Hofstadter butterflies for bilayer graphene have been examined by Nemec

et al. [191], and transport properties in the case where the chemical potential exceeds

�1 has been investigated by Nakamura et al. [192].
The Landau level spectrum for the high-energy bands of bilayer graphene

was investigated by Lai et al. [193]. They used the tight-binding model without

the continuum limit to explicitly diagonalize Hamiltonians corresponding to finite-

sized bilayer graphene flakes in a magnetic field. They focused on three energy

regions: the low-energy region where the results of analytical solutions of the

continuum limit of the model were recovered; the high-energy limit where the

Landau levels are composed of electrons originating from the split bands at zero

field (Figure 39b and c) and the intermediate regime (Figure 39a). The intermedi-

ate regime corresponds to the region where the LL density is largest (Figure 39d–f ),

where a phenomenological broadening of �¼ 0.5meV has been included) because

the zero-field density of states is highest at the M point of the Brillouin zone. The

non-uniformity of the LLs is due to the unequal spacing of LLs in this energy range

(not captured in the low-energy approximation to the tight-binding model described

above), and is enhanced by the presence of the second group of LLs arising from the

split bands. This analysis also includes the interlayer couplings parametrized by �3
and �4, and the intralayer next-nearest neighbor hop t0.

Figure 39. The (a) moderate- and (b,c) high-energy LLs of bilayer graphene at B¼ 10 Tesla.
Density of states of bilayer graphene for B¼ 10 Tesla at (d) low, (e) moderate and (f ) high
energies (Reprinted figure with permission from Y.H. Lai et al., Physical Review B, 77,
085426, 2008 [193]. Copyright � (2008) by the American Physical Society.).
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3.4.3. Magneto-optical properties of bilayer graphene

The magneto-optical properties of bilayer graphene were first discussed theoretically
by Abergel and Falko [151] who took the non-interacting picture of electrons
in bilayer graphene and calculated the selection rules and optical strengths for
inter-Landau level transitions.

The selection rules derived within the two-band low-energy effective theory
(with Landau levels labelled by o 2 f. . . , � 2, 0, 1, þ 2, . . .g as explained in the
Endnote 6) are stated as follows: transitions between levels for which the magnitude
of the LL index differ by one are allowed. For circularly polarized light with right-
handed orientation (such that ~‘� / ~‘x � i~‘y), the allowed transitions increase the
magnitude of the Landau level index. For left-handed polarization (~‘� / ~‘x þ i~‘y),
allowed transitions decrease the Landau level index by one. This is illustrated in
Figure 40(a), where arrows represent transitions corresponding to the absorption of
radiation by the graphene flake. The associated absorption spectrum and a
comparison with the monolayer spectrum is shown in Figure 40(b). Several points
bear discussion, the first of which being that the LL spectrum is denser in the bilayer,
so that the transition energies are smaller and the spectrum of peaks more tightly
packed. This is a direct manifestation of the finite zero-field density of states at the
charge-neutrality point in bilayer graphene. Secondly, the peak height shows a
different pattern from the monolayer. Apart from a significantly larger lowest-energy
peak, all peaks have the same height, in contrast to the monolayer peaks which
steadily decrease in height. These selection rules also make it possible to distinguish
experimentally between two possible ground states of the half-filled quantum Hall
system. If the splitting �h�!c between the n¼ 0 and n¼ 1 levels is smaller than the
Zeeman energy, then the arrangement of electrons between these two levels depends
on the details of the correlations between them.7 It is possible to imagine two model
scenarios: first, if the interaction between spins and the magnetic field is strong
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Figure 40. (a) Selection rules for inter-Landau level transitions in bilayer graphene. Allowed
transitions in ‘�-polarized light increase the magnitude of the LL index by one, ‘@-polarized
light allow transitions which reduce the magnitude of the LL index by one. (b) Monolayer
(top) and bilayer (bottom) far infra-red absorption spectra in ‘� and ‘@ polarizations
for B¼ 10 Tesla and filling factor 	¼ 0. Dashed and solid lines describe absorption by ferro-
and antiferromagnetic states, respectively. The energy normalization is with respect to
w1 ¼

ffiffiffi
2
p

�hv=lB (from [151]).
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enough to overcome the gap between the levels, it will be energetically favorable for

electrons to align their spins and fill half the states of both levels. This state is labelled

‘ferromagnetic’ as a description of the spin ordering. Second, if the correlations or

other interactions force the o ¼ 0 level to be filled and the o ¼ 1 level to be empty,

then we label the state ‘antiferromagnetic’. The lowest absorption peak is determined

by the 2�! 1 and the 1! 2þ transitions, so the relative shape of this peak in the

two polarizations acts as a probe of the electron ordering of these states. If the

antiferromagnetic state is formed, there are electrons in only the o ¼ 0 level,

so the 1! 2þ transition is not accessible and the peak in the ‘� polarization

in absent. On the other hand, if the ferromagnetic state is formed, the o ¼ 1 is

half-filled, so that both transitions are allowed. Therefore there are peaks in the

absorption spectra of both polarizations. Additionally, the very low-energy peak

corresponding to the 0! 1 transition is only present in the ‘� polarization.
The optical transitions in bilayer graphene were also examined within the four-

band model in the single particle approximation by Pereira et al. [190] as a function

of the asymmetry gap and magnetic field. They give analytical expressions for the

oscillator strength for transitions, and show the dependence of the transition energy

on the magnetic field (Figure 41a). The transition energies are only weakly dependent

on the field strength for B5 5Tesla, in contrast with both the monolayer

and unbiased bilayer cases. Oscillator strengths for the same transitions are shown

in Figure 41(b). There is an asymmetry between the conduction and valence band

intra-band transition energies, which increases as the gap size increases, as shown

in Figure 41(c). The oscillator strengths also are strongly effected by the gap, as

shown in Figure 41(d).
The cyclotron resonance absorption has been studied experimentally, firstly by

Sadowski et al. [34] who found signatures of the monolayer single particle

description in few-layer epitaxial graphene samples, and more recently by

Henriksen et al. [194]. In the latter work, infra-red spectroscopy was used to

Figure 41. (Colour online) (a) Transition energies in a biased (U¼ 100 meV) graphene bilayer,
as a function of the magnetic field B for the dipole-allowed transitions: 0þ! 1þ (black
dashed line), 1þ! 2þ (blue dotted line), 1�! 2� (black solid line), and 1�! 2þ (red solid
line), and we use the four-band notation to label the Landau levels. (b) Oscillator strengths as
a function of magnetic field for the transitions described in (a). (c) Transition energies as a
function of the gap for 1þ! 2þ (blue solid line), and 1�! 2� (red dashed line) transitions
for B¼ 20 Tesla, and 1þ! 2þ (green solid line) and 1�! 2� (black dotted line) for B¼ 10
Tesla. (d) Oscillator strengths for dipole-allowed transitions in a graphene bilayer as a
function of the interlayer potential difference at B¼ 5 Tesla.
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measure the absorption spectrum of bilayer graphene and several significant differ-
ences were found between the expected results detailed above and the experimental
data. Firstly, a significant (�20%) electron–hole asymmetry was found for inter-
band transitions. The authors speculated that this asymmetry was either intrinsic,
or caused by residual charged impurities. Next, while the transition energies between
higher levels follow a roughly

ffiffiffiffi
B
p

dependence, those involving the lowest Landau
levels were linear in B. Additionally, the authors could not get their data to fit the
single particle predictions using a single set of fitting parameters (�1 and v).

Several attempts have been made to explain these puzzling data. Firstly, Abergel
and Chakraborty [195] used an exact diagonalization scheme [72] to point out that
the long-range part of the electron–electron interaction is important in this system.
They claim that the shift in the energy of a filled LL is significantly higher for the
zero-energy LLs than for the higher energy LLs, as shown in Figure 42(a) and (b).
This induces a large asymmetry in the energies of transitions that start in the zero-
energy levels compared to those that finish in those levels. As shown in Figure 42(c),
a single set of fitting parameters (�1¼ 0.4 eV, v¼ 0.95	 106ms�1) describe the
transitions involving the n¼ 0, 1 levels well. Mucha-Kruczyński et al. [196] calculated
the single-particle transition energies including the self-consistent screening, and
found that finite zero-bias asymmetry (i.e. U0 6¼ 0), combined with the screening
could account for the electron–hole asymmetry in higher Landau levels. Huang
et al. [197] studied wide bilayer nanoribbons numerically, finding Landau levels
and optical spectra with many of the same features as the bulk system. Kusminskiy
et al. [198] also included screening via the Thomas–Fermi approximation as a
correction to the Hartree–Fock renormalized Landau levels, and found similar
agreement between the experimental data and their theory. It is therefore clear that
interlayer screening and many body effects are crucial in this system.

3.4.4. The effect of trigonal warping on the Landau level spectrum

The effects of the next-nearest neighbor hops characterized by �3 can be ignored
for �h/lB4 v3m [139], however, for a weak magnetic field, the trigonal warping and

Figure 42. (a) Energy shift per electron of filled LLs. (b) The absolute energy per electron
of filled LLs showing the crossing between the n¼ 0� degenerate level and the higher LLs
in the valence band. In both plots, U¼ 0. (c) Electron–hole asymmetry in the inter-LL
optical transition energy. The experimental data (represented as points) are taken from [194,
Figure 2]. The authors take �1¼ 0.4 eV, and v¼ 0.95	 106ms�1 (from [195]).
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associated Lifshitz transition (Section 3.2.2) adds significant complexity to the
low-lying Landau levels. Strong �3 coupling makes Landau levels with joj � 3 gain
energy, while the joj ¼ 2 levels approach zero in energy [151]. The coupling
also allows additional inter-Landau level transitions for the low-lying electrons, with
transitions between states for which joj ¼ jo0j � 2 and joj ¼ jo0j � 4 now permitted,
but with reduced optical strength (v3mlB/�h)

2. This is reflected in the trace of the
absorption spectrum. For example, the new peak present at !/!c corresponds to
transitions 3�! 1 and 1! 3þ.

3.4.5. Electron–electron interactions in the zero-mode Landau levels

The zero-mode Landau levels are those described in the two-band model by the
indices o ¼ 0 and o ¼ 1. This model gives their energies as

E0 ¼
1

2
�U, and E1 ¼

1

2
�U 1� 2�h!c=�1

 �

,

where, as before, U is a phenomenological parameter which denotes the
interlayer gap. The splitting of these two levels due to the kinetic term is 2�h!cU/
(2�1)� 8.2	 10�3 UB. Ezawa [199,200] has predicted that the Coulomb interactions
will split the eight-fold degeneracy into four two-fold degenerate bands, which are
further split by Ising QH ferromagnetism at 	¼�1, �3. Therefore, the step in the
QHE at zero density will be split into eight plateaus. Misumi et al. [201] study
the effect of an in-plane electric field on the quartet of states which is split into the
positive energy range by the layer asymmetry. In this case, a field-dependent
gap !c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU=�1Þ

2
þ 2ðelBEk=!cÞ

2
q

is opened between the (0,K,�) and (1,K, �) levels, which

may be detectable in QHE measurements. As the in-plane field strength is increased,

the contribution to the dielectric constant and electric susceptibility from these levels

enhance those functions around 	¼ 2. The low-energy excitations and intra-Landau

level cyclotron resonance were studied by Barlas et al. [202] within the Hartree–Fock

approximation. They give Hund’s rules for the filling of the octet of levels defined by

the n¼ 0� states, where for high field and relatively small gap, the filling order goes

such that real spin polarization is maximized, followed by valley pseudospin

(which in the n¼ 0� levels is the same as a which-layer pseudospin because of the

form of the electron wave functions), followed by the LL pseudospin. This process

gives rise to a finite LL pseudospin polarization at any odd-integer filling factor.

Within the Hartree–Fock approximation, the low-energy collective modes show

a roton minimum at qlB� 2.3, there is no contribution to the exciton gap from

electron–electron interactions at q¼ 0, and the band splitting approaches the

Hartree–Fock theory result as q!1. At odd-integer filling factors, there are intra-

Landau level cyclotron resonance modes with frequency !LL¼ 2�hv2U/(lB�1)
2 which

may lead to QHE plateaus forming at these filling factors if !LL�4 1.

Abergel and Chakraborty [195] studied the effects of the long-range Coulomb
interaction between electrons in the zero-mode octet within an exact diagonalization
scheme [72] which allowed exact evaluation of the Coulomb matrix elements and
inclusion of exchange and correlation effects. They found finite valley polarization
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at 	¼�2, �6 over a wide range of gap sizes and magnetic fields. Also, as shown
in Figure 43, there is finite spin polarization for certain ranges of fields,
corresponding to the interplay between the exchange energy and the splitting of
the Landau levels as influenced by the size of the asymmetry gap. The filling
of electron states within the octet explains the appearance of the spin polarization.
In region 2 (the darker shaded areas), the pairing of electrons within the same
Landau level is incomplete, allowing the exchange interaction to minimize the total
energy by aligning the unpaired electrons’ spins. In regions 1 and 3, all electrons
are paired, so the exchange interaction is unable to rearrange the electrons’ spins
in this way.

Misumi and Shizuya [201,203] discussed the ground state and collective
excitations of the zero modes, and their effects on the electronic susceptibility
and dielectric constant. Ando [204] analyzed the coupling of electrons in LLs to
optical phonon modes and investigated the shift in energy and mode broadening
due to this coupling.

Another manifestation of the electron–electron interactions in the zero energy
LLs is the gradual lifting of the eight-fold degeneracy as the magnetic field is
increased. Transport measurements have shown that in suspended bilayer graphene
[205] and exfoliated bilayer graphene on an SiO2 substrate [206], quantum
Hall plateaus appear for every integer value of the filling factor. The higher
mobility of electrons in suspended bilayer graphene (Feldman et al. report

¼ 1.5	 105 cm2V�1 s�1 at electron density of n¼ 2� 3	 1011 cm�2 compared
to the exfoliated samples of Zhao et al. who measure 
¼ 1	 104 cm2V�1 s�1 at
n¼ 4	 1012 cm�2) mean that the degeneracy lifting happens at smaller magnetic
field than in the exfoliated flakes. The heirarchy of degeneracy lifting is shown
in Figure 44, where a schematic representation of the evolution of the Landau
level degeneracy is given. We have marked the approximate fields at which each new

Figure 43. The total spin of the ground state of the (a) 	¼�2 and (b) 	¼�6 systems. The
lines show the crossing points of the single-particle states. The graining is due to the finite
interval between data points. (c) The occupancy of the single electron states in the interacting
many body ground state for each region of the plot in (a).

332                   



regime begins to present itself in the two experiments. Both authors note that
disorder and Zeeman splitting are unlikely mechanisms for lifting the degeneracy
(since the energy scales of these two effects are much smaller than the energy gaps),
and interaction with charged impurities is unlikely because the effect is more
apparent in the suspended samples. The authors of both papers therefore claim
that it is electron–electron interactions which are responsible for this lifting of the
degeneracy.

3.5. Electron–electron interactions in bilayer graphene

Although the electron–electron interactions do not seem to play an important role
in the transport measurements conducted on bilayer graphene, they may have a
significant effect on other physical properties of this system, especially the magnetism
of the ground state. We therefore review the theoretical work on this topic. A variety
of analytical techniques have been applied to this problem, and the key issue which
discriminates between them is the role of screening. Screening is always more
important in the bilayer than the monolayer, because there is a finite density of states
at the K point, but in the gapped bilayer, the density of states shows a square-root
divergence at the band edge, meaning that screening is particularly efficient in this
case. Therefore, on-site Hubbard models have been considered for the biased bilayer,
while the Hartree–Fock approximation, the RPA and variational techniques have
been applied to the ungapped bilayer.

Nilsson et al. [207] were the first to examine the possibility of a magnetic ground
state in bilayer graphene. Using a variational method, they found that a trial ground
state with finite-spin polarization at half filling produced a lower total energy than
the unpolarized system when the exchange energy associated with the long-range
Coulomb interaction was taken into account. The parameter Q describes the ‘size’
of the electron or hole pockets in the density, and is taken to be the variational
parameter. If the variational state is assumed to be such that there is one electron
pocket in the up-spin channel, and one hole pocket in the down-spin channel at
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Figure 44. The order of Landau level degeneracy removal as magnetic field strength increases.
The thickness of the line marking the Landau level indicates the degeneracy. The dotted lines
mark the splitting of degenerate Landau levels. The magnetic field labels refer to the beginning
of the emergence of each regime in the suspended case [205] (lower) and exfoliated case [206]
(upper).
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each K point, then n1,"(p)¼ �(Q� p), n1,#¼ 0 on the first layer, and n2,"¼ 1,

n2,#¼ 1� �(Q� p) on the second layer. The authors demonstrate that the optimal Q

is Qmin¼ 0.05�1, and that the system favors the formation of spin polarized electron

and hole pockets. This calculation does not include the exchange interaction between

electrons in opposite K points. Adding this energy favors a state with net

ferromagnetism, and lifts the degeneracy between trial ground states with and

without the Z2 symmetry. The induced ferromagnetism is predicted to be up to the

order of 10�5 
B per carbon atom. Short-range interactions were also considered

in a Hubbard model, and c-axis antiferromagnetism is predicted.
Hwang et al. [208] applied the RPA to ungapped bilayer graphene to derive the

polarization function, and hence discuss the dielectric properties and associated

screening, the Kohn anomaly, Friedel oscillations and the RKKY interaction.

Using the two band model, intrinsic (i.e. undoped) bilayer graphene is shown to

have a constant polarization function �0ðqÞ ¼ gm
2� log 4 (where g¼ 4 is the band

degeneracy factor, and m is the effective mass) so that the dielectric function is

�ðqÞ ¼ 1þ gme2

�q log 4. Also, this constant polarization function means that the

Coulomb potential has no oscillatory terms (i.e. no Friedel oscillations), in contrast

to the monolayer and traditional 2DES. The asymptotic radial dependence is 1/r3,

as opposed to 1/r in the monolayer.
In extrinsic bilayer graphene, there are contributions to the polarizability from

both the intra- and inter-band transitions. This quantity is plotted in Figure 45,

where the intra-band, inter-band, and total polarizations are shown separately.

In the bilayer, the polarizability is constant for q5 kF, but for q4 kF the

cancellation between the intra- and inter-band contributions is not exact due to

the enhanced backscattering associated with the inter-band transitions. Therefore,

the polarization function increases up to q¼ 2kF. At this point, the chirality-induced

enhancement to the wide angle scattering generates a cusp (with discontinuous first

derivative): behavior which is in line with the 2DES, but sharply opposed to that

of the SLG. In the large momentum limit, the polarization converges to the constant
gm
2� log 4 because the inter-band processes dominate over the intra-band ones. This is

again different from the 2DES, where the polarizability falls as 1/q2. The cusp at

Figure 45. Calculated (a) intraband, (b) interband, and (c) total static polarizability of bilayer
graphene. For comparison, the single-layer polarizabilities are shown. In (c), the authors also
show the regular 2D static polarizability (dashed line) (Reprinted figure with permission from
E.H. Hwang and S. Das Sarma, Physical Review Letters, 101, 156802, 2008 [208]. Copyright
� (2008) by the American Physical Society.).
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q¼ 2kF leads to Friedel oscillations and a strong Kohn anomaly (Section 3.6).
Finally, the authors discussed the RKKY interaction between two magnetic
impurities. For an intrinsic bilayer, the magnetic moments are not correlated due
to the constant polarization function, and there is no net magnetic moment. In doped
BLG, the singularity at q¼ 2kF restores the oscillatory term in the RKKY
interaction, and behavior very similar to the 2DES is recovered.

In the case of the biased bilayer, the presence of the non-trivial Fermi surface at
low density causes behaviour which departs from the standard Fermi liquid type.
Stauber et al. [209] investigated this regime using the first-order correction to the
electron self energy which renormalizes the band parameters such that

EðkÞ � D1 � �1k
2 þ 1k

4, D1 ¼ D�
e2

�0
Dk, �1 ¼ �þ

e2

4�0

Dk
k	

,

1 ¼ �
3e2

64�0

k3max � k3min

k3	
,

where Dk¼ kmax� kmin, and k	¼ kmaxkmin and D, �, and  are the bare band
parameters. The momenta kmin and kmax are the lower and upper extent of the Fermi
ring. This renormalization means that for 1 0, the spectrum is unbounded and
an instability may occur in the non-interacting system. To examine this possibility,
the authors include the exchange part of the Coulomb interaction between electrons.
When this contribution is considered with the bare band parameters, it is found that
the Fermi ring is unstable with respect to ferromagnetism, with a second-order
transition. When the renormalization due to the self-energy corrections is included,
this tendency is reduced, (although there is a critical density at which the phase
transition will occur) and the magnetization is saturated at n4 5	 1011 cm�2. At low
densities, the ferromagnetic ordering is not affected by the self-energy corrections
and will be present at T¼ 0. The authors also examined the polarization function in
the Mexican hat regime, and it was found that the electron gas in the biased bilayer
deviates from the standard Landau Fermi liquid theory for intermediate energies,
and at low energies, the Fermi liquid result is obtained except at wave numbers which
directly connect two parallel parts of the Fermi surface. The presence of two Fermi
lines implies that the Friedel oscillations have period �/b (where 2b¼ kmax� kmin).
Finally, the plasmon spectrum shows features typical of a 2DES, although the energy
scale is larger than the traditional systems by virtue of the low electron mass.

The logarithmic divergences which appear within the Hartree–Fock approxima-
tion of the band parameter renormalization can be removed by adding Thomas–
Fermi screening to the calculation [198]. When this screening is taken into account,
the renormalized bands disperse more slowly than in the Hartree–Fock case.

Ferromagnetism has been investigated in the Hubbard model near the band edge
by Castro et al. [210]. They claim that the high density of states at the band edge, and
resulting screening of the long-range part of the Coulomb interaction makes this
model applicable in this context. There is a critical value of the gap, Uc above which
the ferromagnetism becomes unavoidable because of the change in band parameters
for the up-spin and down-spin bands. To illustrate this, Figure 46(a) shows the
Hartree–Fock bands for three different values of the gap U. In the case U5Uc, there
is no splitting between the different spin bands and the magnetization m and
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interlayer magnetization difference Dm are both trivially zero. When the gap is a little
above the critical value (U0Uc), the degeneracy of the spin states in the conduction
band is lifted which gives rise to a finite magnetization, m 6¼ 0. That the degeneracy
in the valence band is not lifted means that Dm�m, as shown in Figure 46(c) and (d).
When U�Uc, the valence band does become non-degenerate, and the magnetization
is opposite in the two layers, so that Dm4m. Finite temperature does not change
this picture to any great extent. Also, it is clear that j�nj5 jDnj implying that the
electron density is above the Dirac point in one plane, and below it in the other.
This is natural, since the tight-binding model shows that valence band states are
located mainly in the layer at low potential, and conduction band states are located
mainly in the layer at high potential. Finally, Figure 46(b) illustrates a comparison
of the self-consistent analysis (lines with dots) and the approximate analytical
estimates assuming a second-order transition. It is clear that the ferromagnetic-
paramagnetic transition in this system is actually first order.

The electron compressibility is a physically measurable quantity which reveals
much information about the interaction effects in electron gases. The compressibility
of the bilayer has been calculated within the Hartree–Fock approximation by
Kusminskiy et al. [211]. At very small doping, compressibility is negative and
divergent, as in a 2DES. The inter-band contribution tends to move the region
of negative compressibility to smaller densities, so that this contribution reduces
compressibility. However, similar calculations for the compressibility of the
monolayer [212] produce a 10–15% renormalization of the electron velocity, similar
to that found in experiment [213].

Figure 46. (a) Hartree-Fock bands for " (solid lines) and # (dashed lines) spin polarizations.
(b) The U vs �n phase diagram at T¼ 0: symbols are inferred from (c) and signal a first-order
transition; lines stand for the second-order transition. (c) The T¼ 0 solution for magnetiza-
tion. (d) The T¼ 0 solution for the layer difference in magnetization. In (c) and (d), the
successive lines represent different layer asymmetry in the electron density, with the lowest
magnetization corresponding to the smallest density imbalance (Reprinted with permission
from E.V. Castro et al., Physical Review Letters, 100, 187803, 2008 [210]. Copyright � (2008)
by the American Physical Society.).

336                   



For more details on the nature of plasmon dispersion and compressibility in
monolayer and bilayer graphene, see Section 4.

3.6. Phonon anomalies and electron–phonon coupling

Phonons and the electron–phonon coupling are important topics because of the
intimate links that the subject has with Raman spectroscopy, a key experimental tool
in the study of graphene.

First-principles studies of phonons in mono-, bi- and few-layer graphenes have
been carried out [214,215]. Saha et al. [214] determine the dependence of the energy
of various low-momentum phonon modes on the number of layers and find strong
layer dependence for out-of-plane modes, and relatively weak layer dependence
for in-plane modes. In Table 2, we summarize the available data for the frequency
of the phonon modes discussed. Yan et al. [215] show how the E2g peak splits into
two modes which are split by approximately 5 cm�1.

Various authors have discussed phonon anomalies in bilayer graphene, so a brief
outline of the physics is in order. For reference, the original description of phonon
anomalies in monolayer graphene was given by Piscanec et al. [216], but in this
section we describe the phonons in bilayer graphene only. Yan et al. [217] show
the change of phonon frequency !ph as a function of the Fermi energy (Figure 47d),
with the anomaly occurring when the inter-band electron–hole excitation is in
resonance with the phonon mode. The change of phonon frequency with the tuning
of the Fermi energy is given by

�h!phðEFÞ � �h!phð0Þ 
 �

Z 2jE
F
j

0

dEe�h
2Ee�h

�h2!2
ph � E2

e�h


  ln 1�
2jEFj

�h!ph

�����
�����;

where  is the electron–phonon coupling parameter. This anomaly was observed
experimentally by Das et al. (Figure 48a), whereas it has not yet been observed
in the monolayer. Yan et al. speculate that the reason for this is the intrinsic
charge inhomogeneity in graphene causes a larger variation in the Fermi energy in the
monolayer than it does in the bilayer, and to be qualitative about this idea, the authors
show the evolution of the anomaly size as a function of charge non-uniformity. This
anomaly was not seen by later experiments [218], and this is probably due to the large

Table 2. Table of phonon frequencies.

�-point mode Yan et al. [215] Saha et al. [214]

Eg 1587 1594.1
Eu 1592 1598.9
Eg)E*(low) 35.0
A1g)A*(low) 76.8
A1g)A*(high) 900.8
A2u 903.3
K-point mode
E 1318

Note: Units are cm�1 throughout.
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(b)

(d)(c)

(a)

Symmetric G bandAntisymmetric G band

Figure 47. Phonon modes in bilayer graphene where the grey arrows represent the direction
of vibration of each atom. (a) The antisymmetric G band mode is a distortion of the zigzag
lines where the layers are out of phase. (b) The symmetric G band mode is a distortion of the
zigzag lines where the layers are in phase. (c) Vertical (q¼ 0) inter-band electron–hole pair
transitions in a gapless 2D semiconductor with three different Fermi levels. Shaded regions are
filled with electrons, and the transition indicated by the arrow is the resonance with the long-
wavelength optical phonon (From [217]). (d) Predicted change of phonon energy as a function
of the Fermi energy. The two phonon anomalies show up at EF¼��h!ph/2 (Reprinted figure
with permission from J. Yan et al., Physical Review Letters, 101, 136804, 2008 [217].
Copyright � (2008) by the American Physical Society.).

Figure 48. (a) Experimental energy and linewidth of the G band. Two phonon anomalies
are clearly resolved in the phonon energy (Reprinted figure with permission from J. Yan et al.,
Physical Review Letters, 101, 136804, 2008 [217]. Copyright � (2008) by the American
Physical Society.). (b) The position of the G peak, and its full width at half-maximum
plotted as a function of Fermi energy (Reprinted figure with permission from A. Das et al.,
Physical Review B, 79, 155417, (2009) [219]. Copyright � (2009) by the American Physical
Society.).
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charge non-uniformity, and because these experiments were carried out at room
temperature. Malard et al. measured the phonon frequency shift when a finite
interlayer asymmetry potential is applied. The breaking of the layer symmetry allows
the antisymmetric mode to become active in Raman spectra, causing the G band to
split into two peaks (see schematic representation of the displacements associated with
each phonon mode in Figure 47a and b). Frequency differences of 
15 cm�1 are
observed between the two modes for large negative bias, and comparison with
theoretical predictions shows that the measured shift of the symmetric phonon is
significantly larger than predicted, while the shift of the antisymmetric phonon is in
line with predictions. Symmetry analysis of bilayer graphene phonons in the presence
of an external electric field [219] reproduces the qualitative features. Castro Neto et al.
[220] have used a simple one-loop calculation within the tight-binding model to
compute the electronic susceptibility of bilayer graphene, and related it to the
frequency shift of the phonon mode due to the electron–phonon coupling. They find
that the shift is linear in the electron density n, and negative:

�!bil
~Q
/ �

@t

@l

� �2
n

MC! ~Q
�1

,

where MC is the mass of a carbon atom, l is the lattice constant, with
@t/@l� 6.4 eV Å�1, and ! ~Q

is the frequency of a phonon with wave vector ~Q.
On the other hand,Das et al. [221] report that theG peak frequency is renormalized

as a function of doping, outside of a the range �0.1 eV5EF5 0.1 eV, which
corresponds to the �h!0/2 anomaly discussed above. There is also a kink atEF� 0.4 eV.
These results are explained with reference to the doping and dynamic effects, and the
presence of the kink is related to the Fermi energy moving to the split band. This
phonon anomaly has also been discussed theoretically by Ando [204] within the one-
loop approximation for the phonon self energy. The logarithmic singularity in the
frequency shift is derived for the symmetric G mode when the interlayer potential is
zero, but a finite-disorder potential curtails the singularity and broadens the phonon
mode. On the other hand, the antisymmetric G mode does not display the singularity
and the broadening is significantly reduced for EF5 �1 because inter-band transitions
are suppressed. In the case of finite-interlayer bias, the screening is taken into account
self-consistently by Ando [222]. The presence of the band gap modifies the phonon
renormalization, the symmetric and antisymmetric G modes mix strongly, and an
asymmetry between the phonon frequencies at positive and negative electron
concentrations is induced. This asymmetry becomes considerable when the gap size
is of the order of the phonon frequency, and in this case, resonant inter-band
contributions between the two low-energy bands and the frequency of the low-
frequency mode (dominantly symmetric) are reduced strongly, and broadened.

3.7. Device proposals utilizing bilayer graphene

In this section we outline some of the devices that have been proposed which utilize
bilayer graphene in their operation. Transistor and current switching devices were
discussed in Section 3.3, so we do not repeat that material here. We shall describe
two proposals for valleytronic devices (utilizing the valley quantum number as a
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controllable two-state system), and two for employing the pseudospin (i.e. the
sublattice index) in the same way.

Martin et al. [223] describe a device which utilizes a split gating arrangement
to confine electrons in zero modes in a 1D channel (Figure 49). These electrons are
chiral in the valley index, so that their direction of propagation is determined by
which valley they are in. A valley filter may be observed by applying a potential
difference along the voltage kink, since the resulting current would consist of only
one valley species. A valley valve can be implemented by placing two such filters
in series. If the polarity of the filters is the same then current will pass, if it is opposite
then current will not flow. The polarity of each valve can be reversed by swapping
the orientation of the bias potentials on each side of the channel.

Abergel and Chakraborty [224] demonstrated that irradiating gated bilayer
graphene with intense, circularly polarized, terahertz frequency light leads to the
creation of valley polarized dynamical states in the gapped region of the spectrum.
By passing an arbitrary current through these states, the current is polarized into
the valley in which the states reside. Swapping the polarization of the top gate, or the
orientation of the circular polarization of the light causes the valley in which
the dynamical states form to be swapped also. Currents of the order of a tenth of a
pico-Amp, and valley polarizations above 99% are predicted to be obtained. These
devices can be used individually to generate valley polarized currents, or in series to
implement switching devices. The valley-polarized currents exist in the bulk of the
bilayer graphene (rather than localized at a sample edge, or in a narrow channel),
and may be used as an analogue of spin-polarized currents in spintronics. The fact
that this device relies on a bulk effect also gives it the distinct advantage that the
details of the edges make no difference to its operation, which makes the device
significantly easier to fabricate than those that utilize specific properties of certain
edge geometries in their operation.

San-Jose et al. [225] propose a pseudospin valve employing gapped bilayer
graphene. Their device consists of two-gated regions which are biased so that there is
a finite gap at the charge-neutrality point which induces an out-of-plane component
of the pseudospin. If the two regions have opposite polarity and the distance between
the two regions is small enough, then electron will be unable to rotate its pseudospin
quickly enough to allow it to penetrate the region of opposite polarization and
reflection will occur at the interface between the two regions. Conversely, if the two
regions are arranged with the same polarity, no such reflection will take place.

Figure 49. Side view of a gated bilayer graphene configuration with the voltage kink. The
region where the interlayer voltage changes sign (the channel) supports bands of chiral
zero modes (dashed line). The conventional (non-topological) confinement would correspond
to the same polarity of bias on both sides of the channel (Reprinted figure with permission
from I. Martin et al., Physical Review Letters, 100, 036804, 2008 [223]. Copyright � (2008) by
the American Physical Society.).
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Pseudo-magnetoresistance of approximately 100% were suggested for optimal device
dimensions of a pseudospin transistor.

Min et al. [226] proposed pseudospin ferromagnetism in gated bilayer graphene,
which may have analogous applications to the real spin in spintronic systems. They
demonstrated that high-gate voltage polarizes the pseudospin, and speculate that
pseudospin-transfer torques, and easy switching behavior can be accomplished.

4. Many-body and optical properties of graphene

In this section, we discuss some of the novel electronic properties of graphene, where
the electron–electron interactions traditionally play an important role. We begin
in Section 4.1 with a discussion of the measurement of compressibility in monolayer
graphene [213] and the reported theoretical studies [227] to understand the
experimental results. In Section 4.2 we discuss the theoretical studies of plasmon
dispersion in monolayer and bilayer graphene. We also review the properties
of graphene in an intense electromagnetic field (EMF) in Section 4.3.

4.1. Electronic compressibility

In an interacting electron system of uniform density, the (inverse) electronic
compressibility ��1 / @
/@n (where 
 is the chemical potential and n is the electron
density) is a fundamental physical quantity that is intimately related to the strength
of inter-electron interactions [228,229]. First measured for a two-dimensional
electron gas in 1992 [230], the compressibility provides valuable information about
the nature of the interacting ground state, particularly in the strong coupling regime
where (in addition to the exchange energy) the Coulomb interaction is known to play
a dominant role. In this section, we begin by reviewing the surprising experimental
results by Martin et al. [213] for the compressibility of monolayer graphene, and
continue to describe attempts to understand them from a theoretical point of view.
We then review the same physics in the bilayer material, highlighting the intriguing
differences between these two systems.

4.1.1. Monolayer graphene

A recent report on the measurement of electronic compressibility in monolayer
graphene revealed behavior which was totally unexpected [213]. In this work,
scanning single-electron transistor microscopy was used to measure the change of
local electrostatic potential (and thereby change in local chemical potential) of a
graphene sample when the carrier density was modulated [213]. The observed results
for the local inverse compressibility were found to be quantitatively described by
the kinetic energy alone (with the electron velocity renormalized by 10–15%) and the
authors speculated that the exchange and correlation energy contributions to the
compressibility either cancel each other out or are negligibly small. This interesting
puzzle has remained unsolved because the approximate theoretical schemes adopted
by various authors to investigate electron correlations in graphene [231,232] do not
find any such cancellations. Similarly, the recently reported Hartree–Fock studies
of compressibility [211,212] in monolayer and bilayer graphene do not consider
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electron correlations at all, although they do correctly predict the velocity
renormalization.

Abergel et al. [227] investigated the role of electron correlations in monolayer and
bilayer graphene. They showed how in monolayer graphene, two fundamental
properties of the system, namely, the linear energy dispersion and chirality conspire
to allow complete cancellation of exchange and correlation contributions just as
was observed in the experiment [213]. On the other hand, in bilayer graphene where
the low-energy quasiparticles are massive chiral fermions, the parabolic dispersion
does not allow this cancellation of the two energies, and the kinetic energy retains
a dependence on the electron correlation function which manifests in the electron
compressibility.

As discussed elsewhere in this review (Sections 1.2 and 5.2), the low-energy
charge carriers in monolayer graphene behave as massless Dirac fermions described
by a single-particle Hamiltonian which is linear in momentum ~p. The eigenstates of
the Hamiltonian are uniquely labelled by quantum numbers representing the wave
vector ~q ¼ ~p=�h, the band (conduction/valence) b, valley (pseudospin) � and the
z-component of the real electron spin �. The wave functions are of the form,
ð~rÞ ¼ ei~q�~r�, where � is, in the most general case, an eight-component spinor [3].

The wave function can be written in an abbreviated basis by ignoring the spin,
and swapping the order of the sublattice components in the two valleys to recover the
Hamiltonian given in Section 1.2.

A full analytical study of the many-electron system in graphene is clearly an
impossible task. However, most of the clues to the puzzle involving the measured
compressibility described above can be found at the level of two electrons, which is
amenable to a fully analytic solution. One could therefore start with a two-electron
system where the electrons occupy the states  � and  � with � and � corresponding
to the full sets of quantum numbers ð~q�,�, b�,�, ��,�, ��,�Þ. Let us denote by ’ the
antisymmetric non-interacting two-electron wave function

’ð~r1, ~r2Þ ¼
1ffiffiffi
2
p  �ð~r1Þ �ð~r2Þ �  �ð~r1Þ �ð~r2Þ

� 
, ð47Þ

where the subscript labels refer to the independent coordinates of the two electrons.
The correlations due to the mutual Coulomb interaction are introduced by
multiplying the free-particle wave function by a generic correlation factor F as

� ¼ Fð~r1, ~r2Þ’ð~r1, ~r2Þ: ð48Þ

At this stage, a precise definition of F is not necessary. The only requirements are
that it should be a real function, and to preserve the antisymmetry of the correlated
wave function � it is assumed to be symmetric with respect to exchange of the
particle coordinates, i.e. Fð~r1, ~r2Þ ¼ Fð~r2, ~r1Þ.

In order to evaluate the two-particle energy we have to normalize the wave
function �. A straightforward calculation gives

jj�jj2 ¼ h�j�i ¼

Z
d~r1 d~r2 Fð~r1, ~r2Þ

2 1�
1

2
����� 1þ b�b� cosð�� � ��Þ

� 
cosQ

	 �
,

where Q ¼ ð~q� � ~q�Þ � ð~r1 � ~r2Þ and ��,� are the polar angles of the momenta ~q�,�.

342                   



Evaluation of the expectation value of the kinetic part of the non-interacting

two-body Hamiltonian leads us to

Tmon ¼
1

2
�hvF

Z
d~r1 d~r2 F

	
1

4
i����������

h
eiQZ1

�� 1þ b�b�e
�ið�����Þ


 �
þ eiQZ2

�� 1þ b�b�e
ið�����Þ


 �
þ e�iQZ1

�� 1þ b�b�e
ið�����Þ


 �
þ e�iQZ2

�� 1þ b�b�e
�ið�����Þ


 �i

� ib�

�
cos ��

@F

@x1
þ cos ��

@F

@x2
þ sin ��

@F

@y1
þ sin ��

@F

@y2
þ 2iq�F

�

� ib�

�
cos ��

@F

@x1
þ cos ��

@F

@x2
þ sin ��

@F

@y1
þ sin ��

@F

@y2
þ 2iq�F

��
,

where we use the shorthand

Zj
�� ¼ b�e

i�� þ b�e
�i��


 � @F
@xj
� i b�e

i�� � b�e
�i��


 � @F
@yj
þ iq�F b� þ b�e

i �����ð Þ
� �

:

Due to the linearity of the single-particle Hamiltonians in the momentum

operators, only first-order derivatives appear in the integrand. Terms in T of the formZ
d~rj F

@F

@xj
¼

1

2

Z
d~rj

@

@xj
F2;

clearly vanish due to the antisymmetry of the integrand. Most of the terms left after

the volume integration cancel each other as a consequence of the spinor structure of

the single-particle wave functions. The only surviving terms sum to

T mon ¼ �hvFðb�q� þ b�q�Þjj�jj
2,

that is, the kinetic energy expectation value hT mon
i is simply the sum of the single

free-particle kinetic energies,

hT
mon
i ¼

Tmon

jj�jj2
¼ �hvFðb�q� þ b�q�Þ ¼ T0 ¼

h’jT mon
j’i

jj’jj2
ð49Þ

and does not depend on the correlation function F at all. Similar cancellations are

expected for higher electron numbers, although analytical expressions become

intractable even at the level of three electrons. This is a very interesting result since

complete cancellation of correlation contributions to the kinetic energy has never

been observed in conventional electron systems. It creates an unusual situation with

interesting consequences, as described in [227]. In the thermodynamic limit, the

potential energy (per particle) V is usually expressed in the form

hVi ¼ n

Z
d~r ½ gðrÞ � 1�VCoulðrÞ,
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where n is the single particle number density, VCoul is the Coulomb potential and g(r)

is the pair correlation function which, for ~r ¼ ~r1 � ~r2, is given by

gðj~rjÞ ¼
NðN� 1Þ

jj�jj2n2

Z
d~r3 . . . d~rN j�ð~r1, ~r2, ~r3, . . . , ~rNÞj

2,

where N is the total number of electrons. The energy (per particle) functional Emon

is now

E
mon
¼ t0 þ hVi ¼ t0 þ n

Z
d~r ½ gðrÞ � 1�VCoulðrÞ, ð50Þ

where t0¼T0/N is the kinetic energy per particle. Its variation with respect to g(r)

(an essential step in determining the optimal g(r) and hence the optimal F) would

yield an unusual Euler–Lagrange equation, VCoul(r)¼ 0, which is clearly not the case

in graphene [233]. To resolve this dilemma, Abergel et al. noted that the energy

functional Emon is actually not bounded below: one can choose correlations such that

the potential energy takes arbitrarily large negative values. This implies that to

determine the optimal g(r), the energy functional derived above is not sufficient and

additional physical constraints, for example, that g(r) should correspond to the

correct number of states in the bands would be necessary8. Clearly, determination

of the optimal pair-correlation function for massless Dirac fermions in graphene is

a challenging problem [234]. However, the expression for the functional Emon is of the

correct form, i.e. once the correct pair-distribution function g(r) is found, one could

evaluate the correct energy from the above form of the energy functional.
Let us now turn our attention to the electron compressibility. To that end, we

first evaluate the variation �nE
mon of Emon with respect to n [227]:

�nE
mon
¼
@t0
@n
�nþ �n

Z
d~r ½ gðrÞ � 1�VCoulðrÞ þ n

Z
d~r VCoul

�gðrÞ

�n
�n:

From this we can read the derivative as

@Emon

@n
¼
@t0
@n
þ

Z
d~r gðrÞ � 1½ �VCoul þ n

Z
d~r VCoul

�gðrÞ

�n
:

The compressibility will then be proportional to

@2Emon

@n2
¼
@2t0
@n2
þ 2

Z
d~r VCoul

�gðrÞ

�n
þ n

Z
d~r VCoul

�ð�gðrÞ=�nÞ

�n
:

Deriving the functional dependence of g(r) on n in a closed form is an almost

impossible task. Extensive studies of conventional two-dimensional electron systems

have indicated that g(r) varies only slightly as a function of density [229], except

at very low densities where it starts to develop a prominent peak as a precursor to

Wigner crystallization [235]. Since in graphene the Wigner crystallization is not a

possibility (in the absence of an external magnetic field) [236], and no other phase

transitions expected at the density range of interest, we expect the variation �g(r)/�n
to vanish or to be negligibly small. Alternatively, we could consider a slightly less

stringent condition
R
d~r VCoul

�gðrÞ
�n ¼ 0, which implies that the interaction energy
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depends linearly on the density of Dirac electrons. The compressibility is then

described entirely by the kinetic energy

��1 ¼
@2Emon

@n2
¼
@2t0
@n2

,

in accordance with the experimental observation [213]. In arriving at this striking

result, there are two basic properties of monolayer graphene that play crucial roles:

the linear energy dispersion and chirality of massless Dirac electrons [227].
This immediately invites the question: what happens in bilayer graphene, where

the low-energy charge carriers behave as massive chiral fermions and as such the

Hamiltonian is quadratic in momentum operators near the charge neutrality point?

4.1.2. Bilayer graphene

In bilayer graphene, as discussed above, there are four atoms per unit cell, so in

principle the basis employed in the tight binding model should be doubled in size.

However, a low-energy effective theory is employed which considers only the atomic

sites which are not involved in the inter-layer dimer bond, and so reduce the basis to

only eight components. The authors of [227] used the effective two band model

detailed in Section 3.2.3 and obtained from the Hamiltonian corresponding to the

first term of Equation (42). The wave functions associated with this Hamiltonian are

�ð~rÞ ¼
ei~q��~rffiffiffiffiffiffiffi
2A
p

�e�2i��

1

!
:

With these basis states, an intermediate expression for the kinetic energy looks as

follows:

T bi ¼
1

2
ð�� þ ��Þ

�
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iq�
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�h2
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iq�

�
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@y1

�
þ iq�

�
cos �� þ cosð2�� � ��Þ
�  @F

@x2

þ sin �� þ sinð2�� � ��Þ
�  @F

@y2

�o
,

where terms containing second derivatives of F which are identically zero on

integration, and those which trivially sum to zero are already excluded. The integrals
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of terms with single derivatives of F are finite:Z
d~r1 d~r2 e

�iQF
@F

@x1
¼ �i q�x � q�x


 �A2 ~F2

8
¼ �

Z
d~r1 d~r2 e

�iQF
@F

@x2

and similarly for terms containing derivatives with respect to y. After some lengthy
algebra, one gets [227]

Tbi ¼
1

2
ð�� þ ��Þ þ

�h2

4m

A
2 ~F2

2
cos �� � ��

 �

q2� þ q2�

� �
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 �

� 2q�q�

n o
: ð51Þ

When compared with the kinetic energy in monolayer graphene (Equation (49)), the
non-cancellation exhibited in Equation (51) is a feature of the sublattice structure of
the electronic wave function in bilayer graphene, resulting from the quadratic nature
of the low-energy dispersion relation. On evaluation of the remaining integrals and
after some elementary algebra, the energy functional is found to be

E
bi
¼ t0 þ hVi þ

�h2

8m

~F2

jj�jj2
cosð�� � ��Þ ðq

2
� þ q2�Þ cosð�� � ��Þ � 2q�q�

h i
, ð52Þ

where ~F is the Fourier transform of the correlation function. Comparing the case of
monolayer graphene, Equation (50), one can easily see that there is a non-zero
contribution of electron correlations to the kinetic energy in the above functional
(Equation (52)), and therefore taking the derivatives with respect to n yield a
compressibility which depends non-trivially on them. It is clear that this additional
term will also be present in the many-body energy, as its integral over momentum is
manifestly finite. It is also expected that for bilayer graphene where the excess
electron density is high enough that the Fermi energy is in the energy range where the
linearity of the spectrum is restored, the effect of the correlations in the energy
functional will again be suppressed. Quantitative computation of this term requires
precise knowledge of the radial dependence of F, and the relation between F(r) and
g(r) (where several choices of approximate schemes are available in the literature
e.g. [237]). Most importantly, however, an experimental observation of a shift
in compressibility from the pure kinetic energy contribution (unlike what was
observed for monolayer graphene) would provide a way to directly determine the
strength of electron correlations in that system.

4.2. Plasmon dispersion in graphene

In this section, we discuss the Coulomb screening properties and collective
excitations in monolayer and bilayer graphene. We focus on the work of Wang
and Chakraborty [238,239], although some parts of their results were previously
calculated by Wunsch et al. [240]. Later papers which contain analytical results for
the plasmon spectrum and other dynamical properties of graphene include references
[208,209,241–246].

4.2.1. Monolayer graphene

In the pseudospin space, the zero-magnetic-field Hamiltonian of a spin-up electron
which experiences a non-negligable SOI that is parameterized by a momentum
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~p ¼ �h ~k measured from the K point is [238,247,248] H ¼ vF ~p � ~� þ Dso�z with
~� ¼ ð�x, �y, �zÞ the Pauli matrices. Here Dso is the strength of the SOI9. The

eigenstates of the Schrödinger equation are readily obtained as

�
~k
ð~rÞ ¼ ei

~k�~r
1þ sinð� ~k þ �=2Þ

�ei� ~k cosð� ~k þ �=2Þ

!
;

with energy E
~k
¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
so þ �h2v2Fk

2

q
for ¼þ1 denoting the conduction band and

¼�1 the valance band. Here tan �k¼ ky/kx, tan �k¼ �hvFk/Dso, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
.

The RPA Coulomb interaction in the Fourier space U(q,!) obeys the equation

[250,251]

Uðq,!Þ ¼ v0 þ v0�̂0ðq,!ÞUðq,!Þ ð53Þ

with the electron–hole propagator

�̂0ðq,!Þ ¼ 4
X
,0, ~k

j g,
0

~k
ð~qÞj2

f ½E
0

~kþ~q
� � f ½E

~k
�

!þ E
0

~kþ~q
� E

~k
þ i�

, ð54Þ

as illustrated by the Feynmann diagram in Figure 50. Here v0¼ e2/(2�0�iq) is the

two-dimensional Coulomb interaction (in Fourier space) with the high-frequency

dielectric constant [252] �i¼ 1 and g,
0

~k
ð~qÞ is the interaction vertex.

The factor of four in Equation (54) comes from combined degeneracy of the spin

(two-fold) and valley (also two-fold) quantum numbers; the vertex factor reads

j g,
0

~k
ð~qÞj2 ¼

1þ 0 cos� ~kþ~q cos� ~k þ 
0 sin� ~kþ~q sin� ~kðkþ q cos �Þ

2j ~kþ ~qj
,

with � being the angle between ~k and ~q. Since the chiral property of the system

prohibits the intra-band backward scattering at ~q ¼ 2 ~k and the inter-band vertical

transition at ~q ¼ 0 under the Coulomb interaction, we have j g,�
~k
ð0Þj2 ¼

j g,
~k
ð2 ~kÞj2 ¼ 0. The collective excitation spectrum is obtained by finding the zeros

of the real part of the dielectric function �̂ðq,!Þ ¼ 1� v0ðqÞ�̂0ðq,!Þ.
In the presence of the SOI, an energy gap opens between the conduction and

valence bands and the semimetal electronic system is converted into a narrow gap

semiconductor system. At the same time, a gap is opened between its intraband

single-particle continuum !!L� �hvFq and its interband single-particle continuum

! � !H � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
so þ �h2v2Fq

2=4
q

. However, the system differs from a normal narrow gap

semiconductor due to its peculiar chiral property. Here we have chosen the

magnitude of the SOI strength to be around 0.08–0.1meV [247,253]. The result

Figure 50. Diagrammatic illustration of the RPA dressed Coulomb interaction.
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can be easily applied to Dirac gases with different Dso by scaling the energy and
wavevector in units of Dso and kso¼Dso/(�hvF), respectively.

At zero temperature or for T�Dso, the intraband transition is negligible and

�r4 0. There is no plasmon mode in the system. With an increase in the temperature,

holes appear in the valence band and electrons in the conduction band. The

intraband transitions are enhanced and contribute to the electron–hole propagator
of Equation (54) and a dip in �r at the intra-band electron-hole excitation continuum

(EHC) edge !L. This dip in �r results in plasmon modes above !L. For Dso¼ 0 where

!H¼!L, the intraband (interband) single-particle continuum occupies the lower

(upper) part of the !–q space below !L (above !L) and the plasmon mode are

Landau damped. In the presence of the SOI, i.e. for Dso 6¼ 0, a gap of width !H�!L

is opened between the intra- and interband single-particle continuum and an

undamped plasmon can exist in this gap, as shown in Figure 51. This plasmon mode

may perhaps be observed in experiments.
The appearance of the undamped plasmon mode in the presence of the SOI is a

result of the interplay between the intra- and inter-band correlations which can be
adjusted by varying the temperature of the system in experiments. To show the

temperature range in which an undamped plasmon mode exists, Figure 52 shows

�r(!L) (dotted curve) and �r(!H) (solid curve) as functions in the temperature T at

q¼ 0.05	 105 cm�1. For Dso¼ 0.08meV, an increase of the temperature from T¼ 0
leads to an increase in the ratio of the intra- to the inter-band correlation while �r
in the EHC gap (!L!!H) decreases and crosses zero. There is no undamped

plasmon mode when the inter-band correlation dominates at T 1.1K and when the

intra-band correlation dominates at T� 3.3K. In the temperature regime 1.1

KT 3.3K or T� 2Dso when the intra- and inter-band correlations match,
however, �r(!L)5 0 while �r(!H)4 0 and one undamped plasmon mode exists.

Therefore, the SOI converts the Dirac electronic system into a narrow gap

semiconductor with chiral properties. As a result, an undamped collective excitation

was found to exist in the spectral gap of the single-particle continuum and is perhaps

observable in the experiments. There have been a steady flow of reports in the
literature on the electronic properties of graphene. Interestingly, the SOI-dependent

Figure 51. Plasmon spectrum (thick curve) of an electron gas in intrinsic graphene (EF¼ 0) at
temperature T¼ 1.42 K with DSO¼ 0.08 meV. Intra- (dark shaded) and inter- (light shaded)
band single-particle continuums are also shown. !L and !H are the lower and upper borders
separating the white (EHC gap) and shaded areas, respectively (see also [240]).
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dielectric function derived in [238] was employed by other authors to explore the
possibility of Wigner crystallization in graphene [236].

After Wang and Chakraborty [238] reported their study of Coulomb screening
and plasmon spectrum in monolayer graphene with zero or finite gap and doping at
zero or finite temperature, a series of works have been reported on the many-body
effects in graphene. Analytical results for dynamical polarization of graphene were
reported within the RPA [240,241]. Instead of considering only the spin-orbit
introduced energy gap, Qaiumzadeh and Asgari [242] assumed an unspecified energy
gap of arbitrary width for doped monolayer graphene and studied the corresponding
ground-state properties in the RPA. They concluded that the conductance and the
charge compressibility decrease with the band gap. Almost during the same time,
Pyatkovskiy [243] also derived analytically the dielectric function of gapped
graphene at zero temperature and repeated the plasmon spectrum result of Wang
and Chakraborty. In addition, the effect of plasmons on the energy band in graphene
has been estimated and compared with the experimental result [254–256]. Hill,
Mikhailov and Ziegler [246] have recently reported results on the dielectric function
and plasmon dispersion based on the tight-binding band structure and take the non-
Dirac effect of graphene dispersion band into account, including the anisotropy and
the nonlinearity of the energy band. Those effects influence the plasmon spectrum, in
terms of the anisotropic plasmon spectrum and extra plasmon mode. Coulomb
screening and collective excitations spectrum in monolayer graphene using the RPA
was also reported by other authors [257,258]. The magneto-optical excitations in
monolayer graphene has also been investigated [259]. Finally, a THz source has been
proposed based on the stimulated plasmon emission in graphene [260] and the
absorption of THz electromagnetic radiation in gapped graphene has been
estimated [261].

4.2.2. Bilayer graphene

While monolayer graphene has quasiparticles described by a chiral Dirac gas, bilayer
graphene is best thought of as a chiral Fermi gas near the K points [139,140,207,262]
(Section 3). Consequently, a comparison of their physical properties would offer new
understanding and provide interesting predictions about the different behaviors
between these two fundamental systems. Wang and Chakraborty [239] were the first

Figure 52. Temperature dependence of the real part of the dielectric function at the edges
of the intra- and intersubband single-particle continuum !L (dotted curve) and !H (solid
curve) at q¼ 0.05	 105 cm�1.
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to employ the RPA to address some of the interesting properties of the Coulomb
screening and the collective excitations in bilayer graphene.

In the effective-mass approximation [139,262], the electrons in the K valley are
described by a Hamiltonian with a mixture of linear and quadratic terms in the wave
vector k (see the first two terms of Equation (42) in Section 3.2.3). The eigenfunction
of the above Hamiltonian is �

~k
ð~rÞ ¼ ei

~k�~rffiffi
2
p cei� ~k

 �

with the energy E
~k
¼

�h2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2k0k cos 3’þ k20

q
=2m and the pseudospin angle � ~k. Here ’¼ arg(kþ),

� ~k ¼ argðke�2i’ � k0e
i’Þ with arg(z) being the argument � of a complex z¼ jzjei�,

k0 � 108=
ffiffiffi
3
p

m�1 is the wave vector difference between the central pocket and any
of the three ‘leg’ pockets in the same valley (Section 3.2.2.), and ¼ 1(�1) for the
conduction (valence) band.

Just as for the case of the monolayer graphene [238] and other spin systems [251],
we find that the dielectric matrix of a graphene bilayer is a unit matrix multiplied by
a dielectric function

"̂ðq,!Þ ¼ 1� vq�̂0ð~q,!Þ; ð55Þ

with the bare Coulomb interaction vq¼ e2/(2"0q) and the electron–hole propagator is
written explicitly in Equation (54). Near the central Dirac point at k¼ 0, the
intraband backward scattering and interband vertical Coulomb scattering are
forbidden and j g,�

~k
ð0Þj2 ¼ j g,

~k
ð�2 ~kÞj2 ¼ 0. The same rules also hold for the three

satellite Dirac points. For a large k (k� k0), j g
,�
~k
ð0Þj2 ¼ j g,�

~k
ð�2 ~kÞj2 ¼ 0, but

j g,
~k
ð�2 ~kÞj2 ¼ 1, i.e. the intraband backward transition is allowed but both the

interband backward and vertical transitions are forbidden. The above selection rules
together with the energy dispersion of the carriers indicate that the electrons (holes)
close to the bottom (top) of the conduction (valence) band have very different
behaviors from those away from the bottom (top).

The Coulomb screening is dictated by the response of the electron liquid to a
pertubation. The static dielectric function at zero temperature versus q is plotted in
Figure 53(a). Its long wavelength limit is given by the properties of the four pockets
around each of the Dirac points. The central point has an isotropic velocity v0¼ �hk0/
(2m)¼ 105ms�1 (with energy E0 ¼ �h2k20=2m ¼ 3:9 meV) while the satellite ones have
the elliptic form of equi-energy lines with a minimum velocity equal to v0 along their
radial direction and a maximum of 3v0 along the azimuthal direction. The static
dielectric constant at q¼ 0 is estimated to be "s¼ 1þ 3e2/(8"0�hv0)� 105. This value
is much bigger than that of the monolayer graphene (4.5) [238]. This means that the
long-range Coulomb interaction is much more strongly screened for the bilayer
system, using a much bigger density of states near the Fermi energy in a bilayer
graphene.

Another characteristic of bilayer graphene is its screening anisotropy, especially
for scattering at a distance range of about 10 nm. This is shown by the difference
between the solid and the dotted curves in Figure 53(a) and (b), corresponding to
the directions of ~q pointing to any satellite from the central Dirac points (�¼ 0) or
connecting any two satellites (�¼�/6). Here � is the angle between ~q and the x-axis.
At q ¼

ffiffiffi
3
p

k0 ¼ 108 m�1, the wavevector distance between any two satellite Dirac
points, the anisotropy of "s reaches its maximum with a mismatch of 20% along the
different directions. The shoulder near q¼ k0¼ 0.58	 108m�1 in the solid curve
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reflects the strong scattering between the carriers in the central and the ’¼ 0 satellite
Dirac points. At a finite temperature, the energy pockets near the Dirac points
are partially occupied and the intraband scattering strength is greatly enhanced.
As a result, the static dielectric function near q¼ 0 increases rapidly, as shown in
Figure 53(b) at T¼ 4.2K. The effect of finite temperature is shown in Figure 53(c)
and (d) for q¼ 0.005 along �¼ 0, at T¼ 0, 4.2K.

For !4E0/2, the dielectric function of bilayer graphene is similar to that of a
normal Fermi gas and its temperature dependence is weak. The step of "r and the
peak of "i near !¼E0/2¼ 2meV correspond to the single-particle excitations
coupling states with vanishing group velocity and wavevectors equal to half of
the vector from the central pocket to a satellite pocket. For small !, however, the
dielectric function becomes more sensitive to the temperature and shows character-
istics of the Dirac gas. One sign of the Dirac gas is the lack of Coulomb screening
("r� 1) in the energy window between 1 and 2meV. Another sign is that a low-energy
plasmon mode appears only at a finite temperature. As shown in Figure 53 (c),
"r has no negative value for the energy !5E0/2 at T¼ 0 but evolves into a deep
negative dip at a finite temperature T¼ 4.2K, when the energy pockets near the
Dirac points are partially occupied. As a result, one observes a weakly Landau
damped plasmon mode of dispersion ! 


ffiffiffi
q
p

at T¼ 0 and a couple at finite
temperatures.

The collective excitations of the electronic liquid in bilayer graphene are also
a subject of interest. Figure 54(a) shows the plasmon spectrum of intrinsic bilayer
graphene (EF¼ 0). The dispersion of the weakly Landau-damped mode is indicated
by the thick curve and has

ffiffiffi
q
p

dependence. Interestingly, the plasmon mode exists
only at energy higher than E0/2, i.e. double the depth of the energy pockets in the

Figure 53. (a) The static dielectric function "s versus the wavevector q along the direction
�¼ 0 (solid) and �/6 (dotted) at T¼ 0. (b) The same as (a) but at T¼ 4.2K. (c) The real part of
the dielectric function "r versus frequency ! at T¼ 0 (dotted) and at T¼ 4.2K (solid). (d) The
imaginary part of the dielectric function "i versus ! at T¼ 0 (dotted) and at T¼ 4.2K (solid).
In (c) and (d), q¼ 0.005	 108m�1 and �¼ 0. In the limit !!1, "r gradually approaches
to one while "i approaches to zero.
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Dirac points. At a finite temperature T¼ 4.2K, another weakly damped plasmon
mode shows up at the energy lower than E0/2 and also has a dispersion of

ffiffiffi
q
p

near

q¼ 0, as illustrated in Figure 54(b). The plasmon mode of higher energy that exists

at T¼ 0 is not sensitive to the temperature. This temperature dependence of the

low- and high-energy plasmon spectra represents a marked difference between
electron gases having linear (without the collective excitations) and quadratic (with

the collective excitations) energy dispersion at T¼ 0. The electronic states in bilayer

graphene are similar to the Fermi type at high energies but revert to Dirac type

at low-energy.
The carrier density of the system can be changed by doping [140]. For a typical

doping density of 1012 cm�2 [140,262], the Fermi energy is high enough above the

bottom of the conduction band that the linear k term in the Hamiltonian can be

neglected. The electrons then have quadratic dispersion but with chirality and

�¼�2’. Near q¼ 0, the plasmon dispersion in doped bilayer graphene has
ffiffiffi
q
p

dependence, as shown by the solid curve in Figure 55, and shares the same dispersion
!2D
p ¼ ½nee

2q=2"0m�
1
2 with a normal two-dimensional Fermi gas. To see the effect of

the chirality, for comparison we plot as a dotted curve the plasmon dispersion of a

normal two-dimensional Fermi gas with two valleys. The two curves overlap for the

small q but separate as q increases. The maximum difference in the dispersion
appears near q ¼

ffiffiffi
2
p

kF when ~k and ~kþ ~q form a right angle in the Fermi plane and

the corresponding transition is forbidden in the bilayer graphene due to the chiral

scattering properties.
The bilayer plasmon frequency is smaller than that of the monolayer because the

dielectric properties of the monolayer are weaker. Hwang and Das Sarma [208]
derived analytical expression of static dielectric function for bilayer graphene with

moderate doping when the linear Hamiltonian term can be neglected. With the

analytical expression, they could estimate the screened static Coulomb potential

and show the Kohn anomaly near q¼ kF/2, the Friedel oscillation and the form

of RKKY interaction in bilayer graphene. See Section 3.5 for a description of
this work.

Figure 54. The plasmon spectrum of an undoped bilayer graphene at T¼ 0 (a) and at
T¼ 4.2K (b). The thick curves indicate the weakly Landau damped modes while the thin
curves represent the strongly damped modes.
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The magneto-plasmons in bilayer graphene were considered in a self-consistent
analytical framework by Tahir et al. [263]. They derived expressions for the plasmon
frequency, and compared their results to those for monolayer graphene and
traditional 2DESs. The light effective mass of the electrons in the bilayer, and the
relatively weak dielectric properties of graphene ensures that the plasmon frequency
is approximately two times higher than that of, for example, GaAs–AlGaAs
heterojunctions. The magnetoplasmon and Weiss oscillation has been studied in
mono- and bilayer graphene [264,265]. The Boltzman equation has been used to
study the electronic transport in bilayer graphene [266]. Then the effects of site
dilution disorder on the electronic properties, such as self-energies, the density of
states, the spectral functions and both DC and AC transport properties, in graphene
multilayers have also been studied [267].

Theoretical approaches described in this section were recently employed by Wang
and Chakraborty to investigate the Coulomb screening and plasmon spectrum in a
bilayer graphene under a perpendicular electric bias [268]. The potential bias applied
between the two graphene layers opens a gap in the single-particle energy spectrum
and makes the semimetal bilayer graphene into a semiconductor. As a result, the
dielectric function for the Coulomb interaction and the propagator function were
found to be modified significantly [268]. The potential bias also opens a gap in the
single-particle excitation spectrum and softens the collective modes. This may result
in undamped collective modes that are observable in experiments. Experimental
observation of plasmon modes with long lifetime might prove to be beneficial for
future device applications.

4.3. Graphene in a strong electromagnetic field

Graphene also displays unique and intriguing properties when it is irradiated by
strong electromagnetic fields (EMFs), such as laser light. Floquet theory (the
temporal analogue of Bloch theory) has been applied [224,269] to determine the
quasienergy spectrum and dynamical density of states, in this situation.

The time-periodic EMF is represented by a vector potential, and the minimal
coupling substitution made in the Hamiltonian. The Floquet theory is then applied,

Figure 55. The plasmon spectrum of a doped bilayer graphene (solid curve) with a
typical carrier density of 1012 cm�2. Correspondingly, EF¼ 36.3meV and kF¼ 1.77	 108m�1.
The plasmon spectrum in the same system but without chirality is plotted as a dotted curve
for comparison. Intra- (dark shaded) and inter- (light shaded) band single-particle continuums
are also shown.
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so that the overall wave function of Floquet state � is written as ��(t)¼ e�i"�t��(t)
where ��(tþT)¼��(t), with T¼ 2�/�. The Floquet Hamiltonian may be diago-
nalized numerically to produce the spectrum of quasienergies "� and the wave
functions ��(t), which may then be used to calculate physical quantities such as the
density of states, or the electronic current. As an example, Oka et al. [269] showed
that an intense, circularly polarized EMF parametrized by frequency � and intensity
F generates spectral gaps at !¼��/2, and at the Dirac point. The gap at the Dirac
point is initially quadratic in the intensity: 2�
 2A2/�, but takes the asymptotic
behavior 2�
 2A��. Here A¼F/�, where F is the field strength (intensity).
This gap exists both in bulk monolayer graphene, and in graphene nanoribbons.
The authors then use the Keldysh approach to calculate the current through a finite-
sized, irradiated monolayer graphene sample and find that a dc Hall current
in induced in the ribbon.

Fistul et al. [270] have shown that an intense EMF may mitigate the Klein effect
in a n-p junction and allow electrostatic confinement of electrons. It does this by
creating a dynamical band gap, which forbids the tunnelling of quasiparticles
through the potential barrier via hole states, as in the Klein effect. Instead, electrons
may only tunnel via interband processes which are strongly suppressed. The size of
the gap is dependent on the intensity and frequency of the radiation, so the authors
claim that structures such as QDs or n–p–n transistors may be engineered by this
technique. Photon-assisted tunnelling was also considered in the context of bilayer
graphene by Shafranjuk [271]. López-Rodrı́guez and Naumis describe analytical
results within the Floquet formalism [272] and Wright et al. [273] have shown that
bilayer ribbons show enhanced optical conductivity in the terahertz and far infra-red
frequency ranges.

Abergel and Chakraborty [224] considered irradiated bilayer graphene, both
with and without the gap-generating bias potential. When the bilayer was unbiased,
a similar picture was found to that of the monolayer, with dynamical gaps
being generated at the charge-neutrality point, and at !¼�n�/2, with n an integer.
These gaps are manifest in the density of states, as shown in Figure 56. In the case
when there is a finite gap at zero energy (evidenced by the low density of states), the
radiation may cause dynamical states to be created in the gapped region (see, e.g. the
finite density of states for !5 5meV in the K valley for F¼ 5 kV/cm in Figure
56(a)). The most fascinating observation to be made from Figure 56 is that for U 6¼ 0,
the density of states is not the same in each valley, since the orientation of the
circular polarization of the irradiating field couples more strongly to electrons in one
valley than in the other. If the polarization of the radiation is reversed, or the
direction of the bias potential U is swapped, then the strong and weak couplings are
also reversed. In particular, the radiation-induced density of states in the gapped
region is, in some cases, only present in one valley. For example, for F¼ 1 kV cm�1

and U¼ 10meV, there is finite density of states in the K valley for !5U/2, but not
in the K0 valley. The authors go on to show how irradiated bilayer graphene may be
used as a valley filter for an electron current. By irradiating one part of a graphene
flake, and attempting to pass current through this section, electrons will only pass if
there is a finite density of states through which they can propagate. Therefore, tuning
the radiation so that the density of states is in one valley or the other immediately
yields a valley-polarized current. This effect was demonstrated theoretically by
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computing the current through the device via a tunnelling approach. The two
graphitic ‘leads’ are described by appropriate Hamiltonian for unirradiated bilayer
graphene. The central (irradiated) region is linked to the leads via coupling
Hamiltonians which assume that the momentum and energy of the electron must be
conserved at the boundary. The valley component of the charge current in the right-
hand (outgoing) lead is J� ¼ �hdN

�
R=dti, where N

�
r stand for the number operator of

�-valley electrons in the right lead. A nonequilibrium Green’s function method is
used to compute the current of electrons in the � valley, which is

J� ¼ �
2e

h

Z
d2 ~k

ð2�Þ2

X
�
�

Tr
�

���
�
= �GrðE�

�
Þ
��

fcðE�
�
Þ � fRðE�

�
Þ

,

where fc,R is the occupation of electrons in the central region or right-hand lead, Gr is
the full retarded Green’s function in the central region, � contains the inter-region
coupling parameters, � labels the Floquet states, E is the energy of an electron in the
lead and Tr denotes the trace over the matrix structure (designated by the overbar).
The Green’s function is calculated using the Floquet states, and includes the self
energy due to the two graphitic leads.

This filter device can produce electrons in either valley, simply by reversing the
polarity of the incident light, or the sign of the bias potential U. In Figure 56(b)
and (c), the total current through irradiated bilayer graphene is shown, along
with the simultaneous valley polarization. The area where the polarization is
greater than 98%, and the current is greater than 0.08 pA is shown by the white
contour.
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Figure 56. (a) Density of states in irradiated bilayer graphene for three field intensities and
three gap sizes. (b) The total current, and (c) the valley polarization of electron transport
through an irradiated bilayer graphene device. In (b) and (c), U¼ 20meV, and the transverse
(current-driving) bias is 12meV. The white contours denote the region of simultaneous high
valley polarization (498%) and significant current flow (40.08 pA).
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5. Zero-field transport in graphene

Transport properties in graphene and bilayer graphene are among the most exciting
observations in these new materials. What is so special about them? First of all,
graphene is a genuine two-dimensional electronic system. Second, it is a semimetal at
the charge neutrality point and a metal away from the charge neutrality point. This
means that the Fermi surface, responsible for transport at low temperatures, consists
either of two (slightly deformed) circles away from the charge neutrality point which
shrink to two Dirac points exactly at charge neutrality. Moreover, the fact that
graphene has two bands, touching each other only at the two Dirac points (Section
1), provides intra- and interband scattering, where the latter leads to a number of
interesting features such as Klein tunnelling and a constant optical conductivity.

Transport processes can be distinguished by the type of scattering of the (quasi)
electrons in the material. First of all, the electrons are scattered by the honeycomb
lattice, which leads to the formation of Bloch states if the lattice is perfectly periodic.
This case is also known as ballistic transport, in which the boundary conditions play
a crucial role. Then there can be scattering by non-periodic structures (impurities,
lattice defects and lattice deformations). This leads to diffusion of the electrons,
under certain conditions also to Anderson localization. And finally, there is
scattering between the electrons themselves due to Coulomb interaction and
electron–phonon interaction.

The basis for calculating quantum transport properties is either the linear
response theory (Kubo formalism) or the evaluation of transmission coefficients
(Landauer–Büttiker formalism). Both approaches have been used frequently for
graphene and gave the same results for comparable quantities. In the following,
we will employ the Kubo formalism because it provides more flexibility for
calculating general physical properties such as thermal effects and optical conduc-
tivities. Away from the neutrality point a classical (Boltzmann) approach was
successful [274–276] and will be discussed briefly.

5.1. Basic experimental facts

Already the first experiments on graphene by Novoselov et al. [17] and Zhang et al.
[85] revealed very characteristic transport properties in graphene. Graphene as well
as a stack of two graphene sheets (i.e. a graphene bilayer) are semimetals with
remarkably good conducting properties [1,17,85]. These materials have been
experimentally realized with external gates, which allow a continuous change of
charge carriers.

Besides the quantum Hall effect (Section 2), it was found that the longitudinal
conductivity changes linearly as a function of gate voltage Vg with a negative
slope for holes and a positive slope for electrons. There is a minimal conductivity
�min near the charge neutrality point (cf. Figure 57). The latter has attracted some
attention because its value seems to be very robust in terms of sample quality and
temperature [1,27,277,278]. More recent experiments by Du et al. [26] on
suspended graphene, however, indicated that below T� 150K the minimal conduc-
tivity decreases linearly with decreasing T and reaches the extrapolated value
�min� 2e2/h at T¼ 0. A similar result was found by Danneau et al. [279]. This clearly
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indicates that the main mechanism of transport in graphene at the NP is diffusion,
possibly with a very large mean-free path. Away from the NP the linear behavior has
not always been observed but also a sublinear behavior. One possible reason is that
the linear behavior is due to long-range scattering by charged impurities, which may
not be present in suspended graphene [26].

Role of disorder – Disorder might play an important role in the physics
of graphene. First of all, a two-dimensional lattice is thermodynamically unstable.
It is known that this is the origin of the strong corrugations in graphene in the form of
ripples. Another source of disorder are (charged) impurities in the substrate, which
probably affect the transport properties substantially. Recent experiments on
suspended graphene have been able to eliminate this type of disorder. Experimental
evidence of strong effects of disorder comes from the observation of puddles of
electrons and holes at the charge neutrality point [213]. In a recent experiment with
hydrogenated graphene (graphane), disorder is added by an inhomogeneous coverage
by hydrogen atoms. This leads to the formation of localized states which causes a non-
metallic behavior characterized by a variable-range hopping conductivity [280].

Role of electron–electron interaction – There is no clear evidence for an effect of
electron–electron interaction on transport properties. This is supported by recent
theoretical findings, based on perturbative renormalization group calculations
[232,281,282], that Coulomb interaction provides only a correction of 1–2% for the
optical conductivity [283]. This is in good agreement with the experiments on the
optical transparency of graphene [146,284].

Role of electron–phonon interaction – Although there is a remarkable electron–
phonon interaction [217,285,286] in graphene, its effect on transport properties
has not been investigated in detail. Some experimental findings of a gap opening
was associated with electron–phonon interaction [287] but in most samples the
conductivity is explained by non-interacting particles. The optical conductivity
might be affected by the electron–phonon interaction of gated graphene before

Figure 57. Measured conductivities in graphene. The linear behavior of the conductivity as
a function of the gate voltage is shown for graphene on a substrate at fixed temperature
T¼ 10K (left panel) (Reprinted figure with permission from K.S. Novoselov et al., Nature,
438, p. 197, 2005 [17]. Copyright � (2005) Nature Publishing Group.) and for suspended
graphene at several temperatures (right panel) (Reprinted figure with permission from X. Du
et al., Nature Nanotechnology, 3, p. 491, 2008 [26]. Copyright � (2008) Nature Publishing
Group). The inset on the right panel shows the behavior of the minimal conductivity.
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interband scattering can dominate transport (i.e. when the frequency ! is less than
EF/�h) [284].

5.2. Low-energy approximation and random fluctuations

The linear approximation of the tight-binding model for monolayer graphene was
introduced in Section 1.2. Here we focus on the low-energy properties near the nodes
of neutral graphene, taking into account also random scattering caused by ripples
and impurities. Moreover, a random gap can appear. The reason in the case of
monolayer graphene is that fluctuations appear in the coverage of the monolayer
graphene by additional non-carbon atoms [280,288]. In the case of bilayer graphene
with a dual gate [140,185] the random gap is caused by the fact that the graphene
sheets are not planar but create ripples [24,289,290]. As a result, electrons experience
a randomly varying gap along each graphene sheet.

The two bands in monolayer graphene and the two low-energy bands in bilayer
graphene represent a spinor-1/2 wave function. This allows us to expand the
corresponding Hamiltonians in terms of Pauli matrices �j as

H ¼ h1�1 þ h2�2 þ
X3
j¼0

vj�j: ð56Þ

Near each node the coefficients hj read in low-energy approximation [291]

hj ¼ irj ðmonolayer grapheneÞ, ð57aÞ

h1 ¼ r
2
1 � r

2
2, h2 ¼ 2r1r2 ðbilayer grapheneÞ, ð57bÞ

where (r1,r2) is the 2D gradient, v1 is a random scalar potential, v2,3 the two
components of a random vector potential and v3 a random gap. This is a gradient
expansion of the monolayer graphene and bilayer graphene tight-binding
Hamiltonians around the nodes K and K0.

It is assumed here that randomness scatters only at small momentum such that
intervalley scattering, which requires a large momentum at least near the nodes [292],
is not relevant and can be treated as a perturbation. Then each valley contributes
separately to the density of states and to the conductivity, and the contribution of the
two valleys is additive. This allows us to consider the low-energy Hamiltonian in
Equations (56), (57) for each valley separately, even in the presence of randomness.
Within this approximation the gap term v3�m is a random variable with mean value
hmri ¼ �m and variance hðmr � �mÞðmr0 � �mÞi ¼ g�r,r0 . The following analytic calcula-
tions will be based entirely on the Hamiltonian of Equations (56) and (57). In
particular, the average Hamiltonian hHi can be diagonalized by Fourier transfor-
mation and is

hHi ¼ p1�1 þ p2�2 þ �m�3 ð58Þ

for monolayer graphene with eigenvalues Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ p2

p
. For bilayer graphene,

the average Hamiltonian is

hHim ¼ ð p
2
1 � p22Þ�1 þ 2p1p2�2 þ �m�3; ð59Þ
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with eigenvalues Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ p4

p
. In order to apply results from these calculations

to monolayer graphene or bilayer graphene we must include a degeneracy factor
�¼ 4, referring to the two valleys K and K0 and the two-fold spin degeneracy of the
electrons.

5.2.1. Density of states

Transport properties at temperature T¼ 0 are connected to the density of states
�(EF) at the Fermi level EF and the diffusion coefficient D through the Einstein
relation for the conductivity:

�ð! ¼ 0Þ / D�ðEFÞ: ð60Þ

In the absence of disorder, the density of states of 2D Dirac fermions opens a gap,
as soon as a nonzero term m appears in the Hamiltonian of Equation (56), since
the low-energy dispersion is Ep ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
for monolayer graphene and

Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p4

p
for bilayer graphene (cf Figure 58). At low energies, the density

of states of monolayer graphene is

�ðEÞ ¼ jEj	ðjEj �mÞ, ð61Þ

where 	(x) is the Heaviside function. For bilayer graphene the density of states is

�ðEÞ ¼
jEj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2
p 	ðjEj �mÞ: ð62Þ

The density of states for both cases are shown in Figure 58. Random fluctuations of
m can fill the gap with states by band broadening and by the development of Lifshitz
tails, as shown in Figure 59.

5.3. Theory of transport

Transport properties, such as electric and thermal conductivities, can be calculated
within either the classical Boltzmann or within the Kubo formalism. The former is

Figure 58. Density of states for monolayer graphene and bilayer graphene with a uniform gap
(from [293]). Bilayer graphene has a singularity at the gap edge.
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very successful for providing results away from the nodes. At the nodes quantum

effects are crucial, so the Boltzmann approach fails and the Kubo formalism must be

employed. An alternative to the Kubo formalism is the Landauer formalism.
Both formalisms, however, lead to similar results [294]. Therefore, we will restrict the

subsequent study on the Kubo formalism after a brief discussion of the Boltzmann

approach.

5.3.1. Boltzmann approach

From the classical Boltzmann theory, where quantum effects are included by

choosing a Fermi distribution for the otherwise classical electrons [229], we get for

the conductivity the expression

� ¼
1

2
e2v2F�ðEFÞ�, ð63Þ

where � is the scattering time and vF the Fermi velocity. This relation is very similar

to the Einstein relation of Equation (60). In the case of Dirac fermions (H ¼ vF ~p � ~�),
where the density of states is linear in EF, we obtain

� ¼ 2
e2

h

EF�

�h
: ð64Þ

The scattering time � is determined by the distribution of random scatterers. Thus a

major problem of calculating transport properties is to evaluate �, and one possible

way to do that is provided by the Boltzmann approach. The latter, based on the

classical Boltzmann equation, has been a very successful concept for the discussion
of transport in solid-state physics. It is more difficult to apply in graphene, however,

as we will discuss next.

Figure 59. The density of states calculated numerically at the neutrality point for Gaussian
random gap for a 200	200 honeycomb lattice for g¼ 0.92, 1, 1.12, 1.22 and 1.32 from bottom
to top after 400 averages. The symbols denote the numerical data, solid lines are fits using
a exp(�bm c ). The inset shows the obtained exponents, c, as a function of g, which is close
to 1.5 (from [293]).
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When � is roughly a constant with respect to EF, as in normal metals, the
conductivity in Equation (64) would change linearly with EF. The latter, on the other
hand, is related to the density of charge carriers n as EF /

ffiffiffi
n
p

, as a consequence
of the linear density of states:

n /

Z E
F

0

�ðEÞdE �

Z E
F

0

E dE ¼ E2
F=2:

Therefore, � would change with
ffiffiffi
n
p

for monolayer graphene. This is not in
agreement with experimental observations on gated graphene on a substrate, where
it was found that � changes linearly with n [17]. For bilayer graphene the density
of states is constant near the nodes, which is a consequence of the parabolic
dispersion. Then we have n/EF, and a constant � leads to a linear behavior in gated
bilayer graphene, in agreement with the experimental observations [27]. From this
point of view, bilayer graphene has a more conventional transport behavior than
monolayer graphene.

To get a linear behavior also for monolayer graphene, the assumption of a
constant � must be replaced by a density-dependent � that changes linearly with
EF: �
 kF. Such a behavior was obtained from the Born approximation of � by
assuming V
 �hv�/2kF [98]. However, two problems remain within this result: one
is the vanishing minimal conductivity, in contrast to the experimental observation
of a minimal conductivity at the neutrality points [17]. The other is the absence of a
finite offset (i.e. the linear conductivity curves of the holes and the electrons do not
meet at EF¼ 0). This behavior was observed in the experimental curves [278].

At the nodes the Fermi surface are just points and the density of states
of monolayer graphene vanishes (i.e. there are no states at the Fermi energy). This
implies that a statistical concept, which uses the distribution of charges, may
experience some difficulties. Nevertheless, the Boltzmann approach can be applied
away from the Dirac point and then the Dirac point is approached at the end.
Perturbation theory with short-range scatterers gives for the scattering time
[274–276]

� / k�1F 
 1: ð65Þ

According to Equation (64), including the Dirac dispersion EF / kF, this leads to
a constant nonzero conductivity. Thus, the Boltzmann approach gives us a nonzero
minimal conductivity when we consider short-range scatterers. Unfortunately,
a divergent scattering time at the Dirac point does not describe a realistic situation
because quasiparticles are scattered, e.g. by the ripples or charge inhomogeneities.
Moreover, the conductivity is constant also away from the nodes EF¼ 0 because
the wavevectors kF always cancel each other. Unfortunately, this is again in
disagreement with the linearly increasing conductivity of the experiment [17].

In conclusion, the classical Boltzmann approach describes the transport
properties qualitatively correct. However, it needs two different types of scatter-
ing to obtain the conductivity near the Dirac point and away from the Dirac
point properly. The divergent scattering time at the Dirac point cannot be correct
though, at least for strong disorder. The subsequent discussion focuses on a more
microscopic approach, based on the Kubo formula for linear response to an external
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electric field, where we start from the Hamiltonian in Equation (56). This will allow

us to recover the Einstein relation Equation (60) with a disorder dependent diffusion

coefficient D, a non-divergent scattering time and the robustness of the minimal

conductivity.

5.3.2. Kubo formalism

A quantum approach to transport starts from a Hamiltonian H (here for

independent electrons) and the corresponding current operator

jk ¼ �ie½H, rk�,

where rk is a component of the position operator of the electron. The average

current, induced by a weak external electric field E, is obtained in terms of linear

response as Ohm’s law

h jki ¼ �klEl,

with conductivity �kl. The general form of the conductivity in the Kubo formalism

can be expressed as a product of one-particle Green’s functions G(z)¼ (Hþ z)�1 at

different energies z [295]. In the following, we exclude an external magnetic field.

This leads to a vanishing Hall conductivity �kl¼ 0 for k 6¼ l. Following the notation

of [296], there are two contributions to the real part of the longitudinal conductivity

as �¼ �Iþ �II with

�Ikkð!Þ ¼ �
e2

2h
!

Z X
r

ðrk � r0kÞ
2

	Re

�
Tr2

�
Grr0

�
1

2
!� �� i�

�
Gr0r

�
�
1

2
!� �� i�Þ

��	 �
��ð�Þd�

and

�IIkkð!Þ ¼
e2

2h
!

Z X
r

ðrk � r0kÞ
2

	Re

�
Tr2

�
Grr0

�
1

2
!� �� i�

�
Gr0r

�
�
1

2
!� �þ i�

���	 �
��ð�Þd�

with

��ð�Þ ¼ f�ð�þ !=2Þ � f�ð�� !=2Þ

and with the Fermi distribution function f�(x)¼ (1þ e�(x�
))�1 at temperature T¼ 1/

kB�. The brackets h. . .i refer to disorder average and ! is the frequency of the

external electric field. The spinor structure of monolayer graphene and bilayer

graphene is taken into account by the trace Tr2 over 2	 2 matrices.
The expressions of the conductivity are rather complicated which make them

difficult to handle. Therefore, for practical calculations it is useful to study certain

limits and to apply approximations.
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DC conductivity: the standard approach to the DC conductivity (i.e. !! 0) is to

neglect �I, since for this expression the poles of the Green’s functions are in the

same half plane. Therefore, any amount of disorder will lead to an exponential

decaying Green’s functions. Then the summation over the lattice sites r is finite and

the prefactor ! gives a vanishing DC limit !! 0. This allows us to write

�kk � �
II
kk ¼

e2

h

!

2

Z
C0ð�,!Þ��ð�Þd�, ð66Þ

where C0(", !) is the real part of

Cð�,!Þ ¼ lim
�!0

X
r

r2khTr2½Gðr, 0; �� !=2� i�ÞGðr, 0; �þ !=2þ i�Þ�i: ð67Þ

A substantial simplification is possible in the zero-temperature limit T¼ 0 which

restricts the integration over particle energies � to a small interval, given by the

frequency !:

�kk ¼ �
e2

h

!

2

Z 
þ!=2


�!=2

C0ð�,!Þd�: ð68Þ

A further simplification comes from the approximation by pulling out the integrand

at �¼
:

�kk � �
e2

2h
!2C0ð
,!Þ: ð69Þ

This expression can be directly compared with the result of the Boltzmann approach

in Equation (63).
We begin with a clean sample by ignoring the disorder average in Equation (67)

and introduce the pure two-particle Green’s function (2PGF)

C0ð
,!Þ ¼ lim
�!0

X
r

r2kTr2½Gðr, 0;
� !=2� i�ÞGðr, 0;
þ !=2þ i�Þ�, ð70Þ

which is for Dirac fermions without scattering and with infinite cutoff [297]

C0ð
,!Þ ¼ �
1

8!�

8

!
þ
1� 4
2=!2



ln
ð1þ 2
=!Þ2

ð1� 2
=!Þ2

� �� �
: ð71Þ

This becomes at the Dirac point 
¼ 0 the simple expression

C0ð0,!Þ ¼ �2=�!
2 ð72Þ

and with Equation (69) we obtain the well-known DC result [298–300] for the

conductivity:

�kk ¼
1

�

e2

h
: ð73Þ

AC conductivity: for !4 0 and T4 0 the conductivity is a function of !/T.
Therefore, we must keep T finite for the AC conductivity. Moreover, now we

must take into account also �I. This gives for Dirac fermions, where we ignore
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the additional factor 4 that comes from the valley and from the spin degeneracy, the

expression [301,302]

�kk 

�

8

e2

h

sinhð�!=2Þ

coshð�!=2Þ þ coshð�
Þ
:

Here the frequency ! is restricted to the bandwidth of the underlying lattice

Hamiltonian. For �
� �!
1 this becomes a frequency-independent expression

[301,303–306]:

�kk 

�

8

e2

h
:

Including the spin and valley degeneracy, this agrees with the experimentally

observed plateau of the optical conductivity of �e2/2h [146,284]. There is a correction
factor due to Coulomb interaction [281–283]

1þ
c1

1þ � lnð=!Þ=4
,

where  is the cut-off of the Dirac spectrum and �¼ e2/�hv� 2.2 is the effective

fine structure constant. The numerical coefficient c1 has been debated in a number

papers, where the most recent value is c1¼ 0.0125 [283] that agrees with the previous

result in [282].
Another possible correction is due to disorder, always present in realistic

graphene samples in the form of ripples and impurities. Disorder leads to an effective

scattering of the quasiparticles that can be characterized as a scattering rate.

A conventional way of including scattering by random impurities is to introduce

a scattering rate � in the form of an imaginary term i� through the substitution

!!!þ 2i� in C0(
, !) such that

Cð
,!Þ � C0ð
,!þ 2i�Þ: ð74Þ

There are several options to determine the phenomenological parameter � (scattering
rate or inverse scattering time), for instance, by the Born approximation [229]

or the self-consistent Born approximation [229,262,275,276,307–309] which will be

discussed in Section 5.5.1. It implies that

C00ð0,!þ 2i�Þ ¼ �2Re
1

�ð!þ 2i�Þ2

� �
¼ �

2

�

!2 � 4�2

ð!2 þ 4�2Þ2
, ð75Þ

and with Equation (69) we obtain the following for the conductivity:

�kk �
e2

�h

!2ð!2 � 4�2Þ

ð!2 þ 4�2Þ2
: ð76Þ

This is the well-known DC result e2/�h only when the scattering rate � is much

smaller than the frequency, i.e. in the weak-disorder limit. The reason for this

behavior is simply related to the fact that for any �4 0 the 2PGF decays

exponentially on the scale 1/�, always leading to a vanishing DC conductivity.

It is not caused by Anderson localization but just by the incorrect evaluation of the
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2PGF. This can be cured by introducing an accurate description of the average
2PGF in Equation (67) instead of the product of two averaged one-particle
Green’s functions.10

In the following we will discuss in more detail the effect of disorder on the
transport properties, since this is important for applying the theory to the physics
of realistic graphene samples. Moreover, in this field there are number of open
questions which might be a challange for future studies.

5.4. Perturbation theory for disorder

The fact that for weak disorder (i.e. for ��!) the semiclassical approximation in
Equation (76) gives reasonable values for the conductivity suggests that transport
properties can be evaluated in terms of perturbation theory with respect to disorder.
Since the scattering rate � vanishes with vanishing disorder, this quantity might also
be available in perturbation theory. Here we use the low-energy Hamiltonian of
Equation (56) and treat the random variables vj as perturbations. A simple case is
uncorrelated Gaussian randomness with zero mean and variance

hvjrvj0r0i ¼ gj�jj0�rr0 ð j ¼ 0, . . . , 3Þ:

The perturbation theory is studied for a finite system of size L and a smallest scale l
(e.g. lattice constant or mean free path). Then the change of the perturbed system
under a change of the scale �¼ ln(L/l) can be calculated, for instance, in terms of a
one-loop approximation. This perturbative renormalization group (PRG) has been
employed for two-dimensional random Dirac fermions of Equation (56) in a large
number of papers [298,310–312]. For instance, the solution of the PRG equations for
a random gap (g34 0, g0¼ g1¼ g2¼ 0) indicates that the variance of the random
variable and its averaged value m�hmi scale to zero, whereas the energy � is running
away on large scales �:

g3ð�Þ ¼
g3

1þ ð2g3=�Þ�
, mð�Þ ¼

m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2g3=�Þ�

p , �ð�Þ ¼ �0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð g3=2�Þ�

p
: ð77Þ

Therefore, the one-loop PRG breaks down on a length scale

Lc 
 e�=g3 l, ð78Þ

which has also been discussed in the literature [299,313]. Nevertheless, the PRG
result can give us some useful insight in the transport properties if we restrict the
system to a size L smaller than Lc. For instance, the density of states is then obtained
as [314]

�ðEÞ 

jEj

2�
½1þ 2ð g3=�Þ lnðL=l Þ�:

Thus the density of states always vanishes linearly at the Dirac point E¼ 0, no matter
how strong the disorder is. However, the slope of the linear behavior increases with
system size L logarithmically. The normalization of the density of states implies that
this one-loop result can only be valid for system sizes L up to Lc. It can be shown
that this characteristic length scale, which appears here only as a limiting case for the
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calculational method, also plays an important (physical) role for the scattering rate:

The scattering rate vanishes for systems smaller than Lc.
Transport properties have been studied within this PRG scheme for all gj4 0

[311]. The transport quantities can either be expressed in terms of the length scale L,

like the density of states above, or in terms of the wavevector k, representing an

inverse length scale. The wavevector is proportional to the energy and inversely

proportional to the wavelength  through the Dirac dispersion E¼ vFk / vF
�1.

Therefore, the one-loop PRG breaks down for wavelengths larger than 
Lc which

implies for energies E smaller than the critical energy scale

E0 
 e��=g0t,

where g0 is the bare variance of the random scalar potential and t is the hopping rate.

Then for jEj �E0 the conductivity reads [311]

�ðEÞ ¼
8e2

�h
ln jEj=E0ð Þ: ð79Þ

The diffusion coefficient D and the scattering rate � are

D ¼
g00
2��

ln jEj=E0ð Þ, � ¼ �g00�ðE Þ,

where g00 is essentially the variance of the random scalar potential g0. These results

satisfy the Einstein relation � / D�.
The one-loop PRG calculation of random Dirac fermions was also extended to

include Coulomb interaction [312]. These calculations indicate a run-away RG flow

from the unperturbed fixed point. The search for new fixed points has not been

successful yet. Earlier hopes that a specific conformal-invariant field theory could

control all the physics of the random Dirac fermions near E
 0 have also not been

fulfilled so far.
The perturbative approach can be extended by the summation over infinitely

many subdiagrams for the 2PGF [315]. The result is known as weak localization and

describes diffusion in disordered systems. A related idea is the 1/N expansion of the

2PGF [316]. This concept has also been applied to graphene [307]. It is a flexible

approach that also allows us to study the effect of inter-valley scattering. According

to the weak-localization studies by Suzuura and Ando [292], scattering between

different valleys (i.e. different nodes of the low-energy spectrum) has a strong effect

on the transport properties. The behavior changes from anti-localization, when only

intra-valley scattering is included, to localization for inter-valley scattering. This

means that, at least for weak disorder, the conductivity is reduced in comparison to

the pure system. However, this does not necessarily mean that this type of disorder

leads to Anderson localization.
A closer inspection of the weak-localization approaches reveals that these

self-consistent results approaches have a deeper physical meaning, namely the

appearance of diffusion due to spontaneous symmetry breaking. Therefore, it is

easier to start directly from the symmetry analysis and to avoid the complicated

diagrammatic calculations, as we will discussion in the next section.
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The summation over infinitely many subdiagrams is not only useful for disorder
but can also be applied to a perturbation theory for electron–electron [257] or to
electron–phonon interaction [305]. It provides self-consistent equations of the
Hartree–Fock–Bogoliubov type (i.e. it represents the best fit of the many-body
problem by single-particle approximations). Such approximations usually lead to a
gap opening, just as in the BCS theory, for arbitrarily weak interaction. It remains a
question, however, whether these gaps are real or just artifacts of the single-particle
approximation. This problem has been studied in great detail in the case of strongly
correlated systems [317].

5.5. Self-consistent approach: scattering rate and diffusion

The evaluation of the scattering rate in the self-consistent Born approximation
(SCBA) reads as the self-consistent equation

� ¼ 2igðhHi þ zþ i�Þ�1rr , ð80Þ

where � can be interpreted as the imaginary part of the self-energy (cf. [309]).
A similar equation can be derived from the saddle-point approximation of the
average 2PGF [296,318]. This approach avoids the unphysical behavior of the
factorized 2PGF in Equation (75) for !5 2�. As a consequence, instead of the single
scalar parameter �, the corresponding self-consistent equation determines a 4	 4
matrix Q̂:

Q̂ ¼ gðhĤi þ z� 2�jQ̂Þ
�1
rr �j, ð81Þ

where � j¼ diag(�j, �j), and Ĥ ¼ diagðH,HÞ is a 4	 4 block diagonal Hamiltonian.
j¼ 0 is for a random scalar potential, j¼ 1, 2 for a random vector potential and j¼ 3
for a random gap potential. A special solution of Equation (81) could be of the form

Q̂0 ¼ �i
�

2
�j, ð82Þ

where � is the scattering rate, since it shifts the energy in the Green’s function
ðhĤi þ zÞ�1 by i�, like in the semiclassical approach of Section 5.3.2. Now we can
insert our special solution in Equation (81) and multiply it by � j. This reduces the
matrix equation to a scalar equation (80), the equation of the SCBA. It should be
noticed that this equation is the same for all types of randomness, the model specific
properties have dropped out. This is a first hint that the reduced equation is not
sufficient to describe the physics of disordered monolayer graphene or bilayer
graphene. The reason is that with the special ansatz (82) we have completely lost the
4	 4 matrix structure of the equation. A more careful inspection of Equation (81)
reveals that Ĥ is invariant under a continuous transformation for j¼ 1, 2, 3 (but not
for j¼ 0), depending on the type of randomness [296,318]. A consequence of these
symmetries is that for z¼ 0 the saddle-point equation is invariant under the global
symmetry transformation, and the transformation creates a whole manifold of
solutions Q̂ with Q̂

2
¼ ��2�0=4 (�0 is the 4	 4 unit matrix). This is the origin of the
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nonlinear sigma model, which describes diffusion of particles. We will briefly return

to this point in the discussion of the average 2PGF in Section 5.5.1.
It is crucial to notice that the manifold collapses to a single solution if �¼ 0.

Such a vanishing solution exists, for instance, for a finite monolayer graphene if its

linear size L is too small, namely L5Lc.
11

5.5.1. Scaling relation of the two-particle Green’s function

After integration over the manifold of saddle-point solutions, both for monolayer

graphene and bilayer graphene, the average 2PGF

Kgðq, zÞ ¼
X
r

e�iq�r lim
�!0
hTr2½Gðr, 0;�z=2� i�ÞGðr, 0; z=2þ i�Þ�i,

which is related to C(�,!) in Equation (67) for �¼ 0 by

Cð0,!Þ ¼ �
@2Kgðq,!Þ

@q2k

� �
q¼0

,

can also be evaluated. For instance, for a random gap with variance g there is a

simple relation between the 2PGF of the pure system

K0ðq, zÞ ¼
X
r

e�iq�r lim
�!0

Tr2½G0ðr, 0;�z=2� i�ÞG0ðr, 0; z=2þ i�Þ�,

with the one-particle Green’s function G0(z)¼ (hHiþ z)�1, and the average 2PGF

as [318]

Kgð0,!Þ ¼
ð!þ 2i�Þ2

!2
K0ð0,!þ 2i�Þ � !�2Fð!þ 2i�Þ: ð83Þ

The right-hand side does not depend on the disorder strength g explicitly, only

through the scattering rate �. This is a scaling relation for Kg(0,!), where we

have pulled out the divergent term !�2 and introduced the scaling function

F(z)¼ z2K0(0, z) with z¼!þ 2i�. The expression for the conductivity in Equation

(69) then reads

� ¼ �
e2

2h
F 0ð!þ 2i�Þ, ð84Þ

where F0(z) is the real part of F(z). Thus, the conductivity depends only on the

variable !þ 2i� through the scaling function. This is a generalization of the classical

Drude formula, where the scaling function of the latter would be FDrude / i/z .
The relation in Equation (83) can be compared with the semiclassical approx-

imation in Equation (74). They do not agree except for the trivial case �¼ 0 due to

the prefactor (!þ 2i�)2/!2, obtained from the integration over the saddle-point

manifold. For �4 0 it is important to notice that the average 2PGF always diverges

like !�2, whereas the pure 2PGF is finite for �4 0. This cures the problem which we

have had with the expression in Equation (76) if !5 �.
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5.6. Numerical simulations

Analytic calculations are limited because they are either based on a truncated
perturbation series or they employ an approximative scheme. Therefore, it is
important to use numerical calculations of finite systems as a complementary
approach. There are a number of works in which the transport properties have been
studied numerically, usually based on the transfer-matrix (or Landauer) approach
[321,322]. An interesting result is that the conductivity increases with the system size
in the presence of a single valley and potential disorder [323,324]:

�ðLÞ 

2e2

h
�0 þ s lnðL=�Þ
� 

; ð85Þ

with �0 and s of the order of unity. This logarithmic behavior agrees remarkably well
with the one-loop PRG calculation in Equation (79). From the numerical results it is
not clear whether or not the logarithmic increase of the conductivity saturates at
some finite value, as it is suggested by the breakdown of the PRG, or increases
asymptotically. Since it is obvious from the PRG that the behavior must change
qualitatively beyond the scale Lc, it cannot be ruled out that this scale has not been
reached in the numerical calculations.

In contrast to the growing behavior of the conductivity, a random gap term
instead of the potential disorder gives a size-independent conductivity [325]

�ðLÞ ¼
1

�

e2

h
; ð86Þ

for any strength of the random gap fluctuations but with vanishing average gap.
For any non-zero gap, however, the conductivity decays with increasing size L.
Moreover, the conductivity increases with the strength of the random gap
fluctuations for fixed L and fixed average gap. This indicates that the unusual
behavior is not related to conventional Anderson localization, since for the latter we
expect a decreasing localization length for increasing random fluctuations.

Additionally, Schomerus [326] considered the impact of the leads on transport
through weakly doped graphene. He showed that graphitic leads and quantum wires
give qualitatively the same transport properties, which can be characterized by a
single parameter which is determined by the measurement of the conductance and
shot noise of a rectangular undoped graphene strip. This duality is the result of the
mode selection mechanism originating from the conical points of undoped graphene,
and holds even though the different types of wire support different numbers of
propagating modes.

5.7. Metal–insulator transition

Recent experiments on hydrogenated graphene (graphane) (Section 8.2.3) have
revealed that a gap is opened by the adsorption of hydrogen such that graphene
can undergo a transition from metallic to insulating behavior [280,288]. The gap
opening by hydrogen adsorption is also supported by density-functional calculations
[327]. An interesting question in this context is how the transport properties change
when we add gradually hydrogen to graphene [280], creating randomly gaps in the
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graphene sheet [140,185]. The random gap is characterized by two parameters, the

average gap �m and the variance g of the spatial gap fluctuations. If we begin with

weak disorder, i.e.
ffiffiffi
g
p
� �m, the minimal conductivity �min will be zero because there

are either no states at the node E¼ 0 or these states are localized. Thus the system is

insulating with a vanishing conductivity at low temperatures. The spatial gap

fluctuations around the mean value �m have two effects: First, they can close the

effective gap by broadening the particle and hole bands and, second, they can create

new states inside the gap, such as midgap states [328–330]. Those states are either

localized for large �m (e.g. Lifshitz tails) [280,288,293] or delocalized for small �m [318].

As we increase the spatial fluctuations of �m, local regions are formed in which

�m� 0 with reasonable probability. Increasing g further, these local regions with

�m� 0 start to form a percolating network. It is not necessary to close these gaps

completely, since a local gap only reduces the local density of states. Therefore,

a quantum percolation transition can take place in the presence of sufficiently large

fluctuations of �m. This is similar to the percolating network picture of charged

puddles [331]. A perturbative renormalization-group analysis supports such a

transition indirectly. Starting from Equation (77), the term �m always flows to zero

under renormalization. The corresponding fixed point is a free massless Dirac

Hamiltonian with DC conductivity e2/h�. In other words, the system always flows to

a clean metal for sufficiently large system size. However, this renormalization-group

analysis is only valid for weak disorder. In case of strong disorder another behavior

may appear in which the gap can survive.
More detailed analytic and numerical studies of the metal–insulator transition

due to a random gap have revealed that for a vanishing average gap graphene is

always metallic [318,325,332]. However, the situation is less clear for a nonzero �m.

First, we have the result of the perturbative renormalization group that indicates a

metallic behavior, at least for small g, and no metal–insulator transition. Moreover,

the scaling relation of Equation (84) allows us to obtain the conductivity from the

pure 2PGF, where the latter gives the scaling function as

FðzÞ ¼
2a

�

z2

�m2 � z2
	ðm2

c � �m2Þ

with a¼ 1 (a¼ 2) for monolayer graphene (bilayer graphene). Thus the conductivity

vanishes when the average gap �m exceeds a critical value mc. Here mc depends

on whether we consider monolayer graphene or bilayer graphene. Its value for

a given variance g is much smaller for monolayer graphene than for bilayer

graphene [318]:

mc ¼

2

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�=g � 1
p 


2e��=g

l
ðmonolayer grapheneÞ

g=2 ðbilayer grapheneÞ

:

8><
>: ð87Þ

The scattering rate � is obtained from Equation (80) for both, monolayer graphene

and bilayer graphene, as [318]:

�2 ¼ ðm2
c � �m2Þ	ðm2

c � �m2Þ=4: ð88Þ
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Inserting these results into the expression for the DC conductivity of Equation (84)
gives us a simple power law

� ¼
a

�

e2

h
1�

�m2

m2
c

� �
	ðm2

c � �m2Þ: ð89Þ

The factor a¼ 2 of the bilayer may be connected to the fact that the conductivity
doubles for the bilayer graphene because of the two conducting sheets. However, in
our approach it is related to spectral properties at low energies (linear vs. parabolic).
Experiments do not show this doubling in the DC limit but indicate that the minimal
conductivity of bilayer graphene is more sensitive to temperature (i.e. it increases
strongly with temperature), whereas the minimal conductivity of monolayer
graphene is almost independent of temperature [27] or changes linearly with T [26].

The results in Equations (87) and (88) indicate that the effect of disorder is much
stronger in bilayer graphene. For monolayer graphene as well as for bilayer
graphene, the critical gap value mc increases with disorder. Thus, a random gap
allows diffusive motion of the electrons, provided that the average gap is not too
large. This reflects the percolation picture, as mentioned at the beginning of this
section. The corresponding phase diagram includes two gapped phases (one for
�m4mc and one for �m5 �mc) and an intermediate diffusive (metallic) phase with
a nonzero minimal conductivity �min [318] (cf. Figure 60). These results are in
qualitative agreement with the numerical simulations for related network models by
Cho and Fisher [333] and by Chalker et al. [334]. However, more recent numerical
simulations by Bardarson et al. [325] have questioned the power law in Equation (89)
for monolayer graphene: although the prefactor e2/�h agrees very well, the critical
value mc is smaller than the one calculated in Equation (87). Since the latter is a
result for an infinite graphene sample, we have also calculated mc for finite samples
and found qualitatively the same finite-size behavior such as the decay of �(L) with
increasing size L [332]. Nevertheless, the actual value of mc for different types
disorder remains an open problem. Moreover, the simple power law in Equation (89)
may have a different exponent because the self-consistent evaluation of the

Figure 60. Schematic phase diagram of random-gap Dirac fermions (monolayer graphene)
for average gap �m and disorder strength g, obtained from numerical and analytic calculations
[318,325,333,334]. There are two gapped phases for m5�mc and for m4mc with an
intermediate metallic phase. According to Equation (87) the vertical line has a width of
2mc¼ 2e��/g which is too small to be visible in this plot. The metallic phase for large g has
not been observed in recent numerical simulations [325] because mc was smaller than the value
obtained in Equation (87).
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conductivity has not been taken into account a renormalization of critical indices
near mc. Nevertheless, a recent numerical simulation for Dirac fermions with an
uncorrelated random mass confirms a linear power law for the conductivity [335].

The suppression of the gap by random fluctuations can also play an important
role in systems where a gap is induced either by an external magnetic field [336,337]
or by interaction effects, such as Coulomb interaction [338] and electron–phonon
interaction. Disorder, always present in realistic graphene samples, can lead to the
randomness of the gap parameter. As a consequence, there is a competition between
gap formation by interaction and gap suppression due to disorder. To observe a gap
in the transport properties of such a system, the average gap must exceed a critical
value. On the other hand, if the average gap is too small or the fluctuations are too
large, the metallic behavior can survive.

6. Confinement of electrons in graphene

Quantum dots (QDs), or the ‘artificial atoms’ [8,9] are one of the most intensely
studied systems in condensed matter physics where the fundamental effects related to
various quantum phenomena in confined geometries can be studied but with the
unique advantage that the nature of the confinement and the electron density can be
tuned externally. However, much of the interest in this system derives from its
enormous potentials for applications, ranging from novel lasers to quantum
information processing. While the majority of the QD systems investigated are
based on the semiconductor heterostructures, in recent years, QDs created in carbon
nanotubes have been reported in the literature where the ‘atomic’ properties [339]
were clearly elucidated and its importance in technological applications was also
demonstrated [340]. Nonrelativistic electrons, the properties of which are described
by the Schrödinger equation, can be easily confined by electrostatic confinement
potentials, to create well-defined QD and quantum well structures in usual
semiconductor systems. The behavior of relativistic electrons in graphene is however
completely different. Due to the massless chiral nature of their energy dispersion,
electrons in graphene can penetrate through potential barriers of any height. An
electron approaching a potential barrier emerges inside the barrier as a hole, which
can then freely propagate under the barrier and finally can penetrate through the
barrier without any losses. Such electron tunnelling through a barrier of any height
and width is known as Klein tunnelling [341–343]. A direct experimental observation
of Klein tunnelling was reported in [344,345] where transport through a n–p-type
potential barrier was measured. For an electron normally incident on the potential
barrier, perfect transmission was observed, thus indicating a direct manifestation of
Klein tunnelling.

Klein tunnelling therefore makes it hard to localize electrons in graphene by a
confinement potential and the standard semiconductor QDs and quantum wells
realized through the confinement potential cannot be achieved in graphene.
The existence of Klein tunnelling for relativistic electrons in graphene and the
transition from the Schrödinger bound state to the Dirac unbounded states in a
confinement potential was demonstrated in [346]. Different approaches were
explored to overcome the problem of electron confinement in graphene.
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A straightforward approach, realized experimentally in [47,347–349], is based on
‘mechanical’ cutting of graphene into the desired nanosize shape. Such an island of
graphene becomes a QD with characteristic discrete energy levels. The properties
of these QDs are determined by the discrete nature of the energy levels and the
charging effects due to inter-electron interactions within the QD.

Another approach to create QDs in graphene is to realize the QD through
the confinement potential within the graphene layer. Due to Klein tunnelling, the
standard confinement potential cannot localize the electron within a finite spatial
region. In this case we need to consider not the QD that localizes an electron, i.e.
the electron stays within the QD for infinitely long time, but a QD which can trap
an electron for long enough time. Such trapping can be realized in a smooth
confinement potential and only for states with large transverse momentum [350,351].

Spatial localization of an electron within a QD in graphene layer can be achieved
if a finite gap is introduced in the energy dispersion for relativistic electrons. The
energy gap can be produced, e.g. by the SOI, through coupling with the substrate, or
in a biased graphene bilayer (Section 3). The QDs in graphene can be also introduced
through a magnetic confinement potential [352–354]. In this case the nonuniform
magnetic field results in electron localization within a finite spatial region, thereby
creating a QD.

6.1. QDs in graphene islands

QDs in islands of graphene have been realized experimentally in [47,347–349].
To extract the discrete energy spectra of the QD islands, tunnelling transport
through the system was measured [47,347–349]. Clear Coulomb blockade peaks in
tunnelling conductance versus the bias voltage dependence have been observed
(Figure 61). The positions of the peaks are determined by the charging and
confinement energies within the graphene islands. The unique relativistic dispersion
of electrons in graphene results in much larger confinement energy for electrons
in graphene islands compared to the confinement energy of non-relativistic
electrons. For graphene islands the confinement energy can be estimated as

vF h/2D, where D is the size of the island, while for the non-relativistic massive
electrons the confinement energy is 
h2/8m* D2, where m* is an effective electron
mass. For example, for a 40 nm QD the confinement energy is found to be 
10meV
[347] for graphene while the energy is around 1meV for a non-relativistic QD system.
The interplay between the confinement energy and the charging energy determines
the structure of the conductance peaks in the tunnelling transport experiments.

It was shown experimentally [347] that for large (4100 nm) QDs in graphene,
i.e. in graphene islands, the Coulomb peaks are periodic and the positions of the peaks
are mainly determined by the charging energy. From the Coulomb diamond
measurements, a charging energy of 4.3meV was extracted for 200 nm graphene
islands [349]. For small QDs the energy scale is determined by the confinement energy.
In this case the peaks of tunnelling conductance are nonperiodic [347] with the typical
energy scale of vFh/2D. Another manifestation of the confinement nature of the energy
scale for small QDs is the special statistics of the energy levels, i.e. the distribution of
the nearest neighbor energy-level spacing. The statistics of the energy levels are
determined by the time-reversal symmetry of the Hamiltonian of the system and the
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type of boundary conditions. For non-relativistic systems, the statistics of the energy

levels is described by the Poissonian distribution (P(�E )¼ exp(��E )) for classically

regular shape of the QD. Here �E is the interlevel spacing. For an irregular classically

chaotic shape, the distribution takes the Wigner–Dyson form, corresponding to the

orthogonal ensemble (PO¼ (�/2)�E exp(�(�/4)�E2)) for a system with time-reversal

symmetry, and to the unitary ensemble (PU¼ (32/�2)�E2exp(�(4/�)�E2)) for a system

without the time-reversal symmetry. In non-relativistic systems the time reversal

symmetry is usually broken by an external magnetic field.
In graphene, even for the classically regular shape of a QD, the electron dynamics

are chaotic and the statistics of energy levels are described by the Gaussian unitary

ensemble [355], which corresponds to a system with broken time-reversal symmetry.

The mechanism of time-reversal symmetry proposed in [355] is the infinite mass

boundary condition. The experimentally measured level statistics [347] illustrates

a transition from the Poisson distribution for dots of large size (4100 nm) to

the distribution corresponding to chaotic Dirac billiards, for dots of small size

(5100 nm) (Figure 62). Experimental results are best fitted by the Gaussian unitary

distribution [347].
The results of the numerical analysis of disordered graphene QDs [356,357] show

that the statistical properties of QDs strongly depend on the boundary conditions.

For example, QDs with abrupt termination at the boundary show a transition from

the Gaussian orthogonal ensemble at zero magnetic field to the Gaussian unitary

ensemble at finite magnetic fields [356]. Therefore, these systems have time-reversal

symmetry. The abrupt termination of the QD introduces inter-valley mixing at the

boundary.
Another example of a boundary, considered in [357], is a smooth boundary,

i.e. a smooth mass confinement. The smooth boundary condition is introduced

through a smooth mass term. This type of boundary condition suppresses

inter-valley scattering. It was determined that the statistics of the energy levels for

QDs with a smooth boundary corresponds to the Gaussian orthogonal ensemble

Figure 61. (a) Conductance of a graphene device with the central island of 250 nm in diameter
as a function of the gate voltage, Vg, in the vicinity of þ15V, T¼ 0.3K. The inset shows
the smallest 30 nm diameter QD. (b) Conductance of the same device as in (a) over a wide
range of Vg, and the temperature is 4K. Upper inset: Zooming into the low-G region reveals
hundreds of Coulomb blockade oscillations. The lower inset shows Coulomb diamond:
differential conductance as a function of gate voltage (around þ10V) and bias voltage
(Reprinted figure with permission from L.A. Ponomerenko et al., Science, 32, p. 356, 2008
[347]. Copyright � (2008) The American Association for the Advancement of Science.).
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for large QDs and the Poisson ensemble for small dots [356]. For small QDs the

localized edge states determine the Poissonian statistics, while the contribution

of the edge states is suppressed when the size of the dot is increased.
The energy spectra and the charging effects in graphene islands have been studied

theoretically in great detail. It was shown that the structure of the electronic states

and the energy scales of graphene QDs are determined by the edge type of the QDs,

i.e. the boundary conditions, and electron occupation of the QD. There are two main

types of edges in graphene QDs: armchair and zigzag, which are shown schematically

in Figure 14. The distinctive feature of the armchair edge is that the vector normal

to the edge is orthogonal to the bond. These two types of edges determine the

basic configurations of QDs with the same type of edges along the whole boundary

(Figure 63): trigonal zigzag [358–360], trigonal armchair [358,359], hexagonal zigzag

[359–361], and hexagonal armchair [359,361]. A configuration with two types of

edges, e.g. rectangular configuration (see Figure 64), has been also studied in the

literature [362,363]. In this case there are zigzag edges along the x-axis and armchair

edges along the y-axis. The dangling bonds at the edges of the graphene islands are

passivated by hydrogen atoms (not shown in Figures 63 and 64).
The energy spectra of graphene QDs have been studied theoretically by two main

methods: within the tight-binding model and within the Dirac relativistic equation.

The tight-binding Hamiltonian has the form

Htight�binding ¼
X
i

"ic
y

i ci þ
X
hi,ji

tijc
y

i cj ð90Þ

Figure 62. Level statistics in Dirac billiards. The histograms of the nearest neighbor
level spacing are shown for QDs of different sizes. The level statistics becomes increasingly
non-Poissonian for smaller QDs. This is illustrated for the smallest device, where the solid,
dotted and dashed curves are the best fits for the Gaussian unitary, Poisson and Gaussian
orthogonal ensembles, respectively. The distributions are shifted from the origin due to
Coulomb blockade (Reprinted figure with permission from L.A. Ponomerenko et al., Science,
32, p. 356, 2008 [347]. Copyright � (2008) The American Association for the Advancement of
Science.).
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and the relativistic-like low-energy limit was described in Section 1.2. The properties

of QDs strongly depend on the type of boundary, e.g. zigzag or armchair edges.
For the continuous Dirac-like equation, the type of the boundary determines

the boundary conditions for the electron wave functions. The general energy-

independent boundary condition is determined by a 4	 4 matrix, M, through the

following relation [364,365]:

� ¼M�: ð91Þ

For the boundary condition that preserves time reversal symmetry the matrix M is

determined by three parameters [365]

M ¼ ð~	 � ~�Þ � ð~n � ~�Þ, ð92Þ

where �i and �i are Pauli matrices in the valley space and the sublattice

space, respectively. The matrix M is parametrized by the directions of two three-

dimensional vectors, ~	 and ~n. Here the vector ~n is orthogonal to the unit vector

normal to the boundary.
The above form of the matrix M introduces two types of boundary conditions.

If we denote wave functions in the K valley by  þ and those in the K0 valley by  �,
they are [365]: (i) zigzag-type boundary condition:  A

þ ¼  
A
� ¼ 0 (any  B

þ and  B
�) or

B
þ ¼  

B
� ¼ 0 (any  A

þ and  A
�); (ii) armchair-type boundary condition: j A

þj ¼ j 
A
�j

(a) (b)

(c) (d)

Figure 63. Typical configurations of graphene QDs with same type of the edges: (a) trigonal
zigzag; (b) trigonal armchair; (c) hexagonal zigzag and (d) hexagonal armchair.
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Figure 64. Rectangular QD terminated by both armchair and zigzag edges.
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and j B
þj ¼ j 

B
�j. The type of the boundary condition is determined by the

orientation of the vector, ~T, of the period at the edge. This vector is approximately
parallel to the edge. If the vector ~T is parallel to the bonds then the boundary
condition is of the armchair type. For all other orientations of the vector ~T, the
boundary conditions are of the zigzag type [365]. Therefore, the zigzag-type
boundary conditions are more generic. The zigzag boundary condition does not
couple different valleys, while the armchair boundary condition introduces coupling
between the two valleys.

There is an other type of boundary condition, which is used in some cases
within the continuous Dirac-type model. This is the infinite mass boundary
condition. This boundary condition can be realized, for example, through the
staggered potential at the zigzag edge. The staggered potential means that the
electrostatic potential at two lattice sites (A and B) is different, i.e. VA¼þ
 and
VB¼�
. Similar to the zigzag boundary condition, the infinite mass boundary
condition does not mix the valley and at the zigzag boundary takes the form [365]:
A
þ ¼ i B

þ and  A
� ¼ �i 

B
�.

For triangular and trapezoidal geometries of graphene QDs the single-particle
energy spectra of the QDs can be found analytically [366,367] within the tight-
binding model. For example, for triangular QDs with armchair boundary conditions,
the single-particle states are characterized by two integer numbers, n and m, and have
the following form [367]:

�n,m,� ¼ �t 3þ 2 cos
4�n

3ðNþ 2Þ

� �
þ 2 cos

4�m

3ðNþ 2Þ

� �
þ

	
2 cos

4�ðnþmÞ

3ðNþ 2Þ

� ��1
2

,

where N is number of carbon atoms per one side of the triangular QD.
The approach based on the tight-binding model is the more fundamental and is

valid for QD of any size, while the Dirac equation, being a continuous approxi-
mation of the tight-binding model, is valid only for QDs of large size. In [363] a
detailed comparison of the electronic eigenstates of a rectangular QD obtained
within the framework of the Dirac equation and the tight-binding model was
presented. It was found that the graphene QDs with size of 7	 8 is the smallest one
for which the Dirac equation is applicable.

Zigzag edges in graphene have unique properties. For example, they can
introduce degenerate zero-energy states localized at the edges. The actual existence
of zero-energy states depends on the configuration of the QD. As an example, the
zero-energy states have been found only for rectangular QDs [362,363] and trigonal
zigzag QDs [358–360]. However, no such zero-energy states exist for hexagonal
zigzag graphene QDs [359,360]. A sufficient condition for the existence of degenerate
zero-energy states in a graphene sample is the sublattice imbalance, i.e. an
uncompensated lattice [360]. That is, if NA is the number of atoms of sublattice A
and NB is the number of atoms of sublattice B in a graphene QD, then the parameter
NZ¼NA�NB determines the existence of zero-energy states. This parameter is zero
for hexagonal zigzag QDs and nonzero for trigonal zigzag QDs [360]. The condition
NZ4 0 is the sufficient condition for the existence of zero-energy edge states but it is
not the necessary condition. For example, for rectangular QDs there are zero-energy
edge states, but the sample is compensated, i.e. NZ¼ 0.
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The degenerate zero-energy edge states, occupied by electrons, leads to ferro-
magnetic and antiferromagnetic ordering due to the inter-electron exchange
interaction. To study the magnetic ordering in graphene QDs, the inter-electron
interaction should be introduced, for example, within the density functional theory
(DFT) ab initio calculations [360,362] or through the Hubbard on-site interaction
combined with the Hartree–Fock mean field approach [360,363]. The DFT
calculations, although more accurate than the mean field theory, can be performed
only for QDs of small size. A comparison of the low-energy spectra of graphene
QDs obtained within the Hubbard model and within the DFT approach shows
that the Hubbard model captures correctly the low-energy physics of the QD.

The results of the numerical analysis of graphene QDs with zero-energy
degenerate states, i.e. for a rectangular QD and a trigonal zigzag QD, illustrate
the magnetic ordering in such graphene islands [359,360,362,363]. The magnetic
moments are localized on the zigzag edges of the QDs. The type of magnetic ordering
is different for rectangular and trigonal dots. For rectangular QDs the stable
magnetic phase is antiferromagnetic [362,363], the magnetic structure of which is
similar to the magnetic structure of graphene zigzag ribbons, namely, the magnetic
moments are localized at two zigzag edges with opposite orientation (Figure 65).
The results of ab initio DFT calculations show that the antiferromagnetic phase is a
stable phase for all rectangular QDs of size larger than 3	 3 [362]. For smaller QDs
the stable phase is nonmagnetic [362]. For trigonal zigzag QDs the stable phase
is ferromagnetic with the same orientation of magnetic moments (Figure 65), i.e. the
electron spins [359,360]. The net local spin mostly sits on the edge of the QD and
goes to zero in the centre of the dot.

The signature of the zero-energy degenerate edge states in graphene QDs can be
observed in optical absorption experiments [358]. The absorption spectra obtained
numerically within the tight-binding model clearly show rich peak structures
originating from the edge states [358]. The structure is visible only for zigzag
triangular graphene QDs, but does not exist for armchair triangular dots. With
increasing size of the dot, the relative contribution of the edge states to the
absorption spectra is suppressed. The ratio, fedge/fall, of the oscillator strength
corresponding to the edge states to the total oscillator strength has a maximum value
of 0.42 at Nz¼ 4 and decreases to 0.15 at Nz¼ 50. Here Nz is the number of atoms
along the edge.

A detailed analysis of Coulomb interaction effects in graphene QDs was
reported in [368]. The calculations were done for circular QDs within the massless
Dirac equation. It was assumed that the QD has a zigzag-type boundary, which
supports degenerate zero-energy edge states. The zigzag boundary condition does

Figure 65. Local magnetization for trigonal zigzag QD (a) and rectangular QD (b). The
directions of magnetization shown in the figure are chosen for the sake of clarity.
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not mix the two valleys. In this case each energy level of the QD is twofold valley

degenerate and to find the energy spectrum it is enough to consider only one valley.

Due to the circular symmetry of the problem the general solution of the Dirac

equation is described by the Bessel functions and the two-component wave function

for a single valley s¼�1 has the following form [368]:

A
s ðr, �Þ

B
s ðr, �Þ

!
¼

JmðkrÞe
ims�

�iJm�sðkrÞe
iðm�sÞ�

!
: ð93Þ

The boundary conditions corresponding to the zigzag edge were introduced:

A
s ðR, �Þ ¼ 0, ð94Þ

where R is the radius of the QD. This boundary condition allows for surface states

of the form

A
s ðr, �Þ

B
s ðr, �Þ

!
¼

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

�R2ðmþ1Þ

r
rmeism�

0
B@

1
CA: ð95Þ

In terms of the tight-binding model with the nearest neighbor hopping, the surface

states in which only sublattice B is occupied are degenerate and have zero energy.

Introducing next-nearest neighbor hopping to the tight-binding model results in a

finite kinetic energy of the surface states and the zero-energy band becomes

dispersive [368].
The Coulomb electron–electron interaction has been introduced to describe the

charging effects of the dot:

HC ¼
e2

4�"0"

X
n5n0

1

j~r� ~r0j
: ð96Þ

The charging properties of QDs depend on the electron occupation of the dot.

For large number of electrons within the dot, all the surface states are occupied and

the Fermi level is far from the neutrality point. In this case the main charging effect

is a rigid shift of the electrostatic potential, which results in standard Coulomb

blockade effects [368].
A different situation occurs if the number of electrons within the QD is small

enough so that the electrons occupy only the surface states [368]. That situation is

realized if the Fermi energy is near the neutrality point. In this case the system can be

described within the truncated Hilbert state restricted only to the surface states. Since

the surface states are almost degenerate, the electrons occupying these states are

strongly correlated and the properties of the system are determined by the Coulomb

inter-electron interaction. In [368] two trial functions for the correlated ground state

were proposed: (i) the Laughlin wave function [72,137]

ðz1, z2, . . . , zNÞ /
Y
i5j

ðzi � zj Þ
p,

ð97Þ
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where z¼ xþ iy, N is the number of electrons, p is odd and (ii) Wigner crystal-type

wave function. Both trial functions show good agreement with the exact numerical

results [368].
In [369], a rotating-electron-molecule-type wave function was introduced to

describe the correlated electrons at the zero energy edge of the QDs. Based on the

numerical diagonalization of the interaction Hamiltonian of the electron system

with up to eight electrons, the authors concluded that the rotating-electron-molecule

wave function provides a better description of the correlated electron system than

the Laughlin trial function or the Wigner crystal [369]. A strongly correlated electron

state exists only for the long-range Coulomb interaction. The electron correlations

disappear for point-like Hubbard interaction.
A special type of graphene quantum island is a quantum ring. The most

non-trivial behavior of the quantum rings is in an external magnetic field. This

behavior is due to the Aharonov–Bohm effect [370] and manifests itself as periodic

oscillations in the energy spectra and the transport properties as a function of the

number of flux quanta through the ring, �. The quantum ring in graphene has

been realized experimentally [371] and the current through the ring has been studied.

The size of the ring is 
1 mm and the system is coherent at temperatures below 1K.

The measured conductance oscillations clearly show the Aharonov–Bohm oscilla-

tions (Figure 66). Surprisingly, the amplitude of the conductance oscillations

increases with increasing magnetic field strength. This tendency is shown in

Figure 66. An analysis of the structure revealed that this behavior does not originate

from the magnetic impurities, but rather from the orbital effect of the magnetic field.

Figure 66. Aharonov–Bohm conductance oscillations measured at a gate voltage þ30V in the
different magnetic field range. For B
 3 Tesla a clear increase of Aharonov–Bohm amplitude
is observed. (Reprinted figure with permission from S. Russo et al., Physical Review B, 77,
085413, 2008 [371]. Copyright � (2008) by the American Physical Society.)
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Numerical studies of quantum rings were also reported [372–374] within the

tight-binding and the continuous Dirac equation approaches. The system is studied

as a function of the magnetic field, where the magnetic field in the tight-binding

model is introduced through the Peierls substitution. The quantum ring in the form

of a disk has been studied in [372] within the Dirac continuous equation. It was

shown that even without a magnetic field the quantum ring shows the breaking of the

effective time-reversal symmetry, which manifests itself as the lifting of degeneracy

between the states with angular momentum m and �m in the same valley in the

absence of a magnetic field. Each level, however, still has the double valley

degeneracy since the energy of the state with angular momentum m in valley K is

equal to the energy of the state with angular momentum �m in the valley K0 . A finite

magnetic field lifts this twofold degeneracy and breaks the time-reversal symmetry.

Finally the energy spectra and the persistent current, defined as j¼�@E/@�,

show periodic oscillations with the magnetic flux, �. Due to breaking of effective

time-reversal symmetry at the zero magnetic field, the persistent current for a single

valley is non-zero even at B¼ 0. The persistent current for both valleys is zero

at B¼ 0.
In [373] the effect of electron–electron interactions in a cylindrical quantum ring

system have been studied. The inter-electron interactions is introduced through the

Coulomb Hamiltonian,

HC ¼
1

2

X
i6¼j

e2

4��

1

j~ri � ~rj j
: ð98Þ

The exchange Coulomb interaction between the electrons in the same valley

is strong, but it is strongly suppressed for electrons in different valleys [373].

This means that there is an exchange contribution for the two-electron singlet

valley state (both electrons being in the same valley), but there is no exchange

interaction for the triplet valley state (two electrons in different valleys). In a two

electron system, by varying the size of the quantum ring the transition from the

valley-singlet ground state for small quantum rings to a valley-triplet ground state

was observed.
Due to the two types of edges in a quantum ring, i.e. the inner and outer edges,

there are two types of edge states [374] in the system. These edge states have been

studied within the tight-binding approach in [374] for different geometries of

quantum rings: triangular, hexagonal and rhombus. The inner and outer edge states

are clearly localized at the inner and outer boundaries of the ring. The edge states

behave differently as a function of the magnetic field (magnetic flux). For example,

the energy of the outer edge state decreases with increasing magnetic field, while the

energy of the inner edge state increases with the magnetic field. This behavior can be

understood from a semiclassical picture of the motion of the guiding centre of the

edge states in a magnetic field. The guiding centre of the inner edge state moves in the

same direction as the cyclotron motion, while the guiding centre of the outer edge

state moves in the direction opposite to the cyclotron motion. At the anticrossing

point of these two dependencies there is a coupling between the edge states.
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6.2. Electron trapping in graphene QDs

As it was already discussed earlier, the conventional semiconductor QDs based on
a confinement by the electric potential, e.g. a gate potential, cannot be realized in
graphene due to Klein tunnelling. Although a confinement potential in graphene
cannot localize an electron for infinitely long time, it is still possible to realize a
confinement potential that can trap an electron for finite but relatively long time.
That type of trapping exists only for electron states with transverse momentum
[350,351]. The transverse momentum introduces locally a gap and corresponding
classically forbidden regions, which results in tunnelling barriers and the trapping
of an electron.

To illustrate the possibility of electron trapping in graphene, we consider the
semiclassical dynamics of relativistic electrons in a one-dimensional confinement
potential, V(x). The effective semiclassical Hamiltonian for such a confinement
potential takes the form [351]

Heff ¼ ��hvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
þ VðxÞ: ð99Þ

This expression shows that the transverse momentum, py, introduces an effective
mass for the motion in the x direction. Then for a given transverse momentum there
are four classical turning points, which satisfy the following equation:

E ¼ ��hvFjkyj þ VðxÞ: ð100Þ

For a parabolic confinement potential, V(x)¼�(x/x0)
2U/2, the classical turning

points are given by the expressions [351]

xout�
x0
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�hvFjkyj � E

U

s
ð101Þ

xin�
x0
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
��hvFjkyj � E

U

s
: ð102Þ

The turning points with classically forbidden regions are shown schematically in
Figure 67. The electron (hole) bounces between two inner turning points, xin�,
resulting in quasibound state, i.e. the resonances. These bound states have finite
width due to quantum tunnelling through classically forbidden region between
points xin and xout. Such quasibound states result in oscillations of the current
through the p–n–p junction as a function of the gate voltage [375]. The trapping
properties of one-dimensional confinement potential, e.g. a p–n–p junction, are
suppressed in the presence of disorder. This is because the disorder makes the
boundary between different regions less sharp, which introduces additional escape
channels from the trapping region. Thus in the presence of disorder the widths of
the quasibound states increase, which can be visible in suppression of oscillations
of the current through the p–n–p junction with variation of the gate voltage [375].

A similar mechanism of trapping exists for the QD-type confinement potential
with trapping in both x and y directions [350]. For a cylindrically symmetric
confinement potential, the electron angular momentum, which is a transverse
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momentum for such a system, introduces a local gap and classically forbidden
regions. We assume that the QD is cylindrically symmetric, V(r), and the
confinement potential does not introduce any inter-valley mixing. In that case it is
enough to consider the states of a single valley only. Then the electron states are
described by a two-component wave functions with the following Hamiltonian:

H ¼ �hvF
0 kx � iky

kx þ iky 0

!
þ

VðrÞ 0

0 VðrÞ

� �
: ð103Þ

In the cylindrical coordinate, the corresponding Dirac equations become [253]

VðrÞ 1 þ �hvFe
�i� �i

@

@r
þ
1

r

@

@�

� �
2 ¼ E 1 ð104Þ

VðrÞ 2 þ �hvFe
i� �i

@

@r
�
1

r

@

@�

� �
1 ¼ E 2, ð105Þ

where  1(r, �) and  2(r, �) are the two components of the wave function, and E is the
eigenenergy of a stationary state. For a cylindrically symmetric confinement
potential, the solution of the system of equations (104)–(105) can be expressed
in the following form:

1ðr, �Þ ¼ �1ðrÞe
iðm�1

2Þ�, ð106Þ

2ðr, �Þ ¼ �2ðrÞe
iðmþ1

2Þ�, ð107Þ

where m ¼ � 1
2 , �

3
2 , . . . is the electron angular momentum. Substituting these

expressions into Equations (104)–(105), we obtain

VðrÞ�1 � i�hvF
d�2ðrÞ

dr
� i�hvF

mþ 1
2

r
�2ðrÞ ¼ E�1 ð108Þ

VðrÞ�2 � i�hvF
d�1ðrÞ

dr
þ i�hvF

m� 1
2

r
�1ðrÞ ¼ E�2: ð109Þ

Figure 67. Trapping of an electron in a one-dimensional confinement potential, V(x). The
transverse momentum, py introduces an effective electron mass in the x direction, which results
in four classical turning points, xin� and xout�. Two classically forbidden regions are also
indicated. The electron is trapped between the inner turning points, xin�.
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The system of equations (108)–(109) describes the electronic states of a graphene

layer with confinement potential V(r) [350].
The semiclassical dynamics corresponding to the system of equations (108)–(109)

has been discussed in [350]. The semiclassical approach can be applied if the angular

momentum of the electron is large. We are looking for a solution of the system

of equations (108)–(109) in the form �1,�2/ exp(iq�). Then under the condition

m� 1 we obtain [350]

E� VðrÞ½ �
2
¼ �h2v2F

m

r

� �2
þ�h2v2Fq

2: ð110Þ

This equation describes the semiclassical dynamics. It has two turning points which

are determined by the condition q¼ 0, i.e.

E� VðrÞ½ �
2
¼ �h2v2F

m

r

� �2
: ð111Þ

Therefore the transverse momentum, m/r, introduces a gap (or effective mass) in the

semiclassical energy dispersion law.
For a monotonic confinement potential (Figure 68), if r0 is a solution of the

equation E�V(r0)¼ 0 then the two classical turning points can be found from

Equation (111) in the following form [350]:

r1 ¼ r0 � Dr1 ¼ r0 �
m=r0

F=�hvF þm=r20
, ð112Þ

r2 ¼ r0 þ Dr1 ¼ r0 �
m=r0

F=�hvF �m=r20
, ð113Þ

Figure 68. Schematic representation of a cylindrically symmetric confinement potential. The
angular motion introduces a transverse momentum, which results in an effective electron
mass. The classically forbidden region which is determined by the condition q25 0, is realized
at large values of the angular momentum. The classical turning points are r1 and r2. The
electron is trapped inside the classical region r5 r1. Tunnelling through the semiclassical
barrier (r15 r5 r2) determines the escape rate from the trapped region.
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where F¼dV(r)/drjr¼r0. The electron can freely propagate within the classical

regions r4 r2 and r5 r1. The tunnelling barrier between two classical regions

introduces the electron trapping in the region of the QD, r5 r1. Tunnelling through

the classically forbidden region (r15 r5 r2) determines an escape rate from the

QD (Figure 68). Under the condition F � �hvFm=r
2
0, which results in the

relation Dr1¼Dr2¼m�hvF/Fr0, the tunnelling exponent is given by the following

expression [350]:

R ¼ exp �

Z r
0
þDr

1

r
0
�Dr

1

jqðrÞjdr

!
¼ exp �

��hvFm
2

2Fr20

� �
: ð114Þ

Therefore, an efficient electron trapping occurs in a smooth confinement potential,

i.e. the slope, F, should be small, and at a large angular momentum, m. For a

confinement potential of the form V(r)¼ (u/p)rp, the escape rate from the QD

becomes

R ¼ exp �
�m2

pðE=�pÞ
pþ1=p

" #
, ð115Þ

where

�p ¼ ½ð�hvFÞ
pu=p�1=ð pþ1Þ: ð116Þ

Then the condition for a small escape rate, i.e. a large tunnelling exponent R� 1

determines the upper limit of the energy of the strongly trapped state at a given

angular momentum, m, [350]

E5 �pm
2p=ð pþ1Þ: ð117Þ

Therefore trapping of an electron in a QD realized through a confinement

potential is due to the formation of semiclassical tunnelling barrier. The width of the

classically forbidden region depends on the transverse momentum, i.e. the angular

momentum, and the slope of the confinement potential. Electron trapping can be

realized only in a smooth confinement potential, which means that there are no

electrons trapped in the confinement potential with sharp boundaries, e.g. a box-like

potential. For such a potential the slope F at the boundary of the QD is large and

the tunnelling exponent is small. Another requirement for strong electron trapping

is a large value of the angular momentum, m. At a small m the tunnelling barrier is

narrow and the electron can easily escape from the QD.

6.3. QDs with sharp boundaries

The semiclassical analysis describes an electron dynamics only for large values of the

angular momentum. To address the problem of electron trapping at small values

of the angular momentum and in a confinement potential with sharp boundaries,

the system of equations (108)–(109) should be solved exactly. In [376–378] the system
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of equations (108)–(109) was analyzed in detail for a confinement potential with

sharp boundaries, i.e. box-like potential, which has the following form:

VðrÞ ¼
0 if r5R

V0 if r4R

	
, ð118Þ

where V04 0 is the strength of the confinement potential and R is the radius of the

QD. For such a confinement potential there are no classically forbidden regions and

no semiclassical trapping barrier. At the same time it was shown that in this case

there are electronic states with very small escape rate [376–378]. Electron trapping

in these states is determined by the interference effects within the whole region of the

QD. In this case the dependence of the electron trapping time on the parameters of

the confinement potential is not exponential but a power law.
The trapped states in the confinement potential can be defined by two methods.

In the first method the trapped states are considered as the resonances, which are

revealed as the first-order poles of the scattering matrix in the complex energy plane

or as the peaks in the scattering cross section. Here the widths of the peaks determine

the lifetime of the trapped state. This method has been used in [376], where the

scattering cross-section was numerically calculated for a box-like confinement

potential. It was shown in [376] that sharp resonances occur only at the energy close

to the confinement potential strength, i.e. E�V0.
In the second method the trapped states are defined as the time-independent

solutions of the Schrödinger equation with purely outgoing boundary conditions.

The stationary solutions with outgoing boundary conditions exist only at complex

energies. The trapped states in this method are considered as long-lived states in the

decay process [378]. The real part of the complex energy is associated with the energy

of the trapped state, while the inverse of the imaginary part of the energy determines

the lifetime of the decaying state. For example, if E is the complex energy of the

trapped state, then the trapping time is �¼ �h/Im[E]. Such an approach to the problem

of quasibound states was originally introduced by Gamow [379]. The second method

allows us to find some analytical expressions which determine the trapping properties

of the QD. This method has been used in [377,378]. Here the complex energies, E,

of the trapped states are determined from the solution of Equations (108)–(109) with

outgoing boundary conditions: �1,�2 / exp(ikr) at large distance from the QD.
For the box-like confinement potential it is easy to show that the solution of

Equations (108)–(109) takes the following form [378]:

�1ðrÞ

�2ðrÞ

!
¼ A

Jjm�1
2j
ð"r=RÞ

iJjmþ1
2j
ð"r=RÞ

!
, ð119Þ

at r5R and

�1ðrÞ

�2ðrÞ

!
¼ B

H
ð1Þ

jm�1
2j
½ð"� 	0Þr=R�

iH
ð1Þ

jmþ1
2j
½ð"� 	0Þr=R�

0
B@

1
CA, ð120Þ
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at r4R. Here Jn is the Bessel function of the nth order, Hð1Þn is the Hankel function of

the first kind, "¼RE/�hvF is complex, and 	0¼RV0/�hvF. The continuity of the wave

function determines the energy eigenvalue equation in the following form:

H
ð1Þ

jm�1
2j
ð"� 	0Þ

H
ð1Þ

jmþ1
2j
ð"� 	0Þ

¼
Jjm�1

2j
ð"Þ

Jjmþ1
2j
ð"Þ
: ð121Þ

The energy, ", in this equation is complex. In terms of the complex energy, the

condition of strong trapping means that the imaginary part of the energy is small.

Surprisingly, in the box-like geometry of the QD there are special states in which an

electron is localized; which means that the imaginary part of the energy of this state

is zero and the electron lifetime is infinitely large [378]. These states exist only if the

dimensional potential strength, 	0, is a root of the Bessel function Jm�1
2
ð	0Þ ¼ 0.

In this case there is a real solution "¼ 	0 of Equation (121) with infinitely long

trapping time.
Therefore a localized state of an electron in a QD with sharp boundary exists

only if the confinement potential satisfies the following condition:

	0 ¼ n,i, ð122Þ

where n ¼ m� 1
2 and n,i is the ith root of the Bessel function of the order n¼ 0, 1,

2, . . .. In this case the energy of a localized state is exactly equal to the strength of the

confinement potential, "¼ 	0. These localized states have infinitely long trapping

time and exist at both small and large values of angular momentum, m. The typical

imaginary part of the energies of the other states are of the order of 1 and the

corresponding trapping times are relatively short. Any deviation of the parameters

of the confinement potential from the condition (122) of localization introduces an

electron escape from the highly trapped state of the QD.
If the condition for localization is weakly violated, i.e. �	 � 	0 � m�1

2,i
is small, then it is possible to find the imaginary part of the energy of the

highly trapped states [378] from the standard perturbation theory based on

Equation (121):

Im½"� ¼
�

2

�	
ln �	

� �
ð123Þ

if m ¼ 1
2 and

Im½"� ¼
�

½2mðm� 1
2Þ!�

2
1�

1

2m

� �2mþ1
�2m	 ð124Þ

if m4 1
2.

Electron trapping in a confinement potential with sharp boundaries is very

sensitive to the profile and the parameters of the potential. By varying the

parameters of the confinement potential, one can tune the trapping time within the

confinement region. These parameters could be the strength of the confinement

potential, the radius of the QD or the distance between the QDs in a system of

coupled QDs with sharp boundaries [377].
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6.4. QDs in a magnetic field: numerical studies

The semiclassical approach to the problem of trapped states in a confinement

potential is applicable only at large values of electron angular momentum. At small

angular momentum, even for a smooth confinement potential we need to go beyond

the semiclassical approximation. In this case we need to solve the system of equations

(108)–(109) exactly. The numerical solution of this system of equations for the

confinement potential with a sharp boundary was discussed in Section 6.3. Here we

consider the numerical solution of Equations (108)–(109) for a confinement potential

with smooth boundary [350]. Similar to the confinement potential with a sharp

boundary, the trapped states are defined as the time-independent solutions of the

Schrödinger equation with outgoing boundary conditions. Such stationary solutions

exist only at complex energies, where the real part of the energy is the energy of the

state and the imaginary part of the energy is proportional to the escape rate from

the QD, i.e. inversely proportional to the trapping time.
To introduce the outgoing boundary conditions for the system of equations

(108)–(109), we consider the solution of these equations at large distances, r!1.

In this limit, due to the relation V(r)�E� �hvF/r the confinement potential provides

the leading terms in Equations (108)–(109). Therefore, at r!1 Equations (108)–

(109) take the form

VðrÞ�1 � i�hvF
d�2
dr
¼ 0, ð125Þ

VðrÞ�2 � i�hvF
d�1
dr
¼ 0: ð126Þ

The general solution of Equations (125)–(126) can be expressed in the following

form:

�1 ¼ C1 exp
i

�hvF

Z r

Vðr0Þdr0
� �

þ C2 exp �
i

�hvF

Z r

Vðr0Þdr0
� �

, ð127Þ

�2 ¼ �C1 exp
i

�hvF

Z r

Vðr0Þdr0
� �

þ C2 exp �
i

�hvF

Z r

Vðr0Þdr0
� �

: ð128Þ

The two terms in these solutions correspond to waves propagating towards the QD

and away from the dot. Only the solution corresponding to the outgoing waves

should be kept, i.e. only the first terms in Equations (127)–(128) should be

considered. Thus the outgoing boundary conditions mean that at large distance, the

functions �1 and �2 take the form

�1 ¼ ��2 ¼ C1 exp
i

�hvF

Z r

Vðr0Þdr0
� �

: ð129Þ

This expression should be considered as the boundary condition for the system of

equations (108)–(109) at r!1. It is convenient to reformulate the boundary

condition (129) in terms of new functions f(r) and g(r) defined by the
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following expressions:

�1 ¼ f ðrÞ exp
i

�hvF

Z r

Vðr0Þdr0
� �

, ð130Þ

�1 ¼ �gðrÞ exp
i

�hvF

Z r

Vðr0Þdr0
� �

: ð131Þ

In terms of the functions f(r) and g(r) the boundary condition (129) becomes
f(r!1)¼ g(r!1). Substituting expressions (130), (131) into the system of

equations (108)–(109), we obtain

VðrÞ f� gð Þ þ i�hvF
dg

dr
þ i�hvF

mþ 1
2

r
g ¼ Ef, ð132Þ

VðrÞ g� fð Þ þ i�hvF
df

dr
� i�hvF

m� 1
2

r
f ¼ Eg: ð133Þ

The system of equations (132)–(133) should be solved numerically with the

boundary conditions f(r¼ 0)¼ g(r¼ 0)¼ 0 at the origin and f(r!1)¼ g(r!1)
far away from the QD [350]. Such a solution exists only at complex energies. For a
confinement potential of the form V(r)¼ (u/p)rp, the complex energy spectra is
shown in Figure 69 for different values of electron angular momentum. Only the

states with small values of the imaginary part of the energy are shown in Figure 69,
i.e. in addition to the states shown in the figure there are many continuum states with
large imaginary part of the energy.

The strength of the electron confinement is determined by the ratio of the

interlevel spacing, DE, to the imaginary part of the energy, Im(E). For strongly

(a)

(b)

Figure 69. The real and imaginary parts of the energy spectra of an electron in a QD with a
confinement potential V(r)¼ (u/p)rp, shown for various values of the exponent p and the
angular momentum m: (a) p¼ 2, m¼ 3/2 (open circles) and p¼ 2, m¼ 19/2 (solid circles);
(b) p¼ 4, m¼ 3/2 (open circles), p¼ 4, m¼ 9/2 (stars) and p¼ 4, m¼ 19/2 (solid circles).
The results for p¼ 2 and m ¼ 1

2 are shown in the inset. The energy is in the units of
�p¼ [�hvF)

p u/p]1/(pþ1) (reproduced from [350]).
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trapped states this ratio is large, while for the deconfined continuum states this
ratio is of the order of 1. The formation of the confined states in the QD is already
visible at angular momentum m¼ 3/2, for which the ratio DE/Im(E) is around 50.
With increasing angular momentum the electron states become more confined and
the imaginary part of the energy decreases. For example, for m¼ 9/2 the ratio DE/
Im(E) is 200, while for m¼ 19/2 the ratio DE/Im(E) is 800, i.e. the electron with these
value of angular momentum can be considered as strongly trapped by the
confinement potential [350]. Therefore the confined states within the QD can be
observed for states with angular momentum greater than 
9/2.

Properties of the trapped states of a QD in an external magnetic field have been
studied numerically in [350]. To find the energy spectra of such a system a finite set
of basis wavefunctions, corresponding to an electron in uniform magnetic field,
has been introduced. The basis wavefunctions have the form of Equation (8), where
the Landau wavefunctions are expressed in terms of the functions with a given
angular momentum, m. Then the matrix elements of the confinement potential
between the basis functions are calculated and the eigenvalues and eigenfunctions
of the corresponding Hamiltonian matrix are found. To suppress any escape of
particles from the QD, i.e. to consider only the confined states within the QD, the
basis functions were restricted only by the functions with positive energies.

The calculated low-lying energy states of the graphene QD in uniform magnetic
field and in a parabolic confinement potential, V(r)¼ (u/2)r2, are shown in Figure 71.
At zero magnetic field the energy spectrum reproduces the energy spectrum of the
confined states in a parabolic QD. In contrast to conventional nonrelativistic
parabolic QD, which has equidistant and degenerate energy spectrum, the spectrum
of QDs in graphene is not equidistant and the degeneracy of the levels is lifted. At
low magnetic fields, the magnetic length, lB, is larger than the characteristic size,
½ð�hvFÞ

2u�
1
3, of the confined states in the QD. In this case the magnetic field introduces

a mixture between the confined states of the dot [350]. For a large magnetic field the
magnetic length becomes smaller than the size of the QD and the electron states can

0

40

80

120

160

0  2  4  6

E
 (

m
eV

)

B (Tesla)

u=0.1

(0,0)

(0,1)
(1,0)

(0,2)
(1,1)
(2,0)

(0,3)

B

u=0

N=0

N=1

2
3

0 3
0

70

E

Figure 70. Energy (Fock–Darwin) spectrum of the Dirac QDs with parabolic confinement
potential, V(r)¼ (u/2)r2 is plotted for u¼ 0.1 (meVnm�2) as a function of magnetic field.
The numbers in the parentheses correspond to the two quantum numbers N and m, where m
is the angular momentum and Nþm¼ n is the Landau level index. The energy spectrum
of graphene without confinement potential, i.e. u¼ 0, is given in the inset (reproduced
from [350]).
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be considered as the Landau level states mixed by the confinement potential. In this

case the inter-Landau level coupling lifts the degeneracy of the Landau levels.
The manifestation of mixing of Landau levels by the confinement potential is

clearly seen in optical transitions within the QD. The optical transitions from the

ground state, (0, 0), of the QD to the excited states are shown in Figure 71. Without

a confinement potential the only allowed transition is (0, 0)! (0, 1), i.e. from the

n¼ 0 to the n¼ 1 Landau levels. The confinement potential introduces mixing

of the Landau levels, which results in the allowed optical transitions (0, 0)! (1, 1)

and (0, 0)! (2, 1). The lowest allowed optical transition, i.e. (0, 0)! (0, 1) transition,

for parabolic confinement potential has an energy [350]

DE ¼ ½ð�hvFÞ
2u�

1
3 þ

ffiffiffi
2
p

�hvF
lB

: ð134Þ

This expression reproduces the Landau level separation in graphene at large

magnetic fields and inter-level separation for the confined states at zero magnetic

field. The expression (134) can also be used to extract the band parameter, �hvF, from
the optical absorption experiments in graphene in a magnetic field and a confined

potential.

6.5. Magnetic QDs

The combination of a uniform magnetic field and the confinement electrostatic

potential can produce strongly confined states [380] even in an ideal graphene

system. The origin of such a confinement can be understood from the semiclassical

analysis of the electron dynamics. In an uniform magnetic field, Equation (110) takes

the form [380]

ð�hvFÞ
2q2 ¼ E� VðrÞ½ �

2
�ð�hvFÞ

2 m=rþ eBr=2ð Þ
2: ð135Þ
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Figure 71. The dipole-allowed optical transitions in a graphene QD with a parabolic
confinement potential, V(r)¼ (u/2)r2 is shown at u¼ 0.1 (meVnm�2). Only optical transitions
from the ground state are shown. Inset: the optical transitions in graphene without the
confinement potential, u¼ 0. The thickness of the lines is proportional to the calculated
intensity. From the bottom to the top, the relative intensities are about 1.0, 0.1, 0.02,
respectively (reproduced from [350]).
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The classically forbidden region is determined by the condition q25 0. Then the

electron motion is confined, i.e. an electron cannot classically propagate at large

distances, r!1, if at large r the right-hand side of Equation (135) becomes

negative. This can be realized if the confinement potential increases slower than r,

e.g. becomes constant at large distance [380]. Therefore at large r the behavior of the

electron is determined not by the confinement potential but mainly by the uniform

magnetic field, which itself produces intrinsically confined electronic states. The

electron confinement by a slow varying electrostatic potential and uniform magnetic

field can also be understood as a pinning of intrinsically confined magnetic electronic

states by the electrostatic potential. The advantage of this type of confinement is that

it can be realized for all values of the electron angular momentum, m, and

for different types of slow varying electrostatic potential, even non-cylindrically

symmetric one. If the confinement potential increases as V / r then the system shows

confinement–deconfinement transitions, which is controlled by the dot parameters

and the strength of the magnetic field [380]. These transitions can also be understood

from the semiclassical expression (135). Indeed, if V¼ v0r then from Equation (135)

we obtain that the confinement of the state is determined by the sign of the

expression v0� �hvFeB. The electron is confined or deconfined if this expression is

negative or positive, respectively.
The confinement of an electron in graphene can also be realized through

inhomogeneous magnetic fields [352,353]. For a cylindrically symmetric magnetic

QD, the external magnetic field is perpendicular to the graphene plane and

the magnitude of magnetic field depends only on radius, B(r). The Dirac equation

for a two-component spinor,  ¼ ( 1, 2), corresponding to a single valley takes

the form

~� ~pþ
e

c
~Aðx, yÞ

h i
ðx, yÞ ¼ � ðx, yÞ, ð136Þ

where ~Aðx, yÞ is the vector potential and E¼ vF�. For a cylindrically symmetric

magnetic QD, the electron angular momentum is conserved. Then the solution of the

Dirac equation has the form of Equations (106)–(107) and the Dirac equation

reduced to the following system of equations [352]:

d�1ðrÞ

dr
�
mþ 1

2þ �ðrÞ

r
�1ðrÞ ¼ ��2 ð137Þ

d�2ðrÞ

dr
þ
m� 1

2þ �ðrÞ

r
�2ðrÞ ¼ ��1, ð138Þ

where �ðrÞ ¼ e
c

R r
0 dr

0r0Bðr0Þ is the magnetic flux through a disk of radius r in units

of the flux quantum.
For the simple model of a magnetic QD for which B¼B0 outside a disk of

radius R and zero inside the disk, the general solution of the system of equations

(137)–(138) can be expressed in terms of the Bessel functions inside the dot

and hyperbolic functions � and � outside the dot. The continuity of the

two-component wave function determines the energy eigenequation for the
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magnetic QDs [352]

1� j ~mj�ð� ~mÞ=��
"lBffiffiffiffiffi
2�
p

Jmþ1
2
ð�lB

ffiffiffiffiffi
2�
p
Þ

Jm�1
2
ð�lB

ffiffiffiffiffi
2�
p
Þ
¼

d

d�
ln�ð�, 1þ j ~mj; � ¼ �Þ, ð139Þ

where lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c=eB0

p
is the magnetic length, � ¼ R2=2l2B, ~m ¼ m� � and � ¼

1þ ~m�ð ~mÞ � ð"lBÞ
2=2. The solutions of Equation (139) determine the energies of

the localized states of an electron within the magnetic QD. Electrons in these states

are strongly confined with zero escape rate.
The many electron system in parabolic magnetic QDs, i.e. B(r) / r2, was studied

in [354]. Employing Sucher’s projector formalism [381], i.e. restricting the Hilbert

space to the positive-energy eigenspace for each particle, allowed the authors to

obtain the energy spectra of the many electron interacting system. For a two-electron

system, a singlet-triplet ground-state spin transition was observed as a function of the

inter-electron interaction strength.

6.6. Confinement of massive relativistic electrons in graphene

Another way to overcome the problem of Klein tunnelling and to confine an electron

in a graphene layer is to introduce gap in the energy dispersion, i.e. introduce a finite

electron mass. Due to the presence of the gap, there are no freely propagating states

(hole states) inside the barrier, which suppresses the Klein tunnelling. The effective

electron mass can be introduced through a constant mass term in the Hamiltonian.

The QD in this case can be straightforwardly defined through a confinement

potential. The final Hamiltonian of the system has the following form [382]:

H ¼ vF ~p � ~� þ �D�z þ Vðx, yÞ, ð140Þ

where �¼�1 corresponds to the two valleys K and K0, D is a constant mass term and

V(x, y) is the electrostatic confinement potential. The mass term, D, introduces a gap

of 2D. The Hamiltonian (140) generates localized states which decay exponentially

away from the QD. The constant mass term can be realized, for example, by

introducing the underlying substrate [383].
The mass term appears also in bilayer graphene with different potentials at the

two layers [184,384]. The different potentials result from the influence of doping on

one of the layer or from an electric field perpendicular to the layer, i.e. by gating.

In this case the mass term in the Hamiltonian has the form ((V1�V2)/2)�z. Here V1

and V2 are the potentials at two layers. By varying the potential difference between

the layers, one can realize the QD with localized states [384]. For example, by

introducing a position-dependent potassium doping, the position-dependent mass

term can be introduced [384]. A special example of the position-dependent mass

term in the Hamiltonian of a single layer of graphene is an infinite-mass boundary

conditions [385]. The Hamiltonian of an electron in graphene layer with mass-

dependent term then has the form

H ¼ vF ~p � ~� þ �VðrÞ�z: ð141Þ
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Then the infinite mass boundary conditions means that the mass of the electron is zero
inside the dot,V(r)¼ 0 if r5R, and infinitely large outside the dot, V(r)¼1 if r4R.
For a circular confinement, the infinite-mass boundary condition has a simple form

2= 1 ¼ i�ei� ð142Þ

at r¼R. With this boundary condition the energy eigenequation takes the form [385]

�Jmþ1
2
ðkRÞ ¼ Jm�1

2
ðkRÞ, ð143Þ

where m ¼ 1
2 ,

3
2 , . . . is the angular momentum and k¼E/�hvF. The states of such QDs

are strongly confined. Each level has twofold valley degeneracy, which follows from
the property E(m, �)¼E(�m,��) [385]. There is no zero energy state, which leads to
the energy gap between the states with positive and negative energies.

6.7. QDs in bilayer graphene

The Klein paradox which manifests in monolayer graphene indicates that it is
impossible to confine electrons by electrostatic methods. This problem is circum-
vented in bilayer graphene, where the lifting of the band degeneracy by the gap
caused by the inter-layer potential suppresses the perfect tunnelling through an
electrostatic barrier [376]. Matulis et al. calculated the energy spectrum and lifetime
(or inverse width) of quasibound states in monolayer and bilayer QDs assuming a
step-like potential profile. They found that states in the bilayer with energy lower
than the potential step are much narrower (i.e. are much longer-lived) than the
corresponding states in the monolayer (Figure 72). The reason for this is the differing
behavior of electrons incident on a potential barrier in the two forms of graphene. At
normal incidence, the monolayer barrier is completely transparent, while in the
bilayer the barrier always reflects the incident electron. The longitudinal component
of momentum destroys this perfect behavior, but this nonetheless serves to illustrate
why confinement is much better in a bilayer dot.

Similarly, Pereira, et al. [386] theoretically considered dots defined by gating
or inhomogeneous doping in bilayer graphene. The doping is assumed to generate

Figure 72. Quasibound states for QD in bilayer: orbital momenta (a) m¼ 0, (b) m¼ 2.
The energies of these states are given by the black curves and its width (i.e. the inverse
of the lifetime) by the shadowed regions. The straight slanted line corresponds to E¼V.
(c) The equivalent plots for the monolayer (Reprinted figure with permission from A. Matulis
and F.M. Peeters, Physical Review B, 77, 115423, 2008 [376]. Copyright � (2008) by the
American Physical Society.).
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a quadratic potential which is cut off at some radius R so that the potential difference

between the layers DU is, as a function of the radial distance r:

DUðrÞ ¼
UMr2

R2
, r=R5 1

UM, r=R � 1:

8<
:

Unusually, the m¼ 0 state (where m is the total angular momentum) is found to
have the maximum of its wave function’s amplitude at r 6¼ 0. In contrast, m¼ 1 is the

ground state and the angular momentum phase of 2� cancels the Berry’s phase

of �2�. The energy levels are also not symmetric in their angular momentum: the

authors find that E(m)¼�E(�m), in contrast to the usual semiconductor case with

parabolic confinement. The energy levels are also not equally spaced, and this

manifests itself in the spectrum of allowed optical transitions, where multiple

frequencies will show absorption lines in a far-infrared spectroscopy measurement.
Recher et al. [382] study QDs in gapped bilayer graphene under the influence

of a magnetic field. They show that the broken inversion symmetry of the gapped

system allows bound states to be formed. They plot the dependence of the energy

levels on the magnetic field, and show that the valley degeneracy is lifted in this

system. The enhanced density of states near the band edge in the gapped system
manifests as an increased density of levels in the dot. The trigonal warping term is

also important near the band edge, although the authors argue it is less vital in the

large magnetic field regime. The authors also describe the regime where the dot levels

merge into the bulk Landau levels, and the combination of propagating and decaying

modes that this crossover represents. A novel feature of this model is the existence

of a bulk Landau level characterized by n¼ 0 which persists in the dot. When states

bound to the dot cross this level, the dot becomes ‘leaky’ and electrons may escape

from the dot. However, the energy range between

E5 ¼
s�U

l2Bð�
2
1 þU2Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2�21

4ð�21 þU2Þ
�

t2?
l4Bðt

2
? þ V2Þ

2

s

and E4¼E5þU (where lB is the magnetic length and s¼ sgn(B)) is never crossed by

this Landau level, and as such constitutes a region where well-behaved bound states

are known to exist.

7. Localized states at the edges of graphene nanoribbons

Carbon systems, such as graphite, carbon nanotubes and graphene, are characterized

by their � electron structure mostly controlled by the sp2 carbon network. Bulk

graphene is a zero gap semiconductor whose lattice has hexagonal symmetry with

two equivalent sublattices A and B (Section 1.1). The carbon atoms belonging to the

two different sublattices form equilateral triangles, therefore each sublattice is

invariant under 120� rotation which preserves the D6h symmetry. The band structure
of bulk graphene is presented by cone-shaped conduction and valence bands

touching at Dirac points (K and K0) in the Brillouin zone. Therefore, at each K-point
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the bands are degenerate and the electronic bands E(k) show linear dispersion near
the K points. The Fermi level lies in the plane formed by the K points (Figure 2).

The main difference between bulk graphene and graphene nanoribbons is the
presence of edges in nanoribbons. The � network of graphene nanoribbons still
consists of sp2 bonded carbons, but the carbon atoms at the edges have only two
neighbors, thereby developing many sp carbon bonds and unsaturated dangling
bonds. Saturation of such dangling bonds through termination by hydrogens
decreases the amount of sp hybridization. Disruption of the sp2 carbon network can
also be caused by defects and dislocations, which may have less (or more) than three
neighboring atoms. As a result, the electronic properties at the edges and at the
defect locations are modified in comparison to that of bulk graphene. Most
significantly such discontinuities modify the electronic properties of finite nanoscale
graphene, which is confined by the edges from all sides. In graphite-like structures
there are two basic shapes of the edges – armchair or zigzag (Figure 73). Disruption
of the sp2 carbon network at the edges generates localized states. Because the
structure, lattice orientation and proportion of the sp2 and sp hybridization of the
armchair and zigzag edges are different, their electronic properties differ, particularly
in the formation of localized states. The distinction of the electronic properties
between the zigzag and armchair edges was initially discussed for graphite and
only zigzag edges were predicted to create localized edge states near the Fermi level
[387–390].

Graphene nanoribbons – idealized quasi one-dimensional systems – can be built
with solely armchair or zigzag edges, i.e. the shape of graphene ribbon can be chosen
in such a way that the ribbon in finite directions is confined by either the armchair
or the zigzag edges (Figure 73). In this section, we consider the electronic properties
of the graphene nanoribbons, both armchair and zigzag, through distribution of the
localized electrons at the edges and their spin orientation. Because the localization
of the edge states is influenced by many factors, such as size of the nanoribbons,
edge geometry and edge termination, their effect on the electronic properties of
graphene nanoribbons are included in this section as well.

7.1. Localization of the electron density at the edges

Armchair and zigzag graphene nanoribbons have attracted considerable attention
due to their unique edge properties [391]. Initially, the electronic properties of
graphene nanoribbons were investigated via the tight-binding model, also known as

Figure 73. Graphene ribbons confined by (a) armchair and (b) zigzag edges in transverse
direction. The arrows show the longitudinal (infinite) direction.
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the Hückel approximation [391]. In this model, the transfer integral was set as t for
all nearest neighbor interactions. The dangling bonds at the edge sites were
terminated by hydrogen to minimize the contribution of the sp-carbon bonds to the
electronic properties. The wave vector k was replaced by the translation vector and
the energy E by the transfer integral. The obtained band structure of an armchair
ribbon of width N¼ 30 is displayed in Figure 74 (a). For comparison, the band
structure of two-dimensional graphite projected onto the armchair axis is also shown
in Figure 74 (b), where the dashed lines are the boundaries of the first Brillouin zone.
The band structure of an armchair ribbon is found to be similar to that for
two-dimensional graphite: in both cases the conduction and valence bands approach
the Dirac points. The main difference is a small direct gap for nanoribbons, whose
size was found to be controlled by the nanoribbon width. An increase in N was
shown to close the gap.

Similar calculations have been performed for zigzag nanoribbons. The band
structure of a zigzag nanoribbon and its comparison with that of 2D graphite

Figure 74. (a) The band structure of an armchair ribbon of width N¼30 and (b) the band
structure of two-dimensional graphite projected onto the armchair axis (Reprinted figure with
permission from K. Nakada et al., Physical Review B, 54, 17954, 1996 [391]. Copyright �
(1996) by the American Physical Society.).

Figure 75. (a) The band structure of a zigzag ribbon of width N¼30. (b) The band structure
of the 2D graphite projected onto the zigzag axis. (c) An analytical solution of wave function
for the localized edge state (k¼ 7�/9) (Reprinted figure with permission from K. Nakada
et al., Physical Review B, 54, 17954, 1996 [391]. Copyright � (1996) by the American Physical
Society.).
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projected onto the zigzag axis are shown in Figure 75. For graphite, the cone-shaped
conduction and valence bands touch at k’�2�/3 corresponding to the Dirac
points, while in graphene after touching these bands remain degenerate. Therefore,
the flatness of the conduction and valence bands begins at k’ 2�/3 and extends up to
k¼�. The wave functions corresponding to these bands are completely localized on
the zigzag edges. The analytical solution for the wave function localized at the zigzag
edges, which has been derived within the method of the linear combination of
atomic orbitals where the translational symmetry was considered, is presented in
Figure 75(c). The charge density at the zigzag edge for each non-nodal site was found
to be proportional to [2 cos(k/2)]2m, where m is the lattice site (m¼ 0 for zigzag edge).
In Figure 75(c), the circle radius was chosen to be proportional to the charge density.
It was observed that the charge density diminishes with increasing distance from the
edge sites and the damping factor is �2 cos(k/2) per zigzag chain. Due to the
translational symmetry considered in the model, the analytical solution implements
non-zero charge density only for the sites belonging to one graphene sublattice.

For the zigzag nanoribbon, an analytical solution for the wave functions
corresponding to the flat bands within the interval 2�/3 | k | � was also derived
in [390]. The alteration of the real part of the wave function with the reduction of
wave vector k is presented in Figure 76. The wave function obtained for k¼� is
completely localized on the edges and starts to penetrate into the inner sites for
decreasing k. The extended state, when the wave function is completely delocalized
over the graphene structure, is for k¼ 2�/3.

The localized states at the zigzag edges are distinguished by a peak of the density
of states near the Fermi level, whose amplitude depends on the size of the ribbon and
is found to decrease with increasing nanoribbon size [391] (Figure 77). The peak
in the density of states almost disappears with increasing nanoribbon width up to
N¼ 51. The structure of the zigzag edge is found to be responsible for the appearance
of localized edge states close to the Fermi level.

7.2. Experimental evidence for localized edge states

The existence of localized states only at zigzag edges, as predicted theoretically,
received experimental validation later [392–395]. In the first work, where

Figure 76. The real part of the wave function obtained from the analytical solution for the
semi-infinite graphite. (a) k¼�, (b) k¼ 8�/9 (c) k¼ 7�/9 (d) k¼ 2�/3. Here, the shaded and
open circles denote the different sign of the wave functions. A and B denote the two sublattices
(Reproduced from M. Fujita et al., Journal of the Physical Society of Japan, 65, 1920 1996
[390]. Copyright � (1996) The Physical Society of Japan).

398                   



investigation of the edge properties was performed by scanning tunnelling spectros-
copy, the peak in the local density of states in the energy range of 90–250meV above
the Fermi level was observed for hydrogenated graphite [392]. The peak has
appeared close to a monolayer edge (1.5 nm) while the peak intensity kept growing
as the conducting tip approached the edge. Moreover, close to the monolayer edge,
bright areas of nearly atomic size were observed on images from the scanning
tunnelling microscopy. The brightness indicated the efficiency of the tunnelling
current between the conducting tip and the graphite surface. Since the tunnelling
current is a function of the local density of states, it was concluded that these bright
areas can be generated by localized electrons. The main disadvantage of that
experiment was that the nature of the edges was unclear: the type of edges generating
bright spots could not be distinguished.

However, in subsequent experiments [393,394] it was clearly shown that localized
states occur only at the zigzag edges [Figure 78]. The contrasting bright spots were
found to appear at the top part of the zigzag edges. The different edges were
distinguished from application of the hexagonal lattice to the images. Moreover,

Figure 77. (a) Density of states of the zigzag nanoribbons of different width: (a) N¼ 6,
(b) N¼ 11, (c) N¼ 51 (Reprinted figure with permission from K. Nakada et al., Physical
Review B, 54, 17954, 1996 [391]. Copyright � (1996) by the American Physical Society.).

Figure 78. (a) The image of the zigzag and armchair edges (9	 9 nm2) obtained by scanning
tunneling microscopy. The bright points were attributed to the top of the zigzag edges of the
monolayer graphite. (b) dI/dV data from scanning tunnelling spectroscopy at the zigzag edges
(Reprinted figure with permission from Y. Kobayashi et al., Physical Review B, 71, 193406,
2005 [393]. Copyright � (2005) by the American Physical Society.).
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new data were also obtained for formation of the peak in the local density of
states on dI/dV versus bias voltage curves. In contrast to the first experiment where
the peak was shifted by 90–250meV relative to the zero voltage [392], the latter
experiments have shown an appearance of the peak at negative bias voltages in the
range of �100 to �20meV [394] and in the range of �30meV [393]. It was also
confirmed that the intensity of the peak depends on the distance from the edge [394].
Therefore, the peak almost disappears when the distance exceeds 3.5 nm [394] against
1.5 nm in [392]. The intensity and width of the peak were also found to be dependent
on the type of graphite [394]. A sharp peak of high intensity was seen for the ZYX
exfoliated graphite with maximum amplitude at 
�25meV, while for the highly
oriented pyrolytic graphite the peak was broad with maximum at 
�0.40meV.
In another experiment [396] on graphene sheets employing Raman spectroscopy the
blue shift of the G band relative to its position for graphite oxide has been observed
and attributed to the alteration of the pattern of the single-double carbon bonds
at the zigzag edges of graphene sheets, in particular to the formation of the sp3

carbons [396].
The experimental data therefore clearly confirmed that only the zigzag edges are

responsible for the occurrence of localized states in monolayer graphite, thereby
validating the theoretical prediction for graphene. However, the experiments have
also shown that the peak of the density of states is shifted relative to zero voltage,
i.e. indicating a shift of the energy band of the localized states relative to the Fermi
level, which was not foreseen in the theoretical studies [391]. It was proposed much
later that this shift of the energy bands is a result of doping of graphene through its
interaction with the adsorbates in the gaseous environment or with other materials,
such as the contacts or the substrate [397,398]. For example, exposure of the
graphene sample to NO2 gas was found to shift the Hall resistance and the minimum
of the density of states towards higher positive gate voltages with increasing NO2

concentration [397]. Similarly, the shift of the point where the resistance of the
graphene monolayer samples reach the maximum relative to zero voltage due to
doping by dipolar adsorbates has indeed been observed [398]. The problem of doping
by external sources and its influence on the electronic properties of graphene will be
considered in Section 8.

7.3. Stabilization of the edge states

7.3.1. The nearest neighbor interactions

The flat conduction and valence bands induced by the localized states at the zigzag
edges remain degenerate and totally dispersionless for 2�/35 k5�. Therefore, the
degenerate bands and high density of states at the Fermi energy possessing a peak in
the local density of states suggest an instability of these localized states. Experimental
observation of a shift of the peak away from the Fermi level [392–394] is evidence
of such an instability. Studies of localized states by first-order perturbation theory
for the tight-binding Hamiltonian have demonstrated the role of the nearest
neighbor interactions, �0, and the next-nearest neighbor hopping processes, �n, in
the stabilization of these edge states [399]. The band structures of graphene
obtained with and without contributions from next-nearest neighbor interactions are
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presented in Figure 79. In the case when the next-nearest neighbor interaction is zero,
the Fermi level is located at the zero energy (E(k)/�0¼ 0), while the conduction and
valence bands are flat after they meet at q¼ 2�/3 at the Fermi level, where q is the
wave vector. If the next-nearest neighbor interactions �n are taken into account, the
shift of the energies of the whole band structure and the Fermi level occurs.
The energy shift of the band structure has been evaluated as DE� �n(2 cos qþ 1). The
magnitude of DE is maximum when q¼�, thereby generating a stronger stabilization
at the edges and larger shift of the bands corresponding to the localized states. If the
value of the hopping integral is not zero (�n¼ 0.1 �0 in Figure 79 (b)), the entire band
structure including the Fermi level is shifted up on the energy scale E(k)/�0 in such a
way that the nearly flat band of the localized states is found to be located below the
Fermi level (Figure 79(b)). The localized states at q¼� exhibit a sharp peak in the
local density of states with a maximum at the Fermi level, which is also shifted to
negative energy by the stabilization effect. The lowering of the peak amplitude of the
local density of states has been seen as one moves away from the edges, and
diminishing of the peak when the distance exceeds 2.5 nm is in good agreement with
the experimental data (
3.5 nm in [394]).

In the next paper by the same authors, the stabilization of the localized states at
the edge has been attributed to the presence of a deformation potential at the edges
and the interaction between the magnetic field induced by the localized states
and pseudospin polarized nature of these states [400]. The local lattice deformation
was considered through the weak next-nearest neighbor interactions at the edges.
It was found that the next-nearest neighbor interactions break the particle-hole
symmetry in graphene, thereby stabilizing the edge states. Band structure calcula-
tions performed for different magnitudes of the deformation stress at the edges have
shown that undeformed graphene (zero stress) has a band structure with cone-shaped
conduction and valence bands meeting at the K points. For zigzag nanoribbons if the
stress at the edges is insignificant, a narrowing of the band gap occurs for q4 2�/3,
while an increase of the stress leads to additional gap narrowing and finally to band
closing and flattening of the bands for q� 2�/3. In other theoretical work [401] the
deformation of the carbon bonds at the edges was predicted to influence the size
of the band gap as well. Based on the results indicating a strong effect of the

Figure 79. The energy band structure of the zigzag nanoribbon: (a) with nearest neighbor
interactions �0¼ 3.0 eV and (b) with both nearest neighbour �n¼ 0.1�0 and next-nearest
neighbor interactions (Reprinted figure with permission from K. Sakaki et al., Applied Physics
Letters, 88, 113110, 2006 [399]. Copyright � (2006) American Institute of Physics.).
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deformation stress on the electronic properties, it was predicted that not only the
stress at the edges, but also the external stress applied to the undeformed graphene,
impurities, vacancies and external magnetic field may induce lattice deformation
thereby stabilizing the localized states [400].

The edge stress occurs not only at zigzag edges, but also at armchair edges.
Investigations of the compressive edge stress at armchair and zigzag edges performed
with the density functional theory (DFT) have shown the dependence of the stress
value on the type of edges [402]. The nature of the C–C bonds at the armchair and
zigzag edges is different. The C–C bond of length 
1.24 Å at the armchair edges
exhibits a higher rate of sp hybridization and higher charge density than that at the
zigzag edge of length 
1.37 Å, against the C–C bond of length 
1.42 Å possessing
sp2 hybridization of bulk graphene [403]. As a result, the compressive edge stress
at the armchair edges is found to be larger than that at the zigzag edges, while
termination of the dangling bonds by hydrogen provides almost stress-free edges
[402]. In terms of the edge energy the armchair and zigzag edges are different as well.
According to the theoretical [402,403] and experimental investigations [395], the
energy of the armchair edge is much lower than that of the zigzag edge. It was also
theoretically predicted that a simple reconstruction of the zigzag edge leads to
significant lowering of its energy [404] and, therefore, to its structural stabilization.
The activation barrier of the applied reconstruction was found to be only 0.6 eV,
indicating the metastability of the zigzag edge at room temperature. Therefore, it was
concluded that the clean zigzag edges would rarely exist [403] and this can be a way
to perform the edge-selective termination of the dangling bonds. Experimental
evidence for the formation of stable reczag graphene edges due to reconstruction of
the zigzag edges has been reported in [405].

7.3.2. Coulomb interactions

Coulomb interactions have also been considered for understanding the mechanism
of stabilization of the localized states. Simulations performed for graphite ribbons
with the Hubbard model using unrestricted Hartree–Fock approximation have
shown that magnetic polarization resulting from electron–electron interactions
between the spin-polarized states may lead to spontaneous ordering of the spins of
the electrons localized at the zigzag edges [390]. Further investigations have shown
that a large magnetic moment occurs at zigzag edges even for weak Coulomb
repulsion, while no magnetic structure has been found at armchair edges. For the
border atoms at the zigzag edges, maximum magnetization was observed, while a
move to the inner site of the ribbon reduces the magnitude of the magnetization due
to the diminishing density of the localized states. Magnetic ordering of the spin states
at the zigzag edge interfaces for a ribbon of width N¼ 10 is presented in Figure 80.
The border atoms at the two opposite zigzag edges belong to different sublattices.
According to the wave function distribution presented in Figure 76(a), the wave
function localized on one edge is nonzero only for the A sublattice, and the increase
of the magnetic moment selectively on this sublattice leads to the formation of a local
ferrimagnetic spin configuration. The localized state on the opposite zigzag edge
belongs to the B sublattice and the spin orientation of the magnetic states localized
on the B sublattice is opposite to that on the A sublattice, preserving the total zero
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magnetization of the graphite ribbon. It was noted that the nanometer-scale size of
the graphite fragments is the main requirement for spontaneous spin ordering.

The contribution of Coulomb interactions to the stabilization of the ferromagnetic

state has been also considered in later works [406–409]. The results reported in [406]

have shown that graphene sheets can have two ferromagnetic phases.

One is characterized by the strong magnetization and maximally polarized spin
(Nagaoka ferromagnetism), while the other is a weak ferromagnetic state. Moreover,

strong Coulomb interactions in conjunction with high electron density at the lattice

site (which is higher at the edges) can lead to an antiferromagnetic phase, while weak

Coulomb interactions will switch the system to a paramagnetic state. In [407] it was
shown that the exchange interactions between Dirac fermions can be the stabilizing

factor for the ferromagnetic phase. The transition from the paramagnetic phase to the

ferromagnetic one for pure graphene was predicted to occur at low strength

of electron–electron interactions, and doping was found to increase the magnitude

of the interactions required for the transition. The effect of electron–electron
interactions and the doping of graphene lattice on the transition to a ferromagnetic

state was also investigated in [409], but the reverse transition from the ferromagnetic to

the nonmagnetic state was seen to occur only when large hole doping was applied.
The charge polarization process was also considered as an alternative mechanism

for stabilization of the ferromagnetic state for the localized states [410–412]. In the
case of the formation of the charge polarized state, the Coulomb interaction between

the nearest sites was shown to be responsible for stabilization of this state, which on

the opposite zigzag edges is distinguished by the electrical charges characterized

by the opposite sign [410]. Therefore, the charge polarized state has a finite
electric dipole moment directed from one zigzag edge to the other. The on-site

Coulomb interaction has been found to trigger the formation of the spin-polarized

state competing with a charge-polarized state. The external electric field due to

the coupling with the internal dipole moment leads to stronger stabilization of the

charge polarized state, that can make it energetically favorable as compared to the
spin-polarized state [410,413]. However, Pisani et al. [412] have indicated that

Figure 80. Spin ordering at the edges in the zigzag ribbon for U/t¼ 0.1, where U is the on-site
Coulomb repulsion and t is the transfer integral (Reproduced from M. Fujita et al., Journal of
the Physical Society of Japan, 65, 1920, 1996 [390]. Copyright � (1996) The Physical Society of
Japan.).
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according to the first-principles calculations the charge polarized state is highly
metastable.

7.4. Spin ordering, symmetry and band gap

The concept of spontaneous spin polarization of the localized states at zigzag edges
has received wide attention. A better understanding of the spin behavior was later
provided by many research groups, and is the main subject of the present section,
where the influence of spin ordering of the localized states on the magnetism of
graphene nanoribbons and on the stabilization of the ground state is considered.

The first-principles calculations were used in [414] to study magnetism in
graphene nanoribbons. The spin ordering along the zigzag edges was described by
the three states (Figure 81): (i) ferromagnetically ordered spins along each zigzag
edge and between the zigzag edges (FM-F), (ii) ferromagnetically ordered spins along
each zigzag edge but with opposite spin direction between the zigzag edges (FM-A)
and (iii) antiferromagnetically ordered spins along the zigzag edges but with spin
alignment between the edges (AF-E). Calculations of the total energy performed with
the DFT method based on the local spin-density approximation have shown that
FM-A is the lowest energy state characterized by a magnetic moment of m¼ 1.28
B

per edge atom, where 
B is the Bohr magneton. The next energetically preferable
state is the FM-F state with magnetic moment of m¼ 1.19
B per edge atom, whose
total energy is higher than that of FM-A by 
2.3meV per edge atom. The total
energy of the AF-E state is higher than that for the FM-A state by 81.4meV per edge
atom, while the magnetic moment of the AF-E state is m¼ 0.82
B per edge atom.
The huge difference between the total energies of the FM-A and the AF-E states is
the result of destructive interference between the spin-up and spin-down tails of the
localized states in the AF-E state. The destructive interference at the inner sites
of the graphene nanoribbon is also responsible for the stabilization of the FM-A

Figure 81. The electronic spin densities of (a) FM-F, (b) FM-A and (c) AF-E states in the
graphitic strips. The solid line indicates the spin-up density, and the dashed line is for spin-
down density (Reprinted figure with permission from H. Lee et al., Physical Review B, 72,
174431, 2005 [414]. Copyright � (2005) by the American Physical Society.).
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in comparison to the FM-F. The energy difference between FM-A and FM-F

decreases with increasing nanoribbon width as a result of the reduction of the

density of states at the inner sites that suppress the destructive interference. However,

it was found [362,412] that the energetic preference of the spin-polarized state

over the nonmagnetic state increases with increasing ribbon size. Several reports

have confirmed the FM-A state to be the lowest energetic state of graphene

[362,412,414–416].
The electronic structure of the FM-A and FM-F states are displayed in Figure 82

[412]. The border atoms at opposite zigzag edges belong to different sublattices.

In the spin-polarized state, if the spin ordering between two zigzag edges is

ferromagnetic, the sublattice symmetry is preserved and as a result the band gap

vanishes for the FM-F state (Figure 82(a)). For the FM-F state the spin-up and

spin-down bands cross each other close to the Fermi level without the formation

of the electron pair at k¼ 2�/3a. For k� 2�/3a, the energy band of the spin-up state

is located below the Fermi level, while for the spin-down state, in contrast, the band

is located above the Fermi level.
For the FM-A state (see the band diagram in Figure 82(b)), the sublattice

symmetry is broken due to the antiferromagnetic ordering of the spin states between

the zigzag edges, whose border sites belong to different sublattices. Therefore, over

the whole structure the spin-up state is completely localized on the A sublattice,

while the spin-down state is localized on the B sublattice, making a singlet pairing

between the neighboring sites. The antiparallel spin alignment of the localized states

Figure 82. The band structure of the spin-polarized states (a) FM-F and (b) FM-A of the
graphene nanoribbons (Reprinted figure with permission from L. Pisani et al., Physical
Review B, 75, 064418, 2007 [412]. Copyright � (2007) by the American Physical Society.).
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between the opposite zigzag edges breaks the sublattice symmetry because carbon
atoms possessing the localized states belong to different sublattices, thereby opening
a gap at k¼ 2�/3a. An increase in the width of the zigzag ribbon leads to a reduction
of the gap following an algebraic decay as 1/N, i.e. with increasing distance between
opposite zigzag edges. For N!1 the valence and conduction bands tend to be
degenerate, but the spin-polarized edges still would not show the inter-edge magnetic
order. The hopping integral t and the on-site Coulomb repulsion U used in earlier
works within the Hubbard model have been calculated within the DFT theory [412].
The values within the gradient corrected functional PBE and local-density
approximation LSDA are t¼2.5 eV and U
 t.

Therefore, the lowest energy state of graphene nanoribbons is expected to have
ferromagnetic ordering of the localized spin states along the zigzag edge and
antiparallel spin orientation between the opposite zigzag edges, thereby breaking
the sublattice symmetry and opening a gap. In this state both the band gap and the
destructive interference between the spin-up and spin-down tails of the localized
states decrease with increasing width of the zigzag nanoribbons. In [416], the
antiparallel spin orientation at the opposite zigzag edges was also found to form
the states characterized by zero total spin and a lower energy with respect to both the
kinetic and interaction energies. However, in [411] the ground state of zigzag
nanoribbons of regular rectangular shape was shown to have the high spin state if the
many-body configuration interaction within the Hubbard Hamiltonian is taken into
account. It was found that the charge polarization rather than spin-polarization is
preferable in this case. For the charge polarized state, the spin-up and spin-down
states are not localized at the edges but rather mixed through the nanoribbon lattice,
while the electron density prefers to accumulate at the edges. As a result, the ground
state of the armchair ribbon is a singlet and that of the zigzag ribbon is a high spin
state, both showing the insulating behavior. Moreover, doping of graphene by p-type
or n-type charge carriers [417] and oxidation of the edges [418] were found to destroy
the magnetism of zigzag nanoribbons.

7.5. Band gap: confinement effect and edge shape

In addition to spin ordering between the edges, the shape of graphene edges also
contributes significantly to the band structure. For localized states, the width of an
armchair ribbon was shown to control its band gap [361,391,401,403,419–431].
Initially, the influence of the width on the electronic structure of graphene was
reported in [391], where the band structure calculations were performed within the
Hubbard model for armchair ribbons (Figure 83). Here the ribbon width dictates
whether the band gap is semiconducting or metallic. The insulating band gap has
a tendency to decrease with growing structure size due to the decrease of the weight
of the edge states in the normalized density of states. However, for zigzag
nanoribbons, where the flat band occurs for 2�/3 jkj �, the width has not been
found to bring any significant changes into its electronic properties.

Investigation of the electronic structure of graphene ribbons performed with the
first-principles methods has clearly indicated the role of graphene size on its
properties. Several groups [403,419–425,428–430,432] have seen the oscillatory
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behavior of the size of the band gap on the width of the armchair nanoribbon.
The period of oscillations as N varies is three. The results of DFT calculations
performed with the PBE and HSE approximations for nanoribbons with pure edges
or edges passivated by hydrogen atoms (to saturate the dangling bonds) are
presented in Figure 84. The data were separated in three groups: the points of
envelope of the maxima, of the minima and intermediate points. The envelope of the
maxima was described as N¼ 3pþ 1, where p is the positive integer number,
intermediate points as N¼ 3p and the minima as N¼ 3pþ 2 [419]. The points of the
minima were found to belong to the metallic state, while both intermediate and
maxima points are characterized as semiconductor states. Hydrogen termination,
which takes care of the dangling bonds, changes the obtained dependence so that the
intermediate points are shifted closer to the envelope of the maxima in comparison to
the pristine edges, where they are located closer to the envelope of the minima.
In other work, the shift of the intermediate points away from the envelope of the
maxima has been obtained for graphene with hydrogen-terminated edges [433].

Figure 83. The band diagram of armchair ribbons, whose structure is presented in Figure 73(a),
for various widths N (a) N¼ 4, (b) N¼ 5 and (c) N¼ 6. The energy E is scaled by the transfer
integral and the wave number k is normalized by the primitive translation vector of the graphene
ribbon (Reprinted figure with permission from K. Nakada et al., Physical Review B, 54, 17954,
1996 [391]. Copyright � (1996) by the American Physical Society.).

Figure 84. The dependence the size of the band gap on the ribbon width for pristine and
hydrogen-terminated armchair ribbons (Reprinted with permission from V. Barone et al.,
Nano Letters, 6, 2748, 2006 [420]. Copyright � (2006) by the American Chemical Society.).
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The influence of the edges on the band gap size has been found to remain for ribbon

lengths up to few micrometers [435].
The periodicity of the electronic properties of armchair graphene is a result of the

nature of the graphene lattice. To explain this phenomena, Son et al. [419] proposed

to represent graphene by a lattice model describing the armchair nanoribbons within

the tight-binding approximation (Figure 85). The Hamiltonian describing the

electronic interactions in the longitudinal, 
, and transverse, n, directions within the

lattice model is

H ¼
XN
n¼1

X2

¼1

"
,na
y

,na
,n �

XN
n¼1

t?n ða
y

1,na2,n þ h:c:Þ

�
XN�1
n¼1

X2

¼1

tkn,nþ1ða
y

,na
,nþ1 þ h:c:Þ, ð144Þ

where "
,n are the site energies, tkn,nþ1, t
?
n are the nearest neighbor hopping integrals,

a
,n is the annihilation operator of � electrons on site 
, n. It was assumed that the

charge transfer integrals at the borders are t?1 ¼ t?N � ð1þ �Þt and the site energies

"
,1¼ "
,N� "0, while inside the graphene structure t?n ¼ tkn,nþ1 � t and "
,n¼ 0,

regardless of 
. Therefore, the edge effect has been taken into account through the

modification of the site energies ("
,1 and "
,N) and charge transfer integrals (t?1 and

t?N). The model Hamiltonian was solved [419] perturbatively with the energy gaps
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where D0
3p ¼ t½4 cos p�

3pþ1� 2�, D0
3pþ1 ¼ t½2� 4 cos ð pþ1Þ�3pþ2 �, D

0
3pþ2 ¼ 0 are the gaps for

ideal ribbons terminated at �¼ "0¼ 0. The solution suggests that armchair ribbons

with lattice deformation at the edges have a nonzero band gap such that

D3pþ14D3p4D3pþ2. However, this dependence was found to work only when the

characteristic length of the deformation is less than the ribbon width [425].
The periodicity of the electronic structure of armchair ribbons lies in the change

of shape of the armchair edges with increasing N. It has been shown that such

changes initiate a shift and replacement of the subbands along the energy axis [425].

Figure 85. The periodic ladder (left) is topologically equivalent to the armchair ribbon
structure in the tight-binding approximation. The condition k¼ 0 is a special case when the
periodic ladder (left) can be folded into a two-leg ladder (right) (Reprinted figure with
permission from Y.-W. Son et al., Physical Review Letters, 97, 216803, 2006 [419]. Copyright
� (2006) by the American Physical Society.).
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If the subbands are labelled by the quantum number q, then the eigenenergy Ec in the

center of the first Brillouin zone (k¼ 0) is

Ec ¼ �t 2 cos
q�

nþ 1
þ 1

����
����: ð146Þ

For the metallic ribbon (N¼ 3pþ 2), the first conduction or valence band is

q1¼ 2pþ 2, the second one corresponds to q2¼ 2pþ 3 while the third subband

is q3¼ 2pþ 1. The same analysis for one of the semiconductor ribbons where

N¼ 3pþ 1 gives q1¼ 2pþ 1, q2¼ 2pþ 2, and q3¼ 2p, while for the second semicon-

ductor ribbon with N¼ 3p we have q1¼ 2pþ 1, q2¼ 2p, and q3¼ 2pþ 2 [425].

Therefore, the order of the subbands is changed with the modification of the width of

the armchair nanoribbon. Additional confirmation has been obtained in [423,428],

where localization of the lowest unoccupied molecular orbital (LUMO) and the

highest occupiedmolecular orbital (HOMO) were found to be a function of the ribbon

size. A good example that clearly shows the difference of the electron density

distribution of the LUMO and HOMO orbitals between the semiconductor (N¼ 7)

and the metallic (N¼ 8) cases is presented in Figure 86 for zero-dimensional graphene

flakes. According to the density distribution, the semiconductor behavior (N¼ 7)

occurs when the HOMO and LUMO are strongly localized at the opposite zigzag

edges. These localized states can be assigned to the q1¼ 2pþ 1 subbands (q¼ 5 if p¼ 2)

for N¼ 3p and N¼ 3pþ 1 armchair ribbons. For metallic ribbons (N¼ 3pþ 2)

assigned to q1¼ 2pþ 2 subband (q¼ 6 if p¼ 2) [425], the LUMO and HOMO are

delocalized (extended) states (see N¼ 8 in Figure 86), i.e. they are distributed over the

whole graphene surface. The electron density distribution of the HOMO and LUMO

orbitals for a one-dimensional armchair nanoribbon is also different when the system

is metallic (N¼ 3pþ 2) or semiconducting (N¼ 3pþ 1 or N¼ 3p) [428].
Clearly, the metallic or semiconductor states of graphene result from the ordering

of the electronic bands near the Fermi level. For the semiconductor behavior,

the HOMO and LUMO are formed by localized states belonging to the subband of

q1¼ 2pþ 1 (q¼ 5 if p¼ 2), while the delocalized states belonging to subband

of q1¼ 2pþ 2 are shifted deeper into the conduction and valence bands, thereby

Figure 86. The spatial projection of the LUMO and HOMO molecular orbitals plotted for
different zero-dimensional graphene nanoribbon: semiconductor (N¼ 7) and metallic (N¼ 8)
(Reprinted with permission from P. Shamella et al., Applied Physics Letters, 91, 042101, 2007
[423]. Copyright � (2007) by the American Institute of Physics.).
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becoming HOMO-2 and LUMOþ2 if N¼ 3p and HOMO-1 and LUMOþ1 if
N¼ 3pþ 1. Opposite behavior is observed for the metallic ribbon, where the HOMO
and LUMO are composed of the delocalized states q1¼ 2pþ 2, which replaces the
localized states by shifting them deeper into the conduction and valence bands. For
the metallic behavior, the crossing of the bands near the Fermi level is similar to that
of the bulk graphene, where the conduction and valence bands meet at the K points
in the Brillouin zone. However, for armchair nanoribbons, the strong confinement
effect increases the band gap for the semiconducting states (N¼ 3p, N¼ 3pþ 1) and
opens a gap for the metallic state (N¼ 3pþ 2). It should be mentioned that there is
another point of view for the increase of the gap with the reduction of the width of
the armchair nanoribbons. In [401] it was shown that the bond deformation which is
dominant at the edges is responsible for the appearance of a gap in metallic
nanoribbons (N¼ 3pþ 2) and its enhancement for nanoribbons in semiconductor
states (N¼ 3p, N¼ 3pþ 1). In a recent work [436], Rozhkov et al. noted that for the
metallic state the gap can be closed in nanoribbons of finite size through substitution
of the radicals passivating the armchair edges.

The influence of edge passivation on the gap has already been briefly discussed
(Figure 84) for armchair ribbons. There are different ways of passivating the carbon
atoms at the edges. The passivation by single hydrogen gives sp2 hybridization at the
edges, while passivation by two hydrogens leads to sp3 hybridization. The variation
of the percentage of the sp3-like bonds has been found to significantly change the
electronic properties of the armchair nanoribbon [428]. An increase in the proportion
of sp3-like bonds leads to an interplay between the metallic and semiconductor states.
Thus the metallic state of the armchair ribbon of width N¼ 8 becomes a
semiconductor state for sp3 proportion larger than 20%. The semiconductor state
N¼ 9 is found to be metallic if sp3 percentage is 
35%, while the semiconductor
state N¼ 10 is switched to the metallic state when the proportion of sp3-like bonds
is460%. The transition occurs as a result of band reorganization, i.e. the shift of the
subbands relative to each other along the energy scale. The electronic properties of
armchair nanoribbons are also found to affect the formation energy of the armchair
edges [403], a conclusion based on common oscillatory behavior of the formation
energy and band gap versus the width, N, of armchair ribbons.

Zigzag nanoribbons have been found to possess a direct band gap which also is
suppressed with increasing structure size [419,424]. However, the nature of the gap is
different from that of armchair nanoribbons (for details, see Section 7.4). The
HOMO and LUMO orbitals of the zigzag nanoribbon are formed by the edge states
localized at the zigzag edges. The ground state of the zigzag nanoribbon is the FM-A
state, characterized by ferromagnetic ordering of the spins of the localized states
along each zigzag edge but their antiparallel orientation between the edges. The
FM-A state has broken sublattice symmetry, which coupled with the destructive
interference between the spin-up and spin-down tails of the localized states at the
opposite zigzag edges leads to opening of a gap D0

z [414]. This gap decreases with
increasing width wz of zigzag ribbons (Figure 87) [414,419,424] due to the vanishing
of the confinement effect. The D1

z band of the edge states close to the zone boundary
is found to be highly confined, have dominant edge-state character and is insensitive
to the width wz. Therefore, the energy gap D1

z at the Brillouin zone is virtually
independent of the width when wz4 12 Å [419,424].
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Opening of a band gap in graphene induced by the confinement effect has been
confirmed experimentally [29,437–440]. The experiment [437] was carried out for
graphene nanoribbons fabricated from single sheets of graphene and contacted with
the Cr/Au metal electrodes. Two types of devices were designed: one contained many
parallel ribbons of varying width (P1–P4) while the second of uniform width and
varying orientation described by an angle � (D1–D2). The size of the band gap of
these devices was found to decrease with increasing nanoribbon width (Figure 88(a)).
The band gap was estimated through the dependence of the differential conductance
on the gate and bias voltage in the nonlinear response regime. The band gap size was
estimated from increasing conductance near the Dirac point with increasing
nanoribbon width. Fitting the data gives the dependence of the conductance G on
the width w as G¼ �(w�w0)/L, where � is the sheet conductivity, (w�w0) is
the active width and L¼2 mm is the uniform length. A fit of the experimental
data shows the following dependence of the band gap size on the nanoribbon

Figure 87. The dependence of the size of the direct band gap D0
z and energy splitting D1

z at
ka¼� (a is the unit cell size) on the width wz of the zigzag nanoribbon (Reprinted figure with
permission from Y.-W. Son et al., Physical Review Letters, 97, 216803, 2006 [419]. Copyright
� (2006) by the American Chemical Society.).

Figure 88. (a) The band gap size (Eg) as a function of nanoribbon width for six devices: four
(P1–P4) of the parallel type, which contain many parallel ribbons of varying width, and two
(D1,D2) devices having ribbons of uniform width and varying orientations described through
the relative angle � (Reprinted figure with permission from M.Y. Han et al., Physical Review
Letters, 98, 206805, 2007 [437]. Copyright � (2007) by the American Physical Society.). (b)
The band gap variation (Eg) as function of QDs size for the zigzag and armchair systems
(Reprinted figure with permission from K.A. Ritter et al., Nature Materials, 8, p. 235, 2009
[441]. Copyright � (2009) Nature Publishing Group.).
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width: Eg¼ �/(w�w*), where �¼ 0.2 eV � nm and w*¼ 16 nm. The conductance of
the nanoribbon is found to be suppressed not only by reduction of the nanoribbon
width, but also with a decrease in the temperature T. Similar measurements of the
size of the band gap in graphene dots was reported in [441] by using scanning
tunnelling spectroscopy. The graphene dots were labelled as armchair or zigzag
systems by the highest fraction of the edge type presented. The data are shown
in Figure 88(b). The confinement effect was found to be present in all the samples,
but the zigzag systems were transformed into the metallic state at a smaller lateral
dimension than that of the armchair systems. Therefore, the observed results have
confirmed the influence of the crystallographic orientation of the edges in nanoscale
graphene on its electronic properties and shown the metallic-like behavior of the
zigzag nanoribbons.

In summary, for armchair nanoribbons a gap is found to open due to the crucial
role of the edge effects which rearrange the subbands in the conduction and valence
bands with varying size of nanoribbons. For zigzag nanoribbons, the broken
sublattice symmetry resulting from antiferromagnetic spin ordering of the localized
states at the zigzag edges also opens a gap. In addition, for both types of graphene
nanoribbons, the quantum confinement is found to increase the gap, but an increase
of the size of nanoribbons leads to vanishing of the gap.

7.6. Graphene nanoribbons in an electric field

Graphene is a unique material, where the spin distribution at the zigzag edges creates
several metastable states energetically close to each other. The antiferromagnetic
state of zigzag nanoribbons for which spins align along the zigzag edges but have
opposite orientations between the two opposite zigzag edges, is energetically
favorable in comparison to the nonmagnetic state or the ferromagnetic state with the
same spin orientation between the zigzag edges [412,414]. Opposite zigzag edges
belong to different sublattices, and therefore, in the antiferromagnetic state the
spin-up state (�-spin state) is completely localized on the A sublattice, while the spin-
down state (�-spin state) is localized on the B sublattice. Moreover, because of the
strong localization of the electron density at the zigzag edges, the �-and �-spin states
localized on the opposite zigzag edges are spatially separated. An electric field Eext

applied along the armchair edges shifts the energy of the states localized on one
zigzag edge downwards and the opposite edge upward, thereby modifying the band
gap for different spin states. Therefore, the applied electric field shifts the bands in
such a way that if the occupied and unoccupied bands for one spin state move closer
in energy, the bands for another spin state will move apart [442]. Modification of the
band gap in an applied transverse electric field is presented in Figure 89. For zero
electric field (see the left panel in Figure 89), the �-and �-spin states are degenerate in
all bands, so the spin degeneracy is not lifted. The applied electric field strongly lifts
the bands corresponding to states localized on the opposite zigzag edges apart,
thereby increasing the band gap for the �-spin state and decreasing for the �-spin
state. Therefore, for a certain electric field that is large enough to close the gap of the
�-spin state, a half-metallic behavior is achieved. The critical electric field required to
close the gap for the �-spin state decreases as the nanoribbon width increases, as the
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potential difference between two opposite zigzag edges is proportional to the distance
between the zigzag edges. For nanoribbons with oxidized zigzag edges, the critical
electric field varies with the choice of oxidation scheme [443]. Moreover, the
oxidation stabilizes the state with antiferromagnetically ordered spins between the
zigzag edges. The possibility to control the gap through breaking of the inversion
symmetry by the potential from an external superlattice (e.g. by applying a gate
voltage) was also discussed in [444,445]. The band gap size is found to be affected by
the strength of the external potential and the lattice constant of the superlattice [444].

Figure 89. The influence of the transverse electric field on the band structure of zigzag
graphene nanoribbons. Left panel: no electric field (Eext¼ 0V/Å), middle panel:
Eext¼ 0.05V/Å and the right panel: Eext¼ 0.1V/Å. The gray color denotes the �-spin state,
while the black one – �-spin state. Inset: band structure in the range of E�EF5 50meV and
0.7� ka�, where the horizontal line is EF (Reprinted figure with permission from Y.-W.
Son et al., Nature, 444, p. 347, 2006 [442]. Copyright � with permission from Nature
Publishing Group.).

Figure 90. (a) Band gaps for the �- spin state (grey line) and the �-spin state (black line) as a
function of the electric field calculated within the DFT methods using three different
exchange-correlation functionals: LDA (triangles), BLYP (squares) and B3LYP (circles)
(Reprinted figure with permission from E. Rudberg et al., Nano Letters, 7, 2211, 2007 [446].
Copyright � (2007) by the American Chemical Society.). (b) The critical electric field Et

required to obtain the half-metallicity and the range of the electric field strength (from Et to
Etþ �E) to preserve the half-metallicity as a function of the nanoribbon size (n is the number
of the carbon cells along the zigzag edge). The simulation is performed with the B3LYP
functional (Reprinted with permission from E.-J. Kan et al., Applied Physics Letters, 91,
243116, 2007 [447]. Copyright � (2007) American Institute of Physics.).
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Interestingly, the size of the gap estimated by the DFT methods was found to
depend on the choice of the exchange-correlation functional [446]. For the B3LYP
functional the absence of the half-metallic regime in zigzag graphene nanoribbons was
reported even at high electric fields. Results show the closing of the band gap for the �-
and �-spin states, as the transverse electric field is applied are presented in Figure 90(a)
for three different exchange-correlation functionals: B3LYP, LDA and BLYP. The
data obtained within the hybrid B3LYP functional suggest that the condition when the
band gap for the �-spin state vanishes cannot be reached. First of all, at zero electric
field the band gaps for the �- and �-spin states are much larger than that obtained
within the LDA and BLYP functionals, thereby raising the value of the critical electric
field required to close the gap for the �-spin state. Moreover, at a high electric field
(0.8V/Å) the band gap of the �-spin state, which is not suppressed to zero, starts to
grow again. The band gap for the �-spin state also behaves differently at high electric
fields than that obtained with the LDA and BLYP functionals. Hence, at a field of
0.3V/Å, the band gap starts to decrease and for fields higher than 0.8V/Å, the gap for
both spin states has the same size. A study of the influence of the applied electric field
on the spin-density distribution has shown that in the middle of the ribbon the spin-
density is reduced significantly by the field in comparison to that at the edges.

However, several other theoretical works reported that the non-local exchange
correlation should not remove the half-metallicity in zigzag graphene nanoribbons
[447,448]. Using a hybrid B3LYP functional, Kan et al. [447], found a spin gap
asymmetry caused by the applied electric field, where the �-spin state is gapless.
The magnitude of the critical electric field required to transfer the system into a half-
metallic state was however larger (about 0.7V Å�1) than that obtained in [442] within
the local-density functional approximation (LDA), which is known to underestimate
the size of the band gap. The magnitude of the critical electric field Et decreases with
increasing nanoribbon size (Figure 90b). However, in a strong electric field the
half-metallicity is found to be destroyed due to the transition to a spin-unpolarized
state. Similar results suggesting that at high electric field the system is spin-unpolarized
were also reported in [443]. The non-local exchange correlation term (B3LYP
functional) was also shown to have negligible impact on the size of the band gap in an
electric field [411], but the critical electric field required to achieve half-metallicity was
of similar magnitude for different exchange-correlation functionals (about 0.2V Å�1).

Simulations of the zigzag nanoribbon in an electric field reported in [449] with the
�-orbital Hubbard model SCF theory, however, revealed that the gate-induced
charge carriers alter the charge distribution, spin configuration and total net spin
polarization. For graphene in its antiferromagnetic state, when the localized states
of opposite spin are located on the opposite zigzag edges, the gate-induced
charge carriers break the charge distribution symmetry around the ribbon center.
This leads to coupling of the charge density and spin polarization. Therefore, if the
non-colinear regime is allowed within the Hubbard model, the non-colinear spin
solution becomes energetically favorable, where spins localized on opposite edges are
no longer antiparallel.

For the armchair nanoribbons, the influence of the geometry of nanoribbons
on the suppression of the band gap by an electric field and the transition from
semiconductor to metallic behavior were investigated within the Peierls approxima-
tion [451]. It was found that the magnitude of the critical electric field required to
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close the band gap for the �-spin state can fluctuate in the range of 0.06–0.2V Å�1

depending on the geometry of the nanoribbon. In another investigation [452], the
transverse electric field applied across armchair nanoribbons was found to
dramatically change the electron bands and affect the longitudinal electronic
dispersion. Thus the Fermi velocity in metallic nanoribbons is found to be reduced
by the field and this leads to an increase in the density of states at the band center.
Moreover, the Fermi velocity and the effective mass were found to change sign in an
electric field, while the band gap was suppressed by the external field resulting
in extra plateaus in the conductance characteristics. The influence of the electric field
and the size of graphene on the band gap and the effective mass was also considered
in [427]. The magnitude of the effective mass grows with decreasing ribbon width,
whereas the sign of the effective mass is reversed in the electric field, similar to the
data in [452].

In summary, the external electric field applied to zigzag graphene nanoribbons
opens the possibility to induce half-metallicity in the ribbons which has enormous
potentials for application in spin-related electronic devices [48,450,453–464].

7.7. Nanoscale graphene

The band gap of nanoscale graphene with edges of arbitrary shape is found to vary
as a function of the edge size and shape [361,420,433,435,465–469]. For graphene
nanodots, the band gap deviation induced by the increasing width of the armchair
edges was observed [423,466], and was similar to that of graphene nanoribbons.
The amplitude of the energy gap oscillation with the length of the edges has been
found to be smaller than that for the infinite size ribbons [423,466], while the
periodicity of the oscillation was larger, i.e. the number of points between the
maxima and minima was near 3, instead of 1 for the nanoribbon. For nanoscale
graphene of rectangular shape, the deviation of the band gap with changing width
was found to depend on the chirality angle � [420,431]. The maximum amplitude of
the deviation was achieved for �¼ 0�, and this amplitude decreases with increasing �
[420]. For �¼ 23.4� the band gap is almost zero and independent of the nanoribbon
width.

For nanoscale graphene flakes of arbitrary shape, the edges are still characterized
by the stronger magnetic moment than the inner sites [470]. However, the applied
magnetic field changes the localization of spin density at the edges [361]. In a
magnetic field the electron density localized at the edges for the HOMO and LUMO
orbitals is shifted closer to the center of graphene dot. Hence for the graphene dot,
just as for the nanoribbon, the spin orientation of the localized states at the zigzag
edges are associated with the sublattice site. If the zigzag edges belong to two
different sublattices then, according to Lieb’s theorem [471], the spin-polarized states
at different edges exhibit opposite spin orientation [466,469,470,472]. For graphene
flakes with mixed edges, it is enough for the defect-free segment of the zigzag edge
to be greater than three or four repeat units to have a significant amount of
magnetization [470]. The average edge magnetization along all the edges grows with
decreasing proportion of the armchair edges and increasing proportion of zigzag
edges [470]. Therefore, an obvious way to increase the magnetization of graphene
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would be to design it with high density of zigzag edges [472–474]. The same rule
would apply for structures with mixed edges: the spin-polarized states localized on
the border carbon atoms at the zigzag edges will exhibit opposite spin orientation
if the carbon atoms belong to different sublattices. Therefore, if graphene has the
same amount of zigzag edges in A and B sublattices, the net spin density is zero.
Non-zero spin density of nanoscale graphene with high density of zigzag edges can
be achieved by increasing the number of zigzag edges belonging to one sublattice
(Figure 91) [472]. For triangular structures, sublattice A dominates at the edges over
the whole structure resulting in non-zero net spin. Such structures with high spin
states can open a new avenue in nanoscale spintronics.

The possibility to create multiple quantum well structures using repeated
junctions of armchair graphene nanoribbons was considered in [433,468]. By altering
the width and shape of the quantum well, it was shown that the fixed spin state
can be confined in the well, and this is a promising direction for engineering the
spintronics devices. The transmission coefficient though such devices shows resonant
peaks which can be assigned to electronic states localized in the quantum well.
Accurate understanding of the dependence of the electronic and magnetic properties
of nanoscale graphene on its edge shape is crucial for developing electronic devices
based on this system [475–482].

7.8. Bilayer graphene nanoribbons and the effects of edges

The effects of the arrangements of atoms at the edges of finite-sized graphene flakes
are well known in the case of the monolayer [391]. Tight-binding models predict
significantly different band gaps depending on the number of atoms across the width
of the ribbon (modulo 3), and the magnetic properties of zigzag and armchair edges
are also significantly different. This complexity carries over to the bilayer case, and
while there is currently no clear picture of the properties of bilayer ribbons and their
edges, we shall present the current state of knowledge of this topic.

Recently, it was reported [483] that chemical methods could manufacture
graphene nanoribbons with widths ranging from 50 nm to 510 nm with possibly
well-defined zigzag or armchair edges. Exfoliated graphene was placed in solution,
deposited on a substrate, and fashioned into field effect transistors. Figure 1 in [483]
shows several nanoribbons which the authors claim are two layers thick – i.e. they
are bilayer nanoribbons. Figure 92 shows the current–voltage characteristics for
two nanoribbons, and the authors claim that all their ribbons with width w510 nm

Figure 91. The structures of the nanoscale graphene characterized by the non-zero total
spin S. The closed and open circles denote the A and B sublattices, respectively (Reprinted
with permission from O.V. Yazyev et al., Nano Letters, 8, 766, 2008 [472]. Copyright � (2008)
by the American Chemical Society.).
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had an on-off ratio of better than 105. The band gaps extracted from these transport
data fitted the empirical form of EgðeVÞ ¼

0:8
WðnmÞ. However, these band gaps fall

between the theoretically predicted values for ribbons with zigzag and armchair
edges, and the precise structure of the edges of the flakes is not known.

From a theoretical point of view, the alignment of atoms at the edges of the
ribbon are a key factor in the determination of the ribbon’s electrical and magnetic
properties. As well as the zigzag and armchair terminations (which carry over their
definition from the monolayer), there are two alignments of atoms in the layers
which must be considered. They are shown in Figure 93 where the commonly-used
nomenclature of � and � alignments has been adopted. The distinguishing feature
of the two alignments is where the dimer bonds are positioned relative to the edge.
In the � alignment they constitute one part of the last row of atoms, while in the �
alignment they do not. Both tight-binding and DFT methods have been used to
address the electronic and magnetic properties of finite-sized bilayer graphene. There
are some difficulties in the approach of DFT methods, since traditional formulations

Figure 92. Room-temperature graphene nanoribbon FETs with high on–off ratios.
(a) Transfer characteristics (current versus gate voltage) for a w� 9 nm (thickness 
1.5 nm,

two layers) and channel length L 
 130 nm GNR with Pd contacts and Si backgate. (Inset)
AFM image of this device. Scale bar is 100 nm. (b) Current–voltage curves recorded under
various gate voltages for the device in (a). (c) Transfer characteristics for a w� 5 nm (thickness

1.5 nm, 
two layers) and channel length L
 210 nm GNR with Pd contacts. (Inset) The
AFM image of this device. Scale bar is 100 nm. (d) Current–voltage characteristics recorded
under various gate voltages for the device in (c) (Reprinted figure with permission from X. Li
et al., Science, 319, p. 1229, 2008 [483]. Copyright � (2008) The American Association for the
Advancement of Science.).
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do not account well for the van der Waals interactions between the layers. Lima [484]
accounted for this by adding a nonlocal potential in the Kohn–Sham equations, but
otherwise there is some doubt over the accuracy of DFT calculations. For example,
Sahu et al. [485] find that LDA and GGA make different predictions on the magnetic
properties of the lowest energy state in zigzag ribbons in the � alignment.

We shall present a summary of the effects of the finite system size on the band
structure, and the possible modes of magnetic ordering at the edges. Most work
has so far been done on the �-aligned zigzag edged system. Castro [486] has shown
the existence of two classes of edge state within the tight-binding model: those that
are localized in one layer only, and those that have wave function amplitude on both
layers. In a semi-infinite system, the edge states exist in the momentum range
2�/35 ka5 4�/3, as in the monolayer case. Figure 94(a) and (b) show two examples
of charge density for the edge of a semi-infinite bilayer, i.e. those derived by solving
the Schrödinger equation with zero eigenvalue. The penetration depth is of the order
of a few tens of lattice sites, ¼�1/ln j � 2 cos(ka/2)j. The energy spectrum of the
nanoribbon is shown in Figure 94(c) and (d) for a ribbon of width N¼ 400,
and �1¼ 0.2t. The four-fold degeneracy of the edge states (one per class per edge)
is clear from (d), and the overall sinusoidal dependence of the energy bands is evident
in (c). The lifting of the degeneracy is due to the overlap of the wave functions
from the two edges, which occurs where the penetration depth is highest, i.e. at
ka¼�2�/3. When an inter layer bias is applied, the degeneracy of the flat bands is
lifted. The two ‘monolayer’ edge states retain their flat dispersion, but split into
the conduction and valence bands. The two ‘bilayer’ edge states gain a dispersion,
and cross at �¼ 0 near the Dirac points. This crossing is justified by treating the inter

(a) (b)

Bl atom.
matching
without
Au atom

Dimer bond
at edge.

Figure 93. The two orientations of the bilayer ribbon: The � alignment (left), the � alignment
(right). The essential difference is that the � alignment has dimer bonds at the edge, while the
� alignment does not.

Figure 94. (a) Charge density for bilayer edge states at ka/2�¼ 0.36 and (b) ka/2�¼ 0.34.
(c) Energy spectrum for a bilayer ribbon with zigzag edges: N¼ 400, �1¼ 0.2�. (d) Zoom of (c)
(Reprinted figure with permission from E.V. Castro et al., Physical Review Letters, 100,
026802, 2008 [486]. Copyright � (2008) by the American Physical Society.).
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layer potential as a perturbation to the tight-binding model. Yao et al. [445] find the
same picture, but emphasize that the dispersive edge states have valley-dependent
velocity near the Dirac points, and that the behavior of edge states is determined by
the valley-dependent topological charges in the bulk.

Rhim et al. [487] introduced the trigonal warping to the analysis of �-aligned
zigzag bilayers (Figure 95). The effect of the Lifshitz transition, and the complex
structure of the Fermi surface at low-energy was taken into account, and it was
found that the nature of the edge states reflects this complexity. In particular,
a forbidden region is introduced for one of the edge states (between D and T2 in
Figure 95(b)), a feature unique to zigzag bilayer nanoribbons. The locations of the
position of the pockets in the Fermi surface agreed exactly with those calculated
for the bulk system [139]. Inclusion of the other next-nearest neighbor inter-layer
hopping parameter �4 lifted the electron–hole degeneracy and moves the Fermi
points back toward the Dirac point. Also, within the half-filled Hubbard model with
the Hartree–Fock approximation, and for realistic values of the Coulomb interac-
tion, ferromagnetic alignment of inter-layer spins is preferred along each edge.

Lima et al. [484] reported on the electronic, magnetic and structural properties
of both �- and �-aligned ribbons within the DFT framework. They assumed
hydrogen passivation, and established that the alignment of the edges is a significant
factor for the band structure (see Figure 96(a) and (b)). In the � alignment, the state
with antiferromagnetic order both along and between the edges was the lowest
energy state, although by an amount less than kB T. The �-aligned ground state was
qualitatively different because there is a strong attractive interaction between the
edge atoms of the two layers which produced a geometrical distortion of the lattice.
This allowed a gapped, non-magnetic ground state to form, in contrast to other
analysis. In fact, the �-alignment yielded a lower overall ground state energy than
the �-alignment. The inter-edge interaction can be split into a part which depends

Figure 95. (Colour online) (a) Projected band structure of the 2D graphite bilayer along the
direction of the zigzag axis. The boxed region near the Dirac point is magnified in the inset,
which shows the trigonal warping. D is the Dirac point at k¼ 2�/3 and three L points are the
Fermi points of three nearby pockets. (b) A schematic diagram of the zero-energy edge states
of a semi-infinite Z-BGNR near the Dirac point within the red box in (a). At "¼ 0, the two
eigenstates are drawn with different colors. Red (dark gray) for  � and yellow (pale gray) for

þ. D is the Dirac point while T1, T2 and the two warped bands reflect the effect of trigonal
warping of the graphite bilayer. The inset shows the energy dispersion curve obtained by a
numerical method for Z-BGNRs with finite widths N¼ 100, 200 (Reprinted figure with
permission from J.-W. Rhim et al., Journal of Physics: Condensed Matter, 20, p. 365202, 2008
[487]. Copyright � (2008) IOP Publishing Ltd.).
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on the ribbon width (and is therefore due to the edge), and a part which is constant

(and therefore due to the bulk). Binding energies per unit length fit Eb(w)¼ aþ bw,
with b¼�2.0 eV per atom for both alignments. However, a¼�0.26eVnm�1 for the

� alignment, and a¼þ0.13 eV nm�1 for the �-alignment, explaining the overall

energy reduction in the former case. The gap which opened in the �-aligned case was
dependent on the ribbon width, as shown in Figure 96(c). The reason for the peak is

the reordering of the electron localization between different sublattices. For narrow

ribbons, the top of the valence band is located on the A sublattice, whereas for larger
ribbons it is on the B sublattice, as with the Fermi level orbitals in the infinite system.

Sahu et al. [485] considered all four types of bilayer ribbon, and showed that the

band gaps in armchair ribbons are rather smaller than those in zigzag ribbons using
both a tight-binding theory and DFT. They linked the occurrence of edge magnetism

to the existence of flat bands, and derived a critical band gap above which applying

an interlayer bias will increase the gap, and below which will decrease it. They
commented on the sensitivity of the band gap and magnetic ordering to the details

of the exchange-correlation potential taken in their DFT.
Finally Lam et al. [488] showed DFT calculations of the band structure of

�-aligned armchair ribbons as a function of the ribbon width, interlayer spacing, and
concentration of dopants along the ribbon edges (Figure 97). They found that the

optimal interlayer distance is slightly smaller for bilayer ribbons that for the bulk

bilayer system. As in the monolayer case, they find a dependence of the band gap on
the ribbon width which is periodic in the number of atoms, as shown in Figure 97(a),

although the gaps in the bilayer ribbons are systematically smaller than those in the
monolayer ribbons. When the optimum interlayer distance is taken, ribbons with

N¼ 3pþ2 (where p is an integer) are found to have metallic behavior, whereas the

cases N¼ 3p and N¼ 3pþ 1 are semiconducting. The authors suggest that this
metallic behavior and the consistently smaller gaps are due to the electron–electron

interactions between layers at the edges which diminishes the edge effects and helps

to restore the bulk (metallic) behavior. If the edges are doped (either with n-type or
p-type dopants, e.g. nitrogen or boron, respectively), the Fermi level is shifted as

Figure 96. (a) Ground state of fully relaxed bilayer ZGNRs generated by stacking two (7,0)
monolayer ZGNRs. Below each band structure the geometry and local magnetization are
presented. (i) �-alignment. This state is nonmagnetic and presents a geometric distortion near
the edge. (ii) �-alignment. This state shows an antiferromagnetic in-layer and antiferromagnetic
inter-layer magnetic order. (b) Dependencies of the (i) energy gap and (ii) the lateral deviation
u¼ dCC� d of the width w (Reprinted figure with permission from M.P. Lima et al., Physical
Review B, 79, 153401, 2009 [484]. Copyright � (2009) by the American Physical Society.).
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shown in Figure 97(c). The effect of dopants is marginally smaller on the bilayer
ribbons than on the equivalent monolayers.

Huang et al. [489] showed using exact diagonalization of an explicit tight binding
model, that the application of an electric field across the width of the nanoribbon

Figure 97. (Colour online) (a) Energy gap as a function of the width of the bilayer AGNR for
interlayer distance 0.65nm (hollow points) and the respective optimum inter layer distance D
(solid points). Diamond, circle and square points represent the three different families of
N¼ 3p, 3pþ 1, 3pþ 2, respectively. Unlike the monolayer ribbons, the family of N¼ 3pþ 2
shows almost zero band gap for any width. The dot-dash lines show the three trends in the
monolayer AGNR which coincide with the bilayer trends when the interlayer spacing is large.
(b) Dependence of the band gap on D for the bilayer for N¼ 5, 6, 7. The electronic structure
depends strongly on its interlayer distance. (c) Fermi level vis-a-vis different boron (triangle)
and nitrogen (diamond) doping concentrations for monolayer (blue) and bilayer (red)
7-AGNRs. The dot-dash and dotted lines are the original Fermi level of the undoped mono-
and bilayer ribbons, respectively. As doping concentration increases, the band gap of all four
cases also decreases (Reprinted with permission from K.-T. Lam et al., Applied Physics
Letters, 92, 223106, 2008 [488]. Copyright � (2008) American Institute of Physics.).

Figure 98. The low-energy electronic structure of AB-stacked zigzag GNRs with 40 dimer
lines in the y direction, and infinite extent in the x direction. (a) Zero parallel field; (b) parallel
field Ey¼ 0.005 V Å�1; (c) Ey¼ 0.01V Å�1 (Reprinted with permission from Y.C. Huang
et al., Journal of Applied Physics, 104, 103714, 2008 [489]. Copyright � (2008) American
Institute of Physics.).
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(i.e. parallel to the plane of the ribbon) will also cause a gap to open in the low-
energy spectrum. In fact, this field can also cause subband crossings and
anticrossings, alter band features and lift the degeneracy of the flat bands, as
shown in Figure 98. The application of successively stronger fields moves the flat
bands away from the charge-neutrality point, lifts the degeneracy in both the
conduction and valence bands, and distorts their shape so that they are no longer
flat. The size of the band gap in zigzag nanoribbons is non-monotonic in the strength
of the parallel field, Ey, since the effect of application of stronger field is two-fold: it
moves the partially flat bands away from each other, but the lowest higher energy
(nearly parabolic) bands come down in energy. The two types of band cross at
approximated Ey¼ 0.006V Å�1, and the largest gap is Eg� 0.08�0� 0.24 eV. The
gaps are smaller in armchair ribbons, and there are some values of Ey for which the
gap closes completely. The authors also discussed the density of states for zigzag and
armchair ribbons.

The properties of bilayer ribbons placed in magnetic fields were investigated by
Nemec et al. [191], who computed the Hofstadtter butterflies for this material, and
Huang et al. [197], who not only examined the LLs and magneto-optical absorption
of wide bilayer nanoribbons and found many of the same features as exhibited in the
bulk system, but also included the second-order interlayer couplings. The existence
of bilayer-type edge states in few-layer graphene stacks has also been discussed [490].

8. Manipulation of the band gap and magnetic properties of graphene

Despite all the fascinating properties of graphene, such as relativistic massless
dispersion and high mobility, the gapless band structure makes its difficult to find a
direct application for graphene in field-effect transistors. However, an easy way to
avoid a gapless band structure is to decrease its size to the nanoscale, so that the
confinement effect induces a gap. The size of the gap is found to fluctuate depending
on the geometry of the edge of graphene, which makes it somewhat difficult to
manufacture graphene structures with the desired electronic properties because
of limitations imposed by current fabrication techniques. However, the problem of
the formation of sharp graphene edges with ideal atomic structures [491] has been
resolved by unzipping carbon nanotubes to graphene nanoribbons of controllable
size [492,493]. This is a significant breakthrough in the fabrication of graphene.
These techniques should enhance the interest in manipulation of the electronic
properties of graphene nanoribbons by external sources, such as edge modification,
adsorption of dopants and introduction of defects into the graphene lattice.

The gapless low-energy band structure is protected by the symmetry of the
hexagonal lattice, so any local changes in the lattice or an imbalance of electrons
of different spins can break the group or sublattice symmetries and induce a gap.
An example of how the hexagonal symmetry [433,434,494,495] can be broken could
be done by an external strain applied to the graphene lattice. A symmetrical strain
distribution will keep the hexagonal symmetry unchanged and band structure will
remain gapless [494]. An asymmetrical strain breaks the translation symmetry of the
lattice which opens a gap at the charge-neutrality point, that can be used to tune the
size of the gap [434,494]. Such a strain, depending on its strength and direction
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is found to move the band crossing away from the K point [434]. This influence
of uniaxial strain on the electronic properties of graphene has been observed
experimentally [495,496]. A significant red shift of the 2D and G bands in the Raman
spectra, which was attributed to the presence of a gap, has been obtained due to
stretching in one direction of the substrate with graphene deposited on top. The G
band splitting into two subbands as a result of symmetry breaking has indeed been
observed [496]. Good reversibility and an upward shift of the Raman peaks when the
strain is released was also indicated.

Practical application of the strain induced band gap would primarily be in
developing strain sensors. The most useful route to manipulate the electronic
properties of graphene would be inducing permanent changes in the graphene lattice,
which can break the symmetry and open a gap. The breaking of sublattice symmetry,
which can be done by unequal doping of graphene sublattices is one such possibility.
Very intensive research is now being undertaken in this direction, such as interaction
of the graphene layer with the substrate or adsorbates, the influence of defects
and dislocations, doping and functionalizing of the graphene lattice or edges. All
these possibilities are dealt with in the present section.

8.1. Interaction of graphene with a substrate

Experimental [35,140,497–501] and theoretical [383,502–510] studies of epitaxial
graphene have shown that the charge exchange between graphene and the substrate
directly influences the electronic properties of graphene. It is known that the
interaction between two layers of graphene is weak, but for the first layer epitaxially
grown on the substrate, the bonding to the substrate can induce structural changes
in the graphene lattice. These changes may lead to the formation of a buffer layer,
whose electronic properties are different from that of the isolated graphene sheets.
This issue has opened a wide discussion in this subfield.

There are two main theoretical models proposed for the description of the
interaction between the first graphene layer and the substrate. According to the
first model, the graphene layer epitaxially grown on the Si-terminated (0001) or
C-terminated (000�1) SiC substrates, forms strong covalent bonds with the substrate
[502,503] (Figure 99). The strong bonding occurs because the binding energy between
the layers is stronger than the elastic stress at the interfaces [503]. The two dangling

Figure 99. The buffer graphene layer on the SiC (0001) surface (Si-terminated) (a) side view
and (b) top view (Reprinted figure with permission from A. Mattausch and O. Pankratov,
Physical Review Letters, 99, 076802, 2007 [503]. Copyright � (2007) by the American Physical
Society.).
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states of the Si-terminated substrate form covalent bonds to the carbon atoms in
graphene, while the third dangling bond is unsaturated, thereby generating half-filled
metallic states close to the Fermi level. For the buffer layer on the C-terminated SiC
substrate, there are two bands resulting from splitting of the interface state into
single occupied and unoccupied states. The crossing of cone-shaped conduction
and valence bands of the buffer layer is shifted deeper into the valence band for
the Si-terminated case [502,503]. Therefore, the Fermi level of the first undeformed
graphene layer on a Si-terminated substrate is located at 0.4 eV above the Dirac
point [502], i.e. the graphene is n-doped, as was also reported in experimental work
[504]. The new conduction band formed by the SiC substrate overlaps with the upper
band of the buffer layer thereby making a wide energy gap, as presented in
Figure 100(a). For the C-terminated substrate, the Fermi level location corresponds
to the Dirac point and the first graphene layer remains undoped. The next layer for
both types of substrates exhibits pure graphene properties because of the weak
van der Waals interaction with the buffer layer. The electronic structure of this
undeformed layer is similar to those for the isolated graphene sheets (Figure 100(b)).
In particular, the dispersion of cone-shaped conduction and valence bands is
restored. Systems containing two undeformed graphene layers, due to weak
interaction between them, shows the properties of bilayer graphene (Figure 100(c)).

The second model assumes a different behavior of the buffer layer. According
to the second model, the first graphene layer interacts weakly with the substrate.
It was predicted that this model is appropriate for the C-terminated face of the SiC
surface, which was experimentally seen to have weaker coupling between the
graphene layer and SiC substrate [501] in comparison to the Si-terminated face.
This C-terminated face of the SiC surface was later theoretically predicted to exclude
formation of the buffer layer between graphene and the substrate [510]. Therefore,
in the absence of a buffer layer, the first layer would possess a graphene-like band
structure with the cone-shaped conduction and valence bands.

However, according to the experimental data obtained with angle-resolved
photo-emission spectroscopy (ARPES), different results for the interaction of the
epitaxially grown graphene with SiC substrate have been observed [35]. Formation of
a buffer layer has been confirmed and its properties were found to be different from
that of graphene, namely the � bands remain similar to that of graphene, while the �

Figure 100. The band structure of epitaxial graphene on the SiC substrate with Si-terminated
surface. (a) buffer layer of graphene on the surface, (b) single layer of graphene on the surface,
(c) double layer of graphene on the surface (Reprinted figure with permission from F. Varchon
et al., Physical Review Letters, 99, 126805, 2007 [502]. Copyright � (2007) by the American
Physical Society.).
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bands were modified due to hybridization with the dangling bonds from the
substrate. The unchanged � bands indicate the presence of a honeycomb lattice in
the buffer layer. The interaction of the buffer layer with the next layer was predicted
to break the sublattice symmetry structurally and open a gap of D 
0.26 eV [35].
It was observed for the buffer layer that only three Dirac cone replicas out of six
were intense and formed a small hexagon around each corner of the Brillouin zone,
thereby implying that the six-fold rotational symmetry of graphene was broken by
only three-fold. Breaking of the symmetry was seen only near the Dirac points (ED),
whereas near the Fermi level the symmetry was preserved. The first undeformed
graphene layer was also found to be n-type doped and ED was shifted relative to EF

by 
0.4 eV. Increasing the number of layers resulted in a decrease of the band gap.
Experimental data for single, double and triple layers of graphene are presented in
Figure 101. For bilayer and trilayer graphene, occurrence of the gap was attributed
to the breaking of the sublattice symmetry as a result of AB stacking between the
graphene layers. Increasing the number of layers causes a shift of ED towards EF,
so that the ED�EF is 
0.3 eV for the double layer and 
0.2 eV for the triple layer.
This shift has been attributed to the presence of an electric field formed by the
accumulation of charges at the graphene surface, and its reduction with thickness
was explained by an increase in distance between the surface layer and the interface.
The size of the gap and shift of the Fermi level were found to be independent of the
sample preparation and doping of the substrate. Epitaxial graphene thicker than five
layers behaves like bulk graphite. Theoretical computations [509] have confirmed
that for stacked graphene layers, if the A sublattice is stacked above the B sublattice,
the band gap will decrease with increasing number of layers. However, it is expected
that the appearance of AB stacking between the buffer and the first graphene layer
would be dependent on the type of substrate. For example, according to the
experimental data [498], growing graphene on the 4H-SiC sublattice does not provide
AB stacked films. Instead, the two graphene sheets are rotated relative to each other,
and this produces an electronic structure for multilayer graphene that is similar to an
isolated graphene sheet.

There are other points of views relating to the cause of the opening of a band gap
in graphene epitaxially grown on the SiC substrate [140,511]. The band gap observed

Figure 101. The intensity map obtained with ARPES for (a) single layer of graphene on
a 6H-SiC substrate (D
 0.26 eV), (b) double layer of graphene on a 4H-SiC substrate
(D
 0.14 eV), and (c) triple layer of graphene on a 6H-SiC substrate (D
 0.066 eV). Here ED is
the energy of the Dirac point (Reprinted figure with permission from S.Y. Zhou et al., Nature
Materials, 6, p. 770, 2007 [35]. Copyright � (2007) Nature Publishing Group.).
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in the experiment [140] was attributed to the breaking of graphene symmetry by the
built-in dipole field induced between the depleted SiC substrate and the charge
accumulated on the surface of the graphene layer. However in [511], the presence
of the Stone–Wales defects in the graphene layer was proposed to be responsible for
breaking of the symmetry. There, the gap is found to decrease with increasing
graphene thickness, which is in good agreement with experiments [35]. The influence
of the Fermi level position on the sample preparation and doping of the substrate
also was discussed [499,505]. An independence of the Fermi level position on the
doping of the substrate and the substrate type were indicated in experiments
performed with Raman spectroscopy [499]. Moreover, it was observed that graphene
on an SiC substrate shows a blue shift in the position of the G-peak, which has not
been observed for graphene transferred to a SiO2 substrate. However, in theoretical
works [505] it was claimed that for graphene on the GaAs substrate, the graphene
layer can be doped by doping the GaAs substrate.

The importance of the interaction of graphene with the substrate and its impact
on the electronic properties was also considered for other types of substrates.
Graphene supported on the Si/SiO2 substrate [497] was found to be doped.
As-prepared graphene on the Si/SiO2 substrate has shown to be p-doped, but after
the samples are exposed in vacuum for 20 h at 200�C they evolve to be n-doped.
It was proposed that the p-doping of the as-prepared samples is a result of its
interaction with the gas dissolved in the environment, while the n-type behavior
in the gas-free environment has been attributed to the intrinsic properties of
graphene on an Si/SiO2 substrate. The n-doping was explained to be a result of
electron donation to graphene from the surface states of SiO2, which are
energetically located just below the conduction band edge of graphene. However,
it was predicted theoretically that the electronic properties of graphene on an SiO2

substrate can depend on the surface polarity, which is controlled by the substrate
termination [506]. It was shown that the O-terminated SiO2 surface provides a strong
interaction between the carbon atoms of graphene and the oxygen atoms of the
substrate, which can significantly modify the band structure of graphene by
removing its cone-shaped bands. If the interaction of the oxygen atoms with one
carbon sublattice is stronger than with the other, the appearance of a graphene-like
band structure with broken sublattice symmetry and a small gap of 0.13 eV was
predicted. Moreover, the strong interaction of the O-terminated substrate with
graphene leads to p-doping of graphene. The Si-terminated SiO2 surface possessing
active dangling bonds has shown weak interaction with n-doped graphene. Opening
of a gap has also been predicted theoretically in [508]. Thus, the oxygen passivated
surface of the SiO2 substrate was found to make covalent bonds to the graphene
layer, significantly modifying the electronic properties of graphene by removing the
cone-shaped bands (similar to that of graphene on a SiC substrate) and forming a
gap. Hydrogen-passivation of the oxygen atoms on the SiO2 substrate removes the
covalent bonding between the substrate and the graphene layer and leads to a band
structure comparable to that of the isolated graphene sheet. Moreover, the type of
doping from the SiO2 substrate in [500] was suggested to depend on the difference
between the contact potentials of the graphene layer and the substrate because this
difference defines the direction of the dipole orientation generated due to the charge
exchange between graphene and the SiO2 substrate.
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There are some theoretical predictions for the substrate induced gap in graphene
on a boron nitride substrate [383,507]. For graphene on the N-terminated cubic
boron-nitride [507], the equivalence between the A and B sublattices of graphene is
broken which results in a gap. The effect occurs because the two sublattices are located
at different places on the boron-nitride lattice, and therefore have different chemical
environments. When the carbon atoms belonging to one sublattice are located on top
of the nitrogen atoms, the charge exchange between the dangling bonds of the nitrogen
and carbon atoms is significant in comparison to that between the carbon atoms of the
other sublattice and the boron atoms. The obtained band gap was 
0.13 eV and the
majority and minority spin bands were split. The electronic structure of graphene on a
boron nitride substrate was also found to be affected by the termination of the
substrate surface. Thus, for the B-terminated cubic boron-nitride the surface states on
substrate are energetically located higher than the Fermi level of graphene, thereby
having no effect on its properties. Similar results showing opening of a gap were
obtained for graphene on a hexagonal boron nitride substrate [383], whose band
structure is presented in Figure 102. The opening of a gap is attributed to the
inequivalence of the carbon sites belonging to different sublattices due to their
location: one carbon atom is placed on top of the boron atom, while the other in the
center of the boron-nitride ring. The band structure of graphene on a boron-nitride
substrate was found to be similar to that of the isolated graphene sheet, i.e. the
appearance of the Dirac cones around the K points has been predicted. However, the
dispersion around the Dirac points was quadratic (see inset in Figure 102b). The gap
decreases with increasing distance between graphene and the substrate.

When graphene is placed on a metal substrate, the cone-shaped electronic
structure of graphene is predicted to be preserved but the Fermi level is shifted
relative the Dirac point [512,513]. It was found that the shift can be in either
direction giving rise to either n-type or p-type doping. The shift of the Fermi level
DEF and difference of the workfunctions between the metal-graphene system and the

Figure 102. (a) Total density of states for a graphene layer on hexagonal boron nitride
substrate with contribution from carbon, boron and nitrogen atoms projected on the p states
in plane (thick gray line) and out of plane (narrow dark line). (b) Band structure of graphene
along the � K and KM directions in reciprocal space with band gap of 53meV, which is
magnified in inset (Reprinted figure with permission from G. Giovannetti et al., Physical
Review B, 76, 073103, 2007 [383]. Copyright � (2007) by the American Physical Society.).
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pure graphene sheet (W�WG) as a function of the graphene-metal separation is
presented in Figure 103. These results allowed the authors to predict that the charge
distribution at the graphene-metal interface depends on both the electron transfer
between the metal and graphene (that tends to bring the Fermi level of graphene and
the metal to equilibrium), and on the metal-graphene chemical interactions. It was
concluded that the shift of the Fermi level position is governed by the magnitude
of the charge transfer between the metal and graphene. The switch from p- to n-type
doping occurs as a result of the coincidence of the Fermi level and the Dirac point.
The critical value of the metal work function W(d)¼WGþDc(d ) corresponds to this
crossover point, where Dc(d) describes the short-range interactions resulting from
the overlap of the metal and graphene work functions. Moreover, the presence of the
metal-graphene interactions induces the asymmetry of the spin-up and spin-down
bands in graphene. For graphene on a Cu(111) substrate [383], the influence of the
substrate on the electronic properties was found to be rather weak. It was shown that
the inequivalence of the carbon sites belonging to different sublattices is not essential
for this substrate, thereby preserving the almost metallic behavior of graphene.

Therefore, we can conclude that the interaction of graphene with the substrate
modifies the electronic properties of graphene. The nonequivalent charge exchange
between the substrate or the buffer layer and the carbon atoms belonging to different
sublattices of graphene, the built-in dipole field induced due to the charge
accumulation in the system may break the symmetry of graphene, which results
in the formation of a gap. For graphene on a metal substrate the main effect
corresponds to doping of graphene as a result of charge exchange between the
substrate and graphene.

8.2. Doping of graphene through adsorption

8.2.1. Adsorption of non-metals on graphene: experimental results

Most organic molecules interact rather weakly with the surface of pure graphene
and because there is no covalent bonding to the surface, the interaction is mostly

Figure 103. (a) Shift of the Fermi level position (DEF) relative to the Dirac point with
increasing distance between graphene and the metal substrate. (b) Estimated difference of the
work function between the graphene-metal systems and a pure graphene sheet (W�WG) as a
function of the distance between graphene and the metal substrate. The dots and crosses are
results obtained from DFT-LDA calculations and solid lines – from phenomenological model
(Reprinted figure with permission from P.A. Khomyakov et al., Physical Review B, 79,
195425, 2009 [513]. Copyright � (2009) by the American Physical Society.).
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composed of repulsive interactions and van der Waals interactions [514]. However
after exposure to adsorbates, the intra-molecular charge transfer and re-hybridiza-
tion of the molecular orbitals of graphene due to the interaction with adsorbates
lead to a change in the electronic properties. Thus, the conductance of graphene is
sensitive to adsorption of gas molecules such as NO2, H2O, NH3 and CO [49].
According to Hall measurements, the NO2 and H2O behave as acceptors on the
graphene surface while NH3 and CO are donors. An increase in the concentration
of adsorbed molecules leads to an increase of the induced charge carriers in a single
layer of graphene, and step-like changes in its resistance. Moreover, experimental
investigation of the adsorption of gas molecules on graphene [515] has shown that
adsorption changes the electronic properties of graphene through breaking of its
symmetry and doping. A metal–insulator transition has been observed in graphene
after exposure to the NO2 gas. This transition was reversible since annealing of the
sample or exposure to high proton flux led to closing of the graphene bands.
The evolution of the band structure obtained with ARPES as a result of increasing
the concentration of NO2 on the graphene surface is presented in Figure 104.
The doping by adsorbed molecules shifts the energy bands of graphene. The Dirac
points ED for the as-grown sample is located 0.4 eV below the Fermi level,
i.e. the sample is n-doped. The adsorption of NO2 results in hole doping. Therefore,
an increase in the gas concentration shifts the whole band structure up converting

Figure 104. Evolution of the band structure of graphene for increasing concentration of
adsorbed NO2 gas molecules on its surface. (a) As-grown sample and (b–f ) various doping level
of graphene. The lower panel is the plot of the Dirac point energy ED as a function of carrier
concentration (Reprinted figure with permission from S.Y. Zhou et al., Physical Review Letters,
101, 086402, 2008 [515]. Copyright � (2008) by the American Physical Society.).
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the doping to p-type. The Fermi velocity and the electron–phonon coupling have
been found to be independent of doping.

The adsorption of aromatic molecules has been studied experimentally with
Raman spectroscopy and has been shown to break the symmetry of graphene
[516,517]. It was observed that monolayers of graphene sandwiched by aromatic
molecules resulted in splitting of the G-band [516]. This G-band splitting was
attributed to breaking of the six-fold symmetry of the graphene sheet and lifting of
the two-fold degeneracy of the optical phonon bands at the � point resulted from the
change of the spring constant induced by the adsorption. The adsorption of the aryl
group, which was shown to form a bond with the graphene surface [517], has been
found to increase significantly the electrical resistance of graphene. It has been
proposed that bonding between the adsorbates and the graphene surface changes the
sp2 hybridization to sp3, which induces a gap. Additionally, it was experimentally
found that the type of doping and its magnitude can be controlled by the type of
adsorbed molecules [518,519]. Moreover, the adsorption of dipolar molecules (such
as water) has been observed in [398] to provide p-type doping of graphene. Doping
by dipolar molecules also has been found to induce hysteresis in the field effect
behavior of graphene, i.e. a shift of the maximum of the resistance relating to zero
voltage arising from the dipolar nature of the adsorbates. Exposure in vacuum was
found to reduce the hysteresis effect for some dopants due to the removing of the
adsorbed molecules from the graphene surface, but additional heat treatment was
seen to be more effective in removing the adsorbed molecules. Moreover, an
exposure of graphene samples to NH3 gas converts the n-type graphene to p-type.

8.2.2. Adsorption of non-metals on graphene: theoretical approaches

Several theoretical groups have been working extensively on adsorption of different
molecules on graphene, which will be discussed below. The interaction between
adsorbed organic molecules and the graphene surface is found to be rather low [514].
The long-range electron correlation was found to be responsible for the attraction of
the adsorbed molecule to graphene. However in some cases, the adsorbed molecules
were found to be able to bond to the graphene surface [520–524].

The very first theoretical paper devoted to the adsorption of organic molecules on
the graphene surface was reported in [520] and demonstrated that adsorption can
induce magnetism in graphene. The C adatom on the surface of graphene was found
to make a bond to two neighboring carbon atoms, which resulted in disturbance of
the graphene planarity. The distribution of the four valence electrons of the adatom
is shown in Figure 105. There, two electrons participate in bonding with the
graphene surface (sp2 hybridization): one forms a dangling sp2 bond and the other
one is shared between the sp2 bond and � orbital, which is orthogonal to the surface.
This � orbital does not form a band, therefore remaining localized and spin-
polarized. It was shown that the magnetic moment of the adatom is non-zero only
for the equilibrium position, where its magnitude is 0.5
B.

In the graphene lattice, the carbon atoms having four valence electrons donate
three of them to form bonds with the nearest carbon atoms, while the fourth electron
participates in the formation of the � orbitals. Moreover, the fourth electron can
participate in interactions with an adsorbate, such as a F, O and N atom, which lack

430                   



one, two and three electrons in their outer electron shell, respectively [522]. The F atom
adsorbs above the carbon atom with an adsorption energy of �2.01 eV and inter-
atomic distance of 1.56 Å. The O atom adsorbs to two carbon atoms with adsorption
energy of �2.41 eV and inter-atomic distance of 1.46 Å. The electrons of the F and O
atoms are paired and possess no polarization. The adsorption of polarized molecules,
such as a N atom which has unpaired electrons, results in a magnetic moment of
0.84
B per N atom. The N atom adsorbs above the carbon atom with adsorption
energy of �0.88 eV and inter-atomic distance of 1.46 Å. The unsaturated electrons of
the N atom are spin polarized, inducing polarization of the electrons near the carbon
atoms in graphene. Moreover, the N atom is an electron acceptor and its adsorption
leads to p-type doping of graphene. The orbitals of the N atom generate a peak in the
DOS and create a strong acceptor level 0.39 eV below the Dirac point. The partially
occupied orbital of the N atom is split by the Hund-like exchange interaction in such a
way that the spin-up component is fully occupied and located 2.05 eV below the Dirac
point, while the spin-down component is unoccupied and located at 0.39 eV, thereby
producing strong acceptor behavior by theN atom. The P atom adsorbed on graphene
is also spin-polarized and exhibit a magnetic moment of 0.86
B [525].Moreover, the S
and P atoms has been found to make chemical bond to the carbon atoms in graphene
and for the S atom due to the strong hybridization between S 2p states and C 2p states
the band gap of 0.6 eV has been induced.

Theoretical investigations [521] do provide support to the experimental results,
where the gap was opened by adsorption [515,516]. In fact, CrO3 adsorbed on
graphene was found to act as an acceptor [521]. The alteration of the electronic
properties of graphene with CrO3 adsorption for several stable configurations of
CrO3 is presented in Figure 106. Orientation of the CrO3 molecule on the graphene
surface and its adsorption site are found to affect the efficiency of the charge transfer
between graphene and the adsorbate, thereby gradually modifying the properties of
graphene. The charge exchange between graphene and the CrO3 molecule was found
to lower the Fermi level and the graphene band. Charge transfer of 0.17�e shifts the
Fermi level by 0.69 eV, that of 0.11�e by 0.64 eV, and 0.20�e by 0.8 eV, as shown
in Figure 106(b–d), respectively. The binding of the CrO3 molecule to graphene
(Figure 106b) induces a gap of 0.12 eV at the Dirac point due to the breaking of the

Figure 105. (a) The spin density (e Å�3) of an adatom in its equilibrium position on the
graphene surface. (b) The bond orbitals through the adatom and two carbon atoms belonging
to graphene (Reprinted figure with permission from P.O. Lehtinen et al., Physical Review
Letters, 91, 017202, 2003 [520]. Copyright � (2003) by the American Physical Society.).
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sublattice symmetry. Another confirmation of the influence of the adsorbed
molecules on the band gap has been found in [526], where the adsorption of polar
molecules, such as NH3(CH)6CO2 and NH3(CH)10CO2 was shown to be able to
change the spin symmetric gap to be spin asymmetric. The modification of the gap
has been explained by the presence of an electric field induced by the adsorption
of polar molecules. It was also shown that induced spin-asymmetry can be controlled
by the modification of the dipole moment in the chain through changing the size
of the chain formed by the adsorbed molecules.

The interaction of the graphene surface with the adsorbed gas molecules, such as
NO2 and N2O4, is found to lead to paramagnetic or diamagnetic behavior,
depending on whether strong doping or no doping occurs, respectively [397]. The
diamagnetic N2O4 has no unpaired electrons, its HOMO is more than 3 eV below
the Fermi level of graphene and no charge transfer from N2O4 to graphene occurs.
However, the LUMO of the N2O4 molecule is localized near the Dirac point and can
be populated by the electrons from the graphene flake through thermal excitation,
thereby allowing the N2O4 to act as an acceptor. A paramagnetic adsorbate (such as
NO2) on the graphene surface possesses a partially occupied molecular orbital split
by the exchange interaction. As a result, its spin-up component is located 1.5 eV
below the Dirac point of graphene and is fully occupied, while the spin-down is
unoccupied and located 0.4 eV below the Dirac point, thereby producing strong
acceptor behavior in the NO2 molecule. It was assumed that for graphene exposed to
the NO2 gas, both NO2 and N2O4 components should participate in charge exchange

Figure 106. Influence of the adsorption of a CrO3 molecule and its orientation on the
graphene surface on the electronic properties of graphene: (a) pristine graphene, (b–d)
graphene with adsorbed molecules. The horizontal dashed line is the Fermi level. In (d) the
filled and dotted lines corresponds to the majority and minority of the spin levels, respectively
(Reprinted with permission from I. Zanella et al., Physical Review B, 77, 073404, 2008 [521].
Copyright � (2008) by the American Physical Society.).
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with the graphene surface, so that several acceptor levels would be induced in the
graphene band structure. One is far below the Dirac point, while second is close to it.

However, according to [527,528] not all paramagnetic molecules are strong
dopants. The paramagnetic NO2 molecule significantly dopes graphene with holes
(as was also seen in [397]). The spin-polarized DOS of the NO2 molecule is presented
in Figure 107(a). The LUMO of NO2 (6a1,#) was found to be located 0.3 eV below
the Dirac point, thereby providing large charge transfer from the graphene surface
to the NO2 molecule. The HOMO (6a1,") is located close to Dirac point and causes
the charge transfer in the opposite direction from the NO2 molecule to graphene.
The total charge transfer from graphene to the NO2 molecule lies in the range 0.89�e–
1.02�e depending on the orientation of the NO2 molecule. The magnetization of such
a system is 0.862
B. The NO molecule, which is also paramagnetic, acts as a weak
donor, providing a transfer of 0.005�e–0.018�e to graphene. The DOS for a NO
molecule on graphene is presented in Figure 107(b). In this system, the half-filled
HOMO is degenerate and located only 0.1 eV below the Dirac point of graphene.
Therefore, charge transfer from graphene to the NO molecule is insignificant and can
be compensated for by orbital mixing which causes charge transfer in the opposite
direction. In the same paper [527], adsorption of diamagnetic molecules, such as NH3

(donor) and CO (donor) was found to cause the low charge transfer between
graphene and the adsorbate. Similarly, the acceptor behavior of NO2 and donor
behavior of NH3 was seen in [529], while CO was found to be a weak acceptor and
NO a weak donor. The p-doping of graphene by NO2 molecules is also found in
[530], where a shift of the graphene bands occurs and the Dirac point is shifted by

0.2 eV above the Fermi level. Oxygen molecule was also found to be a possible
acceptor. In [531], tetracyanoethylene molecule was shown to act as electron
acceptor as well, converting graphene to p-type. The concentration of the adsorbed
tetracyanoethylene molecules has been shown to control the position of the Fermi
level relative to the Dirac point. The adsorption of an anion radical of
tetracyanoethylene was effective in inducing a spin density in graphene because of
the spin splitting and the partially filled �* orbitals of this anion radical.

The effect of interaction of a single water molecule with the graphene surface was
found to depend on the orientation of the water molecule [527]. In an energetically

Figure 107. (a) The spin-polarized DOS of NO2 on graphene where the inset is HOMO and
LUMO for NO2. (b) The spin-polarized DOS of NO on ghraphene, where insets are (c) the 5�
orbital and (d) the HOMO and LUMO (Reprinted figure with permission from O. Leenaerts
et al., Physical Review B, 77, 125416, 2008 [527]. Copyright � (2008) by the American Physical
Society.).
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favorable position of a water molecule placed on graphene (when one of the

hydrogen atom is located closest to the surface, thereby providing efficient electron

transfer from graphene to the water) it acts as an acceptor. However, if the oxygen

atom is located closest to the surface, the electron transfer is from the oxygen atom

to graphene so the molecule acts as a donor. When several water molecules are near

the graphene surface, they tend to build a cluster [532,533], where each water

molecule uses one of its hydrogen atoms to make a hydrogen bond with the oxygen

atom of the neighboring molecule. It was found in [532] such that a water cluster

tends to contain as many water molecules as possible, but this cluster has a weak

influence on the electronic properties of graphene. The impact of the water

adsorbates on the electronic properties of graphene has been found to be more

effective when graphene is placed on a defective SiO2 substrate [534] because the

dipole moments of adsorbates shift the defect states of the substrate according to

position of the conduction band of graphene thereby initiating doping.
Berashevich and Chakraborty [533] showed that adsorption of water molecules

on nanoscale graphene, where the edge states and the symmetry of the lattice play the

most important roles, and exhibit different effects on its electronic properties than

those observed in [532]. Here the water cluster makes a link to the graphene surface

through the oxygen atom of a single water molecule. The water link donates an

electron to graphene, while most of the water molecules in the cluster act as

acceptors. The water cluster, which is linked to the graphene surface somewhere close

to the center of the nanoscale graphene, unrolls in the direction of the armchair

edges, which are known to have lower energy than the zigzag edges [402,403].

The highest possible symmetry of pristine nanoscale graphene was found to be D2h

planar symmetry with an inversion center, which is a metastable state competing

with the state with C2v symmetry. The interaction of graphene with water molecules

and the charge transfer between them, which is unequal for the two sublattices, leads

to the breaking of the D2h symmetry and gives rise to a state with C2v symmetry.

The state with C2v symmetry is characterized by ferromagnetic ordering of the spin

states along the zigzag edges and antiferromagnetic ordering between the edges. This

enhances the gap in nanoscale graphene. The size of the gap is found to depend on

the efficiency of the charge transfer between graphene and the adsorbate. Thus,

alteration of the number of water molecules in the cluster changes the cluster

orientation relative to the graphene surface and therefore the charge exchange

between the adsorbate and graphene. This leads to a modification of the band gap

(Figure 108a). Moreover, because of the influence of the efficiency of the charge

exchange on the band gap, adsorption of different gas molecules on the graphene

surface induces band gaps of different sizes, as presented in Figure 108(b) for single

NH3, H2O, CO or HF molecules.
Opening of a band gap in monolayer and bilayer graphene has also been

demonstrated by adsorption of water molecules on the surface [535]. There, the

sublattice symmetry was broken due to the displacement of the carbon atoms

(namely the vertical distortion of the graphene lattice) as a result of interaction with

the adsorbed molecules. For monolayer graphene, the adsorption of water induces a

gap of 18meV, while ammonia opens a gap of 11meV. For bilayer graphene

(characterized by the parabolic bands near the charge neutrality point) a direct gap
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of 30meV was obtained for water adsorption and an indirect gap, located far from
the K point, of 42meV for ammonia.

Adsorption of gas molecules on the surface of a graphene ribbon with armchair-
shaped edges, where each armchair edge had a single unsaturated dangling bond
while the other dangling bonds are saturated with hydrogen, was studied in [523].
The dangling bonds at the armchair edges are chemically active, and the adsorbed
molecules prefer to bond to carbon atoms possessing a dangling bond. The
optimized structures of armchair nanoribbons with adsorbed gas molecules are
presented in Figure 109. The armchair nanoribbon is naturally in the semiconducting
state, but adsorption is found to change its electronic properties. Adsorption of CO
and NO molecules leads to the formation of impurity states in the band gap, thereby
decreasing its size. For a CO molecule adsorbed on graphene, two half-occupied
states are induced, while adsorption of NO induces non-localized, fully-occupied
states which are hybridized with states in the valence band. The adsorption of CO2

and O2 molecules leads to p-type doping. The band structure of graphene with an
adsorbed O2 molecule is presented in Figure 110(a). The impurity states induced by

Figure 108. The effect of adsorption of water and gas molecules on the energy of the HOMO
and LUMO orbitals of graphene. (a) The band gap for graphene for different numbers of
carbon rings along the zigzag edges, N¼ 3 (solid line) and N¼ 5 (dashed line). (b) The
alteration of the gap with the adsorption of different molecules on its surface. The pure
graphene due to the presence of the confinement effect is characterized by the band gap of
0.5 eV (from [533]).

Figure 109. Optimized structures of molecules adsorbed on armchair nanoribbon with single
unsaturated dangling bond: (a) CO, (b) NO, (c) NO2, (d) O2, (e) CO2 and (f) NH3 (Reprinted
with permission from B. Huang et al., The Journal of Physical Chemistry, C112, 13442, 2008
[523]. Copyright � (2008) by the American Chemical Society.).
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these molecules are localized near the valence band. These impurity states are strongly

localized and mainly contributed by the adsorbed molecules, therefore suggesting

insignificant enhancement of the conductance of graphene in an applied electric field.

Adsorption of a NH3 molecule significantly changes the electronic properties of

graphene by changing it to an n-type semiconductor, whose band structure is

presented in Figure 110(b). The transition to an n-type semiconductor occurs because

of the shift of the Fermi level into the conduction band. Moreover, the states near the

Fermi level are found to be created mainly by the carbon atoms, thereby suggesting a

significant enhancement of the conductance of graphene in the NH3 gas environment.

The n-doping of graphene by adsorption of NH3 molecules has received experimental

confirmation in [536,537], where the Dirac peak was found to be shifted after exposure

to NH3 gas. The possibility of chemical doping of graphene through adsorption was

also discussed in [538], where adsorption of organic complexes was found to induce n-

or p-type doping depending on the type of the adsorbates, due to the charge exchange

between them and the graphene surface.
Combination of several adsorbed molecules play important roles in the

formation of stable configurations of the molecules adsorbed on graphene. When

several molecules are adsorbed on the graphene surface, they are found to interact

with each other [539]. The interaction strength between two molecules is found to

diminish very slowly with increasing distance between them. The sign of the

interaction was shown to depend on the location of the adsorbed molecules relative

to the sublattice site: two molecules residing on the same sublattice repel each other

but they attract when on different sublattices. Another example is adsorption of

several hydrogen molecules on a boron-doped structure, which was found to form a

H dimer-like structure due to the interaction between hydrogen molecules [540].

Another interesting result is the adsorption of the phenyl group (C6H5), where the

armchair edges have shown higher reactivity than the zigzag edges [541]. The stability

of a C6H5 molecule adsorbed on the graphene surface is found to increase due to the

adsorption of a second C6H5 molecule. The possibility of manipulating the

interaction between aromatic compounds and the graphene surface by introducing

functional groups was proposed in [542].
Vacancy defects and dopants within the graphene sheet are predicted to attract

the adsorbed molecules as well [529,543–548]. In [545], Al-doped graphene sheets

Figure 110. The band structures and DOS of the armchair nanoribbon with adsorbed
molecules: (a) O2 and (b) NH3. The Fermi level is set to zero (Reprinted with permission from
B. Huang et al., The Journal of Physical Chemistry, C112, 13442, 2008 [523]. Copyright �
(2008) by the American Chemical Society.).

436                   



were shown to have a higher binding energy with H2CO molecule than for the
pristine graphene and occurrence of the orbital hybridization between the H2CO
molecule and the induced Al atom has been reported. Boron-doped graphene is
found to have significantly decreased the adsorption energy for hydrogen, due to the
electron deficiency [540,546]. Another example of the reduction of the binding energy
of the adsorbed molecules is the presence of the Stones–Wales defects or single
vacancy defect. The presence of defects initiates the bonding between a SH group
and the graphene surface [547], whereas pristine graphene has shown low reactivity
against the triol group. Similarly, graphene doped with B, N, Al or S is found to be
more reactive in binding with gas molecules whose adsorption was predicted
to modify the conductivity of graphene [548]. Moreover, since defects attract the
adsorbates, it was found in [544] that the adsorption of O2, H2 or N2 is able to
remove adatom defects from graphene.

The main effect of the adsorption of gas and organic molecules on the electronic
structure of graphene consists of doping of graphene as a result of charge exchange
between the adsorbate and the graphene surface. In cases when an unequal doping
of the two sublattices of graphene occurs, the adsorption is found to be capable of
breaking the symmetry of the lattice, thereby opening a band gap.

8.2.3. From graphene to graphane

It was predicted theoretically that adsorption of hydrogen atoms over the whole
graphene surface leads to formation of a two-dimensional hydrocarbon – graphane
[549]. Graphane, hydrogenated from both sides of the carbon plane has two main
conformations: a chair conformation where the carbon atoms belonging to different
sublattices are hydrogenated from different sides of the plane, and the boat
conformation for which the bonded hydrogen atoms alternate in pairs at the plane
sides. The lattice structures of these two conformations are different. In the chair
conformation all carbon bonds are of the same length (1.52 Å), while for the boat
conformation there are two types of carbon bonds with different lengths, one is

Figure 111. (a) The lattice structure of graphane in the chair conformation. (b) The band
structure and DOS of graphane in the chair conformation. The DOS is presented for s and p
symmetries (Reprinted figure with permission from J.O. Sofo et al., Physical Review B, 75,
153401, 2007 [549]. Copyright � (2007) by the American Physical Society.).
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1.52 Å and the other 1.56 Å. The chair conformation is more stable and the difference
in the binding energy between two conformations is 0.055 eV per atom. There is not
much of a difference in the electronic structure of each conformation, since they both
have a direct band gap of 3.5 eV (chair) and 3.7 eV (boat) at the � point (within the
GW approximation, the size of band gap of the chair conformation is 5.4 eV [550]).
The lattice structure, band structure and the density of the states for the chair
conformation are presented in Figure 111. The top of the valence band is mainly of p
symmetry and is doubly degenerate, thereby possessing two different effective
masses. Attaching a hydrogen atom to each carbon atom changes the hybridization
of the bonds from sp2 to sp3, and leads to opening of a gap as a result of the removal
of the conducting � bands. However for graphane nanoribbons, the size of the band
gap is found to slightly decrease [551] with increasing width of the nanoribbons.
Another theoretical investigation [552] predicted that for the chair conformation
covering of the graphane surface by hydrogen atoms most likely would not be
uniform, in particular the sequence of the up and down H atoms would be broken
(frustrated). In the ideal structure of the chair conformation for each side of the
graphene lattice, the hydrogen atoms are supposed to bond to carbon atoms
belonging to the same sublattice. Therefore, the H frustration forming the
uncorrelated H frustrated domains of significant percentage would induce the
in-plane dimensional shrinkages into the graphane lattice.

Experimentally it was shown that hydrogenation by the e-beam irradiation of
single- and double-layer graphene deposited on the Si wafer coated with SiO2 changes
the lattice structure of graphane [553]. The e-beam irradiation of graphene induces the
intense D band in the Raman spectra thus indicating the presence of sp3 distortion,
and its intensity gradually grows with increasing dose of e-beam irradiation. The
following intense laser excitation of the hydrogenated structure reduces the D band
intensity. Moreover, it was found that the hydrogenated graphene can be restored by
thermal annealing which disorbes the bound hydrogen atoms. It was found that near
the room temperature, the hydrogen atoms are more reactive to single-layer graphene
than that with a double layer. The effective reactivity of single-layer graphene was
explained by distortion, or a degree of freedom in the single layer, not present in a
double-layer graphene. The possibility of the reversible hole doping of hydrogenated
graphene by oxygen molecules has been indicated.

In a later experiment, opening of a gap with hydrogenation of the graphene
surface from one side was reported [280]. Treating the graphene surface with atomic
hydrogen, the behavior of graphene changed from the conducting to the insulating
state. In fact, the resistivity of graphene is increased by up to 100 times (Figure 112).
The characteristics of hydrogenated graphene were stable at room temperature
for many days. It was proposed that the deformation of the graphene lattice due to
the convex shape of the graphene surface stabilizes the hydrogenated graphene.
Further annealing of the sample restores the metallic behavior. However, both the
hydrogenated graphene and the restored metallic graphene were p-doped, while
as-prepared graphene was undoped. The changes in the characteristics of graphene
after annealing have been attributed to the presence of induced vacancies. Graphene
on SiO2 substrate hydrogenated from one side had the D peak (attributed to the
formation of C-H sp3 bonds) half that for hydrogenated free-standing graphene
membrane, thereby proving that membrane is hydrogenated from both sides.
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Influence of hydrogenation on the electronic and magnetic properties of
graphane has been recently investigated in several theoretical works [554–556].
H-vacancy in the graphane lattice generates a localized state characterized by
unpaired spin. Therefore, for several H-vacancy defects their spins can be
ferromagnetically or antiferromagnetically ordered. In [554], it was shown that
for the graphane sheet hydrogenated from one side the ferromagnetic ordering of the
spins of the localized states located on other side of the sheet occurs. The Curie
temperature has been estimated to be in a range between 278 and 417K. The size of
the band gap of such sheets is found to be 0.46 eV which is much smaller than that
for graphane, hydrogenated from both sides. The possibility to generate the magnetic
moment for graphane containing H-vacancy pockets has also been considered
in [555]. However, in [556] it was predicted that the ordering of the H-vacancy defects
located from one side of the graphane plane depends on its distribution over the
plane. It was found that only for the nearest location of the defects significant energy
gap between the states characterized by the ferromagnetic and antiferromagnetic
ordering is achievable. However, with increasing distance between the defects, the
energy difference decreases because the constructive contribution of the spin tails
of the localized states located on the same sublattice (considered for the graphene
lattice) to the total energy of the system diminishes. Moreover, for graphane
containing many vacancy defects on one side of the plane significant distortion of its
lattice is noticed and contribution of this distortion into the total energy is found
to be destructive for the energy difference between the states with ferro- and
antiferromagnetic spin ordering. For the H-vacancy defects distributed between two
sides of the graphane plane but located close to each other, the antiferromagnetic
ordering of their spins is found to be energetically preferable as a result of the
location of the localized states on different sublattices. The influence of the degree of
hydrogenation on the electronic properties also has been considered in [556].
Hydrogenation of the edges of the graphane sheet therefore plays an important role

Figure 112. Temperature dependence of the resistivity of pristine graphene (circles), the
hydrogenated graphene (squares) and graphene after annealing (triangles). The solid line is a
fit obtained from the hopping dependence exp½ðT0=TÞ

1
3�, where T0 is a parameter that depends

on gate voltage (Reprinted figure with permission from D.C. Elias et al., Science, 323, p. 610,
2009 [280]. Copyright � (2009) The American Association for Advancement of Science.).
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in defining the size of the gap. The gap is found to increase from 3.04 to 7.51 eV when
hybridization of the edges is changed from sp2 to sp3 type, which is performed by
hydrogenation of the edge carbon atoms by one or two hydrogen atoms, respectively.
The fluctuation of the size of the gap also takes place with changing the
concentration of the H-vacancy defects and their distribution between the sides
of the plane.

The interplay of pure graphene and hydrogenated graphene due to the different
size of their gaps has been shown to be a way to create periodic multi-quantum
systems [557] that has the potential for application in nanoelectronic devices. The
possibility of tuning the gap by functionalization of the entire graphene surface has
been also discussed elsewhere [558,559]. It was shown that the gap can be changed
between 0.64 and 3 eV by using various functional groups. For example, bonding
of lithium atoms to graphene has been shown to disrupt the planarity of the
graphene lattice and gives rise to the metallic behavior in graphene [560]. Another
way to manipulate the size of the bandgap in graphane is via the elastic strain [561].
The stiffness of graphane is less (27%) than that of graphene due to the modification
of its lattice (hybridization and planarity) induced by bonding of the carbon atoms
with the hydrogen atoms. The strain (�) applied in the elastic range significantly
modifies the gap. For example, for a strain ranging from 0.0 to 
0.13 the gap grows
from 5.5 to 6.5 eV (in the G0W0 approximation), but for higher values of strain the
gap decreases. For �4 0.3 it drops down to 2.0 eV.

8.2.4. Adsorption of metal atoms on graphene: experimental results

The adsorption of metal atoms on the graphene surface has been extensively studied
by several experimental groups [140,255,504,562–564]. In investigations [564]
involving ARPES, the adsorption of Na atoms was found to change the band
structure of graphene (degradation of the linear � band and developing new
parabolic band), while in others [140,255,504] the adsorption of the adatoms induced
doping of graphene. The adsorption of potassium on the surface of bilayer graphene
grown on a SiC substrate was considered elsewhere [140]. It was declared that the
symmetry of bilayer graphene in an as-prepared sample was broken due to the dipole
field created between the depleted SiC and the charge accumulated on the surface of
the top layer. The adsorption initiated electron exchange between the lone valence
electron in potassium and the surface layer of graphene, thereby altering the
concentration of the accumulated charge on the surface. This led to modification of
the induced dipole field, which controls the size of the gap through the symmetry
breaking process. The alteration of the band structure of bilayer graphene by
potassium adsorption is presented in Figure 113. Low concentration of potassium on
the graphene surface results in a band gap while increasing its concentration leads to
reduction of the gap and finally closing of the gap. When the contribution of doping
from the adsorbates exceeds the impact from the built-in dipole field, the gap is
reopened. Therefore, when the number of electrons per unit cell transferred
from potassium to graphene is 0.0125�e, the built-in dipole field of the sample is
neutralized, which closes the gap. Extra doping induces a field in the direction
opposite to the built-in dipole field. Therefore, if charge transfer of 0.0125�e is
considered to be non-doped because of suppression of the intrinsic dipole field
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(see the crossing of the conduction and valence band of graphene in the middle panel
in Figure 113), then relative to this case graphene in the left panel is p-doped, while
that in the right panel is n-doped. Therefore, the built-in dipole field is acting as an
external electric field which shifts the bands relative to the Fermi level and allows one
to regulate the doping of graphene. Similar experiments have been performed for a
single graphene layer on a n-type 6H-SiC substrate [255], and n-type doping by
potassium adsorption has been obtained: the doping shifted the bands to higher
binding energy. Moreover, the bands were found to be strongly renormalized near
the Dirac point and the Fermi level, due to contributions from electron–electron,
electron–phonon and electron–plasmon couplings.

The doping of epitaxial graphene on SiC substrate through adsorption of Bi and
Sb alkali atoms has been performed experimentally in [504]. The evolution of the
band structure of graphene due to its p-doping by alkali atoms is presented in
Figure 114. Epitaxially grown graphene on a SiC substrate is naturally n-doped
and its Dirac point is shifted into the valence band by 
420meV, as shown in

Figure 113. Alteration of the band structure of bilayer graphene by the potassium adsorption.
The left picture in each panel are the experimental results, the right are the theoretical
estimations obtained from tight-binding calculations. The number of electrons per unit cell
transferred from a lone pair of a valence electron of potassium to the graphene surface is
indicated at the top of the panels (Reprinted figure with permission from T. Ohta et al.,
Science, 313, p. 951, 2006 [140]. Copyright � (2006) The American Association for the
Advancement of Science.).

Figure 114. The experimentally obtained band structure of the epitaxial graphene on the SiC
substrate doped by the adsorbed Bi atoms. Light and dark areas correspond to the low and
high photoelectron current, respectively (Reprinted with permission from I. Gierz et al., Nano
Letters, 8, 4603, 2008 [504]. Copyright � (2008) by the American Chemical Society).

                 441



Figure 114(a). The linear dispersion of the conduction and valence bands close to the

Dirac point has been indicated. The doping shifts the Dirac point toward the Fermi

level, which corresponds to p-type doping, while the linear dispersion of the bands

remains unchanged. The shift of the Dirac point and the change of the free carrier

density (nF) as a function of the number of adatoms on the graphene surface is

presented in Figure 115. It was observed that the Dirac point approaches the Fermi

level and the free charge carrier density is reduced with increasing adatom coverage.

For an element with higher electron affinity such as a gold, p-type doping was

also obtained and for two gold atoms per graphene the shift of the Dirac point in

comparison to pristine graphene was found to be 520meV. The bands of graphene

doped by gold are narrower than when doped by Bi or Sb.
In an experiment [565] where graphene was in contact with In, a shift of

�400meV of the Fermi level relative to the Dirac point, i.e. n-type doping, has been

observed. The doping was also assigned to the charge transfer between the In contact

and graphene. The shift of the Dirac point due to the increased coverage by adsorbed

atoms such as Ti, Fe and Pt, was also seen in [566]. There, the adsorption of Ti atoms

in the low coverage regime has shown a significant shift of the minimum in the gate-

dependent conductivity towards negative gate voltage indicating the n-type doping of

graphene. The shift induced by Ti adatoms was larger than that induced by Fe and Pt

adatoms. The ineffective n-type doping of graphene by Pt atoms instead of the

expected p-type doping predicted from the large difference of the work functions of

Pt and graphene led to the conclusion that in addition to the work function

difference, the interfacial dipole plays a crucial role in doping. Doping of the

graphene layer and the asymmetric behavior of its spins induced by the metal

adsorption have also been found in theoretical works [567–569]. Spin asymmetry has

been attributed to the Coulomb potential [570], which can break the particle–hole

symmetry under specific conditions.
The adsorption of Au and Pt atoms and their behavior on the graphene surface

have been investigated in another experiment [562]. It was observed that metal atoms

Figure 115. The alteration of (a) the position of the Dirac point ED and (b) the free charge
density nF due to doping of graphene by the Bi and Sb atoms. Solid line – theoretical
estimation is from ED ¼ �

ffiffiffi
�
p

�h�F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0 �Nh

p
, where the Fermi velocity �h�F¼ 6.73 eVÅ was

defined experimentally, N0 and Nh are the numbers of the electrons in the conduction bands
and the holes doped into graphene, respectively. The concentration of the free charge carriers
were found as nF¼ (kF)

2�, where kF is the Fermi wave vector (Reprinted with permission from
I. Gierz et al., Nano Letters, 8, 4603, 2008 [504]. Copyright � (2008) by the American
Chemical Society.).
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tend to replace carbon atoms and can reside on single or multiple vacancies. Due to
the attractive interaction between the metal atoms, they migrate to form clusters
characterized by an unstable structure. It was also concluded based on magnitude
of the activation energy for the in-plane migration (around 2.5 eV) that Au and Pt
atoms can make covalent bonds with the carbon atoms. In another experiment [563],
the effective dispersion of the gold nanoparticles on the graphene surface in the
solution of gold and graphene has been obtained. Theoretically, it was shown that
the gold–gold interaction is much stronger than the gold–carbon interactions
[571,572], which explains why the formation of gold clusters occurs. The enhance-
ment of the stability of the Pt and Au clusters on the graphene surface by induction
of a carbon vacancy has been reported in a theoretical work [573]. Moreover, the
unique influence of adsorption of the AunPtn clusters on the size of the band gap has
been obtained theoretically in [574]. The cluster composition has been found to
define whether graphene shows semiconductor or metallic behavior. In fact, Au,
AuPt and Au3Pt3 on the graphene surface provide charge transfer from graphene to
the clusters generating a metallic band structure. For Au on graphene, the spin-up
and spin-down bands overlap exactly, producing a gapless band structure, while for
AuPt and Au3Pt3 clusters the spin degeneracy is lifted and half-metallicity occurs.
The Pt and Au2Pt2 clusters act as charge donors and induce a semiconductor band
gap. In another theoretical work [575], adsorption of the Au38 nanoparticles has also
been seen to make charge exchange with the graphene surface. Moreover, adsorption
modified the electronic structure of originally gapless graphene causing mini-gaps
and the formation of new Dirac points. For a moderate coverage of the graphene
surface by the nanoparticles (�0.2 nm�2), the periodic deformation of the graphene
lattice and consequence opening of the gap of the few tens ofmeV was also observed.

8.2.5. Adsorption of metal atoms on graphene: theoretical approaches

Alteration of the electronic structure of graphene due to adsorption of metals has
been extensively studied theoretically as well. The deposition of a Ca atom on the

Figure 116. (a) The band diagram of the CaC6 monolayer (solid line) plotted in the Brillouin
zone of graphene (dashed line). (b) The influence of doping on the Fermi surface of the CaC6

monolayer. Circles are the theoretical data from [576], where circle size is proportional to the
electron–phonon coupling magnitude. Square and diamonds are the experimental results
obtained in [577]. (Reprinted figure with permission fromM. Calandra and F. Mauri, Physical
Review B, 76, 161406, 2007 [576]. Copyright � (2007) by the American Chemical Society.)
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surface of pristine graphene with formation of the CaC6 stoichiometry was
considered in [576]. There, the interaction between the Ca atom and graphene
modified the electronic properties of graphene by inducing an impurity band and
opening a gap (Figure 116). The induced Ca band was significantly hybridized with
the �* states of the carbon atoms which resulted in nonlinearity of this �* band.
An increase in the charge transfer from the Ca atom to graphene has been shown to
influence the band structure (Figure 116b).

When metal atoms are adsorbed on the graphene surface, the dependence of the
charge transfer between the adsorbate and graphene on the work function shift [568]
is similar to that for graphene on a metallic substrate [512,513]. It was found that
metal atoms of groups I–III are strongly bounded to the graphene surface when they
are localized above the center of a graphene hexagon [568]. The distortion of the
graphene surface and the subsequent alteration of the electronic structure of
graphene induced by the adsorption of metal atoms of this group is minimal, whereas
both the charge transfer and the work-function shift are found to be significant.
Titanium and iron atoms make covalent bonds with the graphene surface, and their
formation is found to depend on the position of the atoms relative to the graphene
cells, which is consistent with other investigations [578]. The strongest binding is still
obtained when these atoms are positioned in the middle of the graphene hexagon
[568]. Due to the covalent bonding, strong hybridization of the electronic structures
of Ti and Fe metals on the graphene surface is observed. Pd, Au and Sn atoms on
graphene have been found to induce significant distortion into the graphene lattice
and predicted to change the sp2 hybridization to more covalently reactive sp3 type.
Moreover, the diffusion of these atoms along the hexagonal bond network is
possible, and for Au and Sn atoms the diffusion barrier was very small. In [579],
it was found that for graphene-metal contacts, metals such as Sc, Ca, Co, Ni and Ti,
which have the 3d orbitals located around the Fermi level, can make a strong
chemical bond to graphene. The chemical contact of Li and K atoms with graphene
may occur via ionic bonding, while Au and Cu are expected to interact weakly with
graphene. Therefore, the strength of the chemical interactions defines the width and
height of the potential barrier at the metal–graphene interface thereby controlling the
transport properties of contacts and the conductivity is predicted to be highest for
the Ti–graphene contact for which the chemical interactions are strongest.

For a Cu atom on the graphene surface, the most stable configuration was found
to be when the Cu atom was placed directly above a carbon atom, while for a Cu
dimer it was when the dimer was above a carbon bond and perpendicular to the
graphene surface [580]. Moreover, the electronic structure of graphene was different
depending on whether a single Cu atom or a dimer had been adsorbed onto the
graphene surface. A single Cu atom has been found to induce a magnetic moment
into the adsorbate–graphene system due to the unsaturated s-electrons of Cu atom.
For adsorption of transition metal atoms such as Fe and Ti, the most stable
configuration is above the center of a graphene hexagon [581]. The Fe atoms are
found to preferentially form a cluster, while Ti atoms cover the graphene surface
uniformly. Moreover, increase of the concentration of the transition metals on the
graphene surface was found to change the binding energy of the adsorbate. However
in experimental work [566], the tendency to form a cluster have been seen for several
transition metals, such as Ti, Fe and Pt. The possibility to initiate the transition of a

444                   



semiconducting armchair ribbon into a metal characterized by ferromagnetic

properties and a large magnetic moment has been obtained with adsorption of Mg

and B atoms [582].
Clustered coverage is favorable over homogeneous distribution for Zr atoms on

the graphene surface [583], because the Zr–Zr bond is stronger than that of Zn–C.

The Zr atoms formed bonds to graphene and their binding energy was found to

depend on the Zr/C coverage ratio. Moreover, the study indicated that Zr and Zr3
clusters on graphene undergo diffusion at room temperature, and that the diffusion

barrier for the Zr3 cluster is lower than for a single Zr atom. It was proposed that this

diffusion is responsible for clustering of the Zr atoms. It was shown that the charge

transfer from Zr atoms to graphene decreases as the Zr/C coverage ration increases

and saturates at Zr/C ration 
0.375. Moreover, the Zr/graphene system was spin-

polarized and it was concluded that for all configurations of the Zr atoms on

the graphene surface the spin-polarization is provided by 4d orbitals of zirconium.

The magnitude of the local spin polarization was around 2
B.
According to theoretical investigations performed in [584], the binding of alkali

and alkaline-earth metal atoms above the center of the graphene hexagon was also

found to be energetically favorable than that directly above the carbon atoms. The

adsorption energy was found to be affected by the ionization energy, the radius of the

metal ions, and the amount of charge transfer between the adsorbates and the

graphene surface. Thus, adsorption was found to be possible if the difference between

the change of the electrostatic energy after the charge transfer between the adsorbates

Figure 117. (a) The adsorption energy Ead of the metal atoms as a function of their position
on the surface of the zigzag nanoribbons in (c). (b) The magnetic moment induced by the
adsorption of metal at various graphene sites numerated in (c) (Reprinted figure with
permission from S.-M. Choi and S.-H. Jhi, Physical Review Letters, 101, 266105, 2008 [584].
Copyright � (2008) by the American Physical Society.).
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and graphene was larger than the difference between the metal ionization energy and
the work function of graphene. For metals which did not meet this condition, such as
Be and Mg, the adsorption onto the graphene surface is not possible because the
binding energy is zero. The adsorption energy is also found to vary depending on the
lattice site, i.e. the position of the adsorbates in respect to the zigzag edges of graphene,
as presented in Figure 117(a). The strongest binding is obtained for the edges of the
zigzag nanoribbons because the electrostatic interactions between positively charged
metal atoms and the zigzag edges are strongest in this case. Even for a Be atom, which
cannot be adsorbed in the center of the graphene sheet, the binding energy is nonzero
at a zigzag edge. Transfer of an electron from the metal atom to graphene creates a
non-zero magnetic moment and its magnitude also depends on the lattice site (Figure
117b). If Li, Na or K atoms are adsorbed at the edges, the charge transfer from the
metal to graphene results in a net magnetic moment of �
B because the donated
electron occupies a single spin state localized on this edge. Therefore, in the case of Li,
Na, K adsorbed at the center of the graphene structure, the transferred electron
occupies both spin states equally thereby inducing no change in the magnetic moment
of graphene. Other metal atoms placed close to the edges, such as Ca and Be atoms,
can donate about 1.33�e which will occupy one spin state fully and the other partially,
thereby generating the net magnetic moment of about �0.66
B. At the center of the
graphene structure, these metals can donate about 1.0�e, equally distributed between
both spin states, thereby leaving one electron on the metal atom, which is responsible
for a net magnetic moment
B of the graphene–metal system. Moving the metal atom
from one edge to the other, flips the spin orientation of the electrons in the metal atom
due to their interaction with a certain spin state at the zigzag edge, creating hysteresis.
The variation of the adsorption energy and the magnetic moment for different metals
has been shown to be useful for developing spin-valve devices, where the position of
the adsorbed metal on the graphene surface and magnetic moment induced by
adsorption can be controlled by an external electric field. The dependence of the
adsorption energy, net magnetic moment, and the electronic structure of the
graphene–metal systems on the location of the adsorbed molecule have been also
investigated in [585] for aNi atom adsorbed on the graphene surface. It was also found
that at the zigzag edges the Ni atom forms more stable configuration than that in the
middle of the ribbon.

A systematic first-principles study of metal atoms adsorbed on pristine graphene
and graphene with a defect, such as a single vacancy (SV) or a double vacancy (DV),
was reported in [586]. For metal atoms adsorbed on pristine graphene, the binding
energy is 0.2–1.5 eV and the barrier for migration of the metals along the surface is in
the range of 0.2–0.8 eV. Therefore at room temperature, the adsorbed atom would
rather migrate along the graphene surface and the magnetic moment induced by the
adsorption would be unstable, making it difficult to use adsorption for manufactur-
ing a graphene-based Kondo system. The introduction of a vacancy in the graphene
lattice significantly improves the metal adsorption, changing the binding energy up
to 
�7 eV, which would prevent the adsorbed atom from moving away from the
vacancy. The calculated results of the magnetic moment and the binding energy of a
metal atom adsorbed on graphene containing single and double vacancies are
presented in Figure 118. For most metals, the bonding with the graphene surface is
strong thereby creating a hybridized state. This induces a small dispersion into the
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bands, which appears close to the Fermi energy and below. The M@DV complexes
(metal–graphene system with the double vacancy) are found to be magnetic for all
transition metals from V to Co. The larger ‘hole’ created by a double vacancy was
suggested to cause the weaker interaction of the impurity atom with the ligand bonds
leading to the higher spin state. In [587] it was also shown that adsorption of metals
and small metallic structures can initiate the formation of mono- and bivacancies
in the graphene lattice, thereby changing its electronic structure. The formation
energy for these vacancies are found to be reduced due to the presence of the
transition metal impurities, while a gold impurity almost did not affect the
characteristics of the vacancies.

The effect of interaction of the adsorbed metal ions with the zigzag edges
terminated by fluorine has been used in [588] to control the migration of the Li ions
along the graphene surface. It was shown that at room temperature (
300 K) Li ions
would migrate along the graphene surface without approaching the edges because
of the repulsive interaction with the positive charge of the C–F carbon bond, whereas
at higher temperature the Li ion can move freely near the edge region. The possibility
to control the magnetic moment of the graphene with adsorbed metal atoms by the
electric field has been discussed in [589]. There it was shown that an applied electric
field can induce a shift of the chemical potential, thereby moving the magnetic field
created by the adsorbates in the vertical direction.

8.3. Lattice defects

The interest in defects in the graphene lattice as a source of magnetization was
triggered by an experimental work [590] where proton irradiation with energy
2.25MeV was found to induce magnetism in highly oriented pyrolytic graphite

Figure 118. (a) The magnetic moment of the graphene sheet with the adsorbed metal atoms
and (b) the binding energies of the metals. For both cases, squares corresponds to the case
of graphene containing a single vacancy (SV), white triangle – to a double vacancy (DV).
The M@SV and M@DV denote the metal-graphene system with SV and DV, respectively
(Reprinted figure with permission from A.V. Krasheninnikov et al., Physical Review Letters,
102, 126807, 2009 [586]. Copyright � (2009) by the American Physical Society.).
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samples. The magnetic moment of the pyrolytic graphite on a Si substrate has been
measured, and the results obtained after subtraction of the substrate contribution are
displayed in Figure 119. Because irradiation has been performed in several steps, a
clear increase of the magnetic moment within the ferromagnetic loop with each step
of the irradiation was observed (Figure 119). The authors came to the conclusion
that the appearance of the magnetism after proton irradiation is related to magnetic
ordering which is stable at room temperature, and not to the contribution from
magnetic impurities. In another experiment [591], the electron-beam irradiation
resulted in the appearance of a strong disorder band in the Raman spectrum of the
single graphene layer. This was attributed to the damage to the graphene lattice
caused by the radiation. Room-temperature ferromagnetism of graphene sheets has
also been obtained [592]. There, the magnetization is believed to be induced by
defects generated in the annealing process, because for samples of graphene oxide
with induced magnetic impurities no ferromagnetism has been observed. An increase
of the annealing temperature for some samples caused the enhancement of
magnetization. The influence of the sample preparation on the presence of the
charged impurities even if no doping has been applied has been noticed in [593],
where the impurity concentration has been defined from the shift of the G-peak in the
Raman spectra. It was shown that irradiation can also influence the charge transfer
characteristics [565], which is proposed to be the result of a decrease in the Fermi
velocity and modification of the hopping integral after irradiation.

The experimentally achieved ferro- or ferrimagnetism in graphite (explained by
generation of defects in the graphite lattice) has stimulated an extensive investigation
of the influence of defects on the magnetic properties of graphene. In [594,595],
several mechanisms explaining the appearance of magnetism in carbon systems were
proposed: under-coordinated atoms, itinerant ferromagnetism and negatively curved
sp2 bonded nano regions in the carbon lattice. However, defects are considered to be
the most likely cause of magnetism. There are several types of defects responsible
for the magnetic phenomena, vacancies and atoms on the graphene edges possessing
dangling bonds (either passivated or free). The localized electronic states induced by
these defects contribute to the density of states at the Fermi level and can induce
magnetism.

Figure 119. The magnetic moment of the pyrolytic graphite after first irradiation step (h),
second (�), third (.) and fourth (O) (Reprinted figure with permission from P. Esquinazi et al.,
Physical Review Letters, 91, 227201, 2003 [590]. Copyright � (2003) by the American Physical
Society.).
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8.3.1. Vacancy defects

Spin-polarized calculations of the electronic structure were applied to investigate

the effect of a single vacancy on the electronic properties of graphene [594,595]. The

atomic structure of a single vacancy, its charge and spin density are presented

in Figure 120. The carbon atoms surrounding the vacancy have sp2 dangling bonds,

but the formation of a pentagon leads to the saturation of two of these bonds, while

the remaining unsaturated dangling bond will induce a magnetic moment of 1.04
B.

However, the energy difference between a spin-polarized state and a non-polarized

state was found to be only about 0.1 eV, suggesting an instability of magnetism of a

single carbon vacancy which can be destroyed by interlayer interactions or finite

Figure 120. (a) Atomic structure of a single vacancy in graphene, which undergoes a
Jahn–Teller distortion. The weak covalent C–C bond of length 2.02 Å is formed between
atoms 1 and 2. (b) the charge density distribution (e Å�3). (c) the spin density distribution
(e Å�3) (Reprinted with permission from Y. Ma et al., New Journal of Physics, 6, p. 68, 2004
[595]. Copyright � (2004) IOP Publishing Ltd.).

Figure 121. The band structure of graphene containing single vacancy of different
symmetries: (a) the vacancy having the D3h symmetry of the honeycomb network, (b) the
vacancy of Cs symmetry. The band structures are obtained with DFT-LDA calculations.
The Fermi level is set to zero. The shaded circles denote the � band, while open circles
correspond to the � band (Reprinted figure with permission from H. Amara et al., Physical
Review B, 76, 115423, 2007 [597]. Copyright � (2007) by the American Physical Society).
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temperature. However, it was also shown that the single vacancy defect can have two
conformations: the vacancy having the D3h symmetry of the honeycomb network
and the vacancy of Cs symmetry which undergoes a Jahn–Teller distortion [596,597].
In the case of the vacancy of Cs symmetry, the positions of the carbon atoms are
distorted, namely two atoms near the vacancy move closer to each other and the
third atom is displaced out of plane [597], and the presence of such vacancies
significantly affects the electronic properties. The band structures of a graphene sheet
containing the D3h or Cs vacancies are presented in Figure 121. First of all, the
presence of a vacancy and the magnetic ordering of the states localized on the
vacancy break the symmetry of the graphene �-orbital system, which leads to
opening of a gap. The gap between the � bands is larger for the vacancy with Cs

symmetry than that with higher D3h symmetry. Second, the vacancies induce extra
bands near the Fermi level, which are flat � bands associated with the defect states
localized on the carbon atoms around the vacancy. For the vacancy of D3h

symmetry, there are two symmetric � bands which are slightly separated and one
antisymmetric � band (Figure 121a). For the vacancy of Cs symmetry, the � bands
are shifted upward with respect to the position of the Fermi level and, because
of broken planar symmetry, one � band is moved deeper into the valence band.
The study of a single vacancy with molecular dynamics methods [598] has shown that
an electron trapped at the vacancy is stable at low temperature, while increasing
the temperature up to 300K leads to the structural changes of the graphene lattice
that can allow the trapped electron to escape.

Therefore, even a single vacancy can induce magnetization into the graphene
system through the formation of the spin-polarized localized state [328,594,595,597–
604]. However, the presence of several vacancies in the graphene lattice can
completely change the magnetization phenomena due to the correlation of the
positions of the vacancies [601,605–610]. The presence of a single vacancy breaks
both the lattice and sublattice symmetries and opens a gap. Two identical vacancies
on different sublattices can restore the sublattice symmetry, thus suppressing the gap
[605]. However, two identical vacancies located on the same sublattice results in a
larger band gap. Therefore, the sublattice imbalance induced by the distribution of
the vacancies over an initially balanced graphene lattice defines the magnetic
properties of graphene lattice with defects [474,606].

Considering the spin properties of the defects, it was established that the defects
according to Lieb’s theorem [471] can interact ferromagnetically or antiferromag-
netically depending on the sublattice imbalance. As a result, the total spin of the
system will be defined by these local magnetic interactions. It was also found that at
a certain defect density, the local magnetization can disappear [606,607]. These
results suggesting disappearance of magnetization are in good agreement with the
experimental data, where the suppression of magnetization has been observed after
four steps of irradiation [590] (Figure 119). In [608], the total magnetization was
reduced not only by increasing the vacancy density but also by decreasing the
distance between vacancies. The dependence of the magnetization on the distance
between the vacancies is a result of the bonding and antibonding interaction of the
defect states. Thus, for the vacancies located on different sublattices, the energy
splitting decreases with increasing distance between the vacancies [609]. More
extensive investigation of the density of vacancies and the sublattice imbalance has
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been performed in [609] with the help of a combination of the Hubbard model and
first-principles methods. For vacancies which are equally distributed over the two
sublattices, the magnetic moments on these sublattices are characterized by the
opposite spin orientation and therefore they have magnetization of the opposite sign.
This leads to a compensation effect in the total magnetization. It was concluded that
a finite total magnetic moment can only be achieved in the case of the domination
of the vacancies arranged on the same sublattice. In another study [601] the
dependence of the gap on the concentration of uncompensated vacancies was
reported. In the case when the electron–hole symmetry is preserved, the high dilution
of the vacancies has been found to result in flattening of the DOS around the band
center, while breaking of the electron–hole symmetry leads to broadening of the
DOS peak at the Fermi level.

Lattice defects induce a significant alteration of the local electronic properties due
to the scattering and interference of the electron waves at these defects. There are
many experimental works devoted to the investigation of scanning tunnelling
microscopy (STM) images of the defects as each type of defect is supposed to have its
own signature [611–616]. For different types of defects the STM images have also
been generated with first-principles methods [596,597,599,617]. The STM images of a
single vacancy with different symmetries (D3h and Cs) are presented in Figure 122.
For a D3h vacancy, the trigonal symmetry of the image at the center of the vacancy is
observed, which is the result of the localization of the electron density at the three
dangling bonds. The Cs vacancy is not characterized by the three-fold symmetry. The
rotation of the pentagon by �2�/3 for a Cs vacancy was found to restore the trigonal
symmetry of the graphene lattice.

8.3.2. Vacancy defects saturated by hydrogen

The single vacancy is also interesting for understanding how it interacts with the
adsorbed molecules. The interaction of helium atoms with a single vacancy induces a
magnetic moment of about
B per vacancy, while interaction with an ideal graphite
lattice was found to be weak, demonstrating no magnetic signal [594]. A similar
situation is obtained for the interaction of adsorbed hydrogen with a single vacancy.

Figure 122. The scanning tunneling microscopy images of the single vacancy in graphene
computed with positive tip potential of 0.2V. (a) The non-reconstructed D3h vacancy, (b) the
reconstructed Cs vacancy, (c) average of the three equivalent Cs structure rotated by �2�/3
(Reprinted figure with permission from H. Amara et al., Physical Review B, 76, 115423, 2007
[597]. Copyright � (2007) by the American Physical Society.).
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However, if one dangling bond of the vacancy is saturated by hydrogen, that leads to
a metastable state, and a magnetic moment of 2.3
B is obtained. There is another
stable magnetic configuration for a single vacancy saturated by hydrogens: if a single
hydrogen atom interacts with a vacancy which is already saturated by another
hydrogen, the stable configuration with two hydrogen atoms placed above and below
of the graphene sheet is formed (Figure 123a). The magnetic moment of this
configuration was found to be 1.2
B in [594] and about 2.0
B in [618]. There are
two unpaired electrons on this defect [618], one of them occurs due to the breaking of
the � bond, whereas the other electron is the result of breaking of the three � bonds
between the vacancy and the neighboring carbon atoms, which leads to the
appearance of 1/3 of an unpaired electron on each atom. Because the three carbon
atoms neighboring a vacancy belong to one sublattice, these unpaired electrons have
the same spin orientation, therefore producing a spin-polarized electron localization,
as shown in Figure 123(b). In the case of two vacancies embedded into a graphene
sheet, the magnetic moment of the system will increase if the defects appear on the
same sublattice as a result of the ferromagnetic coupling between their localized spin
moments. Therefore, coupling between the defects possesses magnetic ordering at
high temperature. The presence of these defects in the graphene lattice has also been
found to break the sublattice symmetry thereby opening a gap of 0.51 eV for the
majority spin band and of 0.55 eV for the minority. The calculated energy bands
for the majority and minority spin states are presented in Figure 124 for two defects
separated by distance L of 20 Å. It was also found that the opening of the gap is not
related to the spin–orbit coupling and the gap size was shown to change with
increasing distance between defects according to the scale L�2.

8.3.3. Divacancy defects

The divacancy defect [597], which is formed when two neighboring vacancies
coalesce, significantly changes the electronic and magnetic properties of the graphene
flake. There are � bands which are located around the Fermi level, while � bands
induced by the vacancies are not located near the Fermi level but move deeper into
the conduction and valence bands. The transition from the spin degenerate case of

Figure 123. (a) The graphene sheet with the vacancy defect saturated by hydrogen atoms
above and below the graphene plane. (b) The spin density distribution for the graphene sheet
containing two identical vacancy defects saturated by hydrogens which are placed at a distance
of 20 Å (Reprinted figure with permission from L. Pisani et al., New Journal of Physics, 10,
p. 033002, 2008 [618]. Copyright � (2008) IOP Publishing Ltd).

452                   



pure graphene to highly spin-polarized state has been found in [619] due to the
presence of a divacancy defect. In [620] the transition of graphene with armchair
edges from a semiconductor to a metal was predicted to occur due to the presence of
divacancies distributed over the graphene lattice with a constant period. Moreover,
the presence of a divacancy defect was found to lead to strong interaction between
graphene and the adsorbed molecules [621]. Thus, the adsorption of CO and N2

molecules on graphene containing a divacancy defect led to a metallic behavior.
Moreover, the adsorbed molecules were found to dissociate in the vicinity of a
divacancy defect and take the place of the missing carbon atoms. For example,
N2 molecules play the role of a substitutional impurity for the missing carbon atom
in graphene. The adsorption of a gold atom on the graphene sheet containing
vacancy defects leads to the in-plane bonding of the gold atom [622]. The diffusion
barrier for a gold atom on the graphene surface was found to decrease with
increasing size of the vacancy. In addition to the divacancy, other type of vacancies
with several carbon atoms missing have been investigated elsewhere
[602,606,620,623] and spin-polarized states have also been generated from them.
Jeong et al. [624] have seen the stabilization of some defects in the presence of
pentagon and three pentagon vacancies.

8.3.4. Crystallographic and chemisorption defects

Attention has also been paid to crystallographic defects [605,625]. For a semicon-
ducting graphene nanoribbon, the Stone–Wales defects have been found to induce a
defect band at 0.6 eV above the Fermi level [625]. It was shown that adsorption of a
COOH group is capable of significantly shifting this defect band closer to the Fermi
level [625]. An increase in the number of Stone–Wales defects with adsorbed COOH
groups can lead to the transition of the graphene sample from a semiconductor to a
p-type metal. For metallic graphene, the presence of a single Stone–Wales defect
shifts the Dirac point maintaining the two-fold degeneracy, but removing the

Figure 124. The band diagram for (a) majority and (b) minority spin states of the
ferromagnetic state in graphene containing two vacancy defects saturated by hydrogens and
separated by 20 Å (Reprinted figure with permission from L. Pisani et al., New Journal of
Physics, 10, p. 033002, 2008 [618]. Copyright � (2008) IOP Publishing Ltd).
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degeneracy at the K point, which results in a gap of 27.8meV, while for three defects
a gap is 80.3meV [605]. Therefore for low density of the Stone–Wales defects, the
size of the gap increases almost linearly with increasing defect concentration.
The dynamic stability of the Stone–Wales defects has been found to be rather low
in a planar graphene sheet [626], while similar crystallographic defects, such as
pentagon–heptagon pairs, were dynamically stable. Random arrangement of the
crystallographic defects, which are shown to form linearly stable configurations,
has been seen to provide the formation of meta-crystal structure of graphene [627].

Chemisorption defects on the graphene surface, such as a carbon adatom or a
hydrogen adatom, have been studied in [594,597,599,628]. The presence of vacancy
defects has already been mentioned to initiate the formation of the chemisorption
defects due to the attraction of the adatoms by vacancy defects [627]. It was found
in [599] that hydrogen chemisorption defects induce a magnetic moment of 
B per
defect, and defect bands. The band maximum for the majority spin is located below
the Fermi level, while in the minority spin case, it is above the Fermi level. The
magnetic moment of the hydrogen chemisorption defects is independent of the
distance between the two defects and the system remains spin-polarized in a wide
range of defect concentration. However, the magnetic moment of the system depends
on the distribution of the defects over the graphene sublattices where ferromagnetic
coupling between defects give rise to an increase in the magnetic moment. Thus, the
ferromagnetic ordering of the defects occurs when two defects are localized on the
same sublattice as a result of non-oscillating behavior of the magnetization of the pz
orbital of the carbon atom and indirect coupling between defects.

In [603], the magnetic moment induced by the presence of an adatom, such as C,
B, N, is found to be independent of the defect concentration, while the alteration of
the band gap has been indicated. Moreover in the same work, the defects such as
substitutional atoms and vacancy defects have been found to break symmetry of the
graphene lattice and induce the magnetic quasi-localized states for which the
magnetic moment is defined by the density of defects. For a carbon adatom
incorporated into the graphene sheet [597], the flat bands of the localized states occur
in the vicinity of the defect, which is similar to that obtained for the single vacancy
defect (Figure 121a). The saturation of the carbon adatom by hydrogen [594]
induces a magnetic moment of 0.9
B resulting from the C–H group. The
conductance of graphene has been found to be modified by the presence of
the carbon adatom [628], for example, the conductance dip was dependent on the
location of the defect relative to the edges and the severity of the defect. In general,
the conductance of graphene is found to decrease in the presence of defects [628,629].
Moreover, the presence of a defect is found to affect the transport length scale
in graphene [630], which is shown to fluctuate significantly as the topology of the
edge irregularities are changed.

8.3.5. Substitutional doping of graphene

Another interesting topic is doping of graphene by impurities. It was observed
experimentally that graphene is converted from p-type (pristine graphene) to n-type
by substitutional doping of N atoms [631]. The investigation of doped graphene with
first-principles methods [632] has also shown a transition of the armchair
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nanoribbon from metallic to semiconducting behavior due to doping. The
degradation of the electronic properties with doping is shown in Figure 125.
Pristine graphene was observed to be metallic, whereas the substitutional doping
by either N atoms or B atoms opens a gap. The substitution of a carbon atom by
N (N-doping), induces a impurity level below the Fermi level (p-type semiconductor),
while B-doping induces a impurity level above the Fermi energy, thereby leading
to n-type semiconductor behavior of graphene in addition to the opening of a gap.
The band gap is also modulated by the doping concentration. For low doping
concentration, the band gap increases as the concentration of dopants grows, then
achieves a maximum at concentration of 0.1365 Å�1 and starts to decrease with
further increase of the doping. Substitutional doping is found to be energetically
more favorable at the interfaces of the zigzag edges.

A transition of graphene from metallic to semiconducting type has been found
elsewhere [633] as result of substitutional N-doping. There, by controlling a chemical
composition of CxNy graphene, the band gap was modulated in the range of 3–5 eV.
The CxNy graphene layers were created under the conditions that chemical valences
of four for C atoms and of three for N atoms were satisfied. This was achieved by
generating a single vacancy of a C atom in a periodic manner. The optimization
process has shown that some of the conformations were stable and had no confining
compressional stress, but some conformations were found to spontaneously adopt
buckled geometries. In the case when the carbon atom is substituted by a B atom, the
transformation of graphene to the metallic type has also been reported [634].
Moreover, substitution of carbon atoms by B or N atoms was found to change the
magnetism of the graphene nanoribbon [635]. There, the magnetic phase of
graphene, i.e. the spin alignment between two opposite zigzag edges, has been
controlled by the charge injection. The switching of the antiparallel spin orientation
of the localized states between zigzag edges to the parallel one thereby modifying the
size of gap was obtained. The presence of an impurity band induced by the

Figure 125. (a) The band diagram of pure graphene. (b) The band diagram of graphene doped
by N. (c) The band diagram of graphene doped by B (Reprinted with permission from
B. Huang et al., Applied Physics Letters, 91, 253122, 2007 [632]. Copyright � (2007) American
Institute of Physics.).
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substitutional doping has also been observed in [601]. There, the impurity band had a
split structure and was completely detached from the main band. For small impurity
concentration, the change of the electronic structure consists of a rigid shift of the
Dirac point. In the case when the impurities are located close to each other, the
interference and hybridization effects leading to re-splitting of the low-energy
resonance were observed.

The occurrence of an impurity-induced resonance near the Dirac point was
observed in the local density of states as a result of the substitutional doping of two
carbon atoms in graphene [636]. The existence of two nonequivalent Dirac points in
the Brillouin zone has been proposed to cause this resonance effect. The embedding
of the magnetic impurity into graphene has been shown to result in exchange
splitting of the resonance in the two spin channels. The contribution of the exchange
scattering is found to enhance the polarization of the impurity state. Moreover, the
role of the substitutional impurity on the transport properties of graphene has been
considered in [637]. The presence of impurities such as B or N was found to result
in resonant backscattering, the efficiency of which was strongly dependent on the
symmetry of the graphene sample, the edges and the location of the impurities within
the graphene lattice. The possibility to convert the armchair nanoribbon in the
semiconducting state to a metal by embedding a boron cluster was discussed
in [638,639]. Another interesting result was reported in [640], where a method of
substitutional doping of the graphene sheet by a B atom without an activation
barrier was proposed. The barrierless doping was obtained due to selective exposing
of each side of graphene sheet to different elements, such as nitrogen and boron.

8.4. Functionalization of the edges

The edges play a crucial role in the establishment of the electronic properties
of nanoscale graphene. For example, structural changes of the edges [404,641,642],
such as bond reconstruction, edge passivation and even edge aromaticity often lead
to a change of the � network composition at the edges (percentage of sp, sp2 and sp3

bonds [428]), thereby modifying the electronic properties of graphene. In [641] the
change of the electronic structure of a graphene nanoribbon activated by the edge
modification as a function of the hydrogen content of the environment was
investigated with first-principles methods. The simulations were performed for
zigzag and armchair edges of stable and unstable configurations, the structures and
electronic properties of which are presented in Figure 126(a) and (b), respectively.
The results show that alteration of the edges changes the band structure by shifting
the band crossing along the k-axis and along the energy axis or by modifying the size
of the band gap. Therefore, the main conclusion here is that edge reorganization is a
prospective way of manipulating the electronic properties of graphene (including size
of the band gap) due to the significant contribution of the edges into the electronic
properties of graphene. The edge structure can also be changed by saturation of the
dangling bonds at the edges through its bonding with chemical groups (edge
functionalization [643]) which may be another way to obtain the desired properties,
such as spin polarization, spin gap asymmetry and controllable size of the band gap.
There are two ways to functionalize graphene which have been extensively
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investigated – identical modification of two opposite edges or modification of a

single edge. Because the zigzag edges are known to possess localized states, they have

attracted considerable attention from the researchers. A wide range of chemical

groups have been used for functionalizing the graphene edges: from simple chemical

groups, such as NH2, NO2, O to massive molecules such as short branched alkanes

[644]. Below, we consider the influence of the edge functionalization by different

chemical groups on the electronic properties of graphene.
The lowest energy state of a graphene nanoribbon is known to have opposite spin

ordering between the zigzag edges [362,412,414–416], i.e. when a spin-up state is

localized on one sublattice, and a spin-down state is localized on the other, thereby

opening a gap. The energetic bands of this state are most often spin degenerate, but

can be slightly non-degenerate providing similar band structures for both spin states

where the spin gap symmetry is preserved. A similar picture is observed when the two

opposite zigzag edges are identically functionalized by the same groups [645–648].

Thus, for edges terminated with hydrogen or hydroxyl groups, the system is spin

polarized in equilibrium and doubly degenerate [645], while using OH or NH

functional groups gives a spin-unpolarized system. Almost degenerate spin states are

found for graphene with zigzag edges terminated by NH2 groups at each second

carbon atom [646]. Moreover, by changing the type of the functional groups the size

of a gap, spin ordering along the zigzag edges and distribution of the molecular

orbitals over the graphene structure can be manipulated [648]. The simulation of the

size of the band gap when both zigzag edges are functionalized by the same chemical

groups are presented in Figure 127. According to the presented data, the oxidation

of the graphene edges can decrease the band gap to almost half that of mono-

hydrogenated zigzag edges. However, functionalization of both zigzag edges does

not lift the degeneracy.

Figure 126. The configuration of zigzag (z) and armchair (a) edges of graphene and the
corresponding band structure. The filled circles are hydrogen atoms. The structures are
periodic along the edge with periodicity L. The gray area shows the bands allowed in ‘bulk’
graphene. (a) Most stable edge configuration, (b) other stable edge modifications. Here z
denotes the zigzag edges, while a denotes the armchair edge (Reprinted figure with permission
from T. Wassmann et al., Physical Review Letters, 101, 096402, 2008 [641]. Copyright �
(2008) by the American Physical Society).
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Modification of opposite zigzag edges by different chemical groups, which
stabilizes a state with ferromagnetic ordering between the opposite edges, can induce
an asymmetry in the potentials between these edges. This leads to an energy shift of
the orbitals localized on the edges, thereby lifting the spin degeneracy of the
electronic states localized on the opposite zigzag edges. Therefore, functionalization
of a single zigzag edge is the way to generate a fully spin-polarized state in graphene,
which can also be characterized by the spin gap asymmetry. For example, bearded
ribbons where one zigzag edge is pure and has dangling bonds whereas the other
edge has an additional carbon bond saturating each dangling bond have been found
to have a gap [643]. But the most common case is when functionalization of the
zigzag edge is performed by termination of the dangling bonds by some atoms which
are not carbon. It was shown in [649] with first-principles methods that for graphene
with one mono-hydrogenated zigzag edge and one di-hydrogenated edge, sponta-
neous magnetization occurs. The electronic structure of such a graphene system is
fully spin-polarized and has a flat band near the Fermi level composed of the
localized edge states. The flat band of the spin-up states is located below the Fermi
level, while for the spin-down states it is just above the Fermi level. The achieved
splitting between spin-up and spin-down states was 0.5–0.6 eV, while the gap was

0.2 eV. The magnetic moment of such a structure was not zero and the total spin
equaled one half of the number of unit cells. The functionalization of a single edge by
fluorine atoms or oxygen atoms when a second edge is monohydrogenated has been
considered in [650]. The band structures of fluorinated and oxidized graphene are
similar to each other and distinguished by the presence of flat bands, which appear
near the Fermi level and are spin-polarized only around the K point. However, the
spin-up and spin-down states are slightly separated from each other in energy,
thereby possessing a weak spin gap asymmetry.

The methylene-substituted graphene structure, where every carbon atom or every
second carbon atom at a single zigzag edge is bound to a methylene group, did not
show a strong magnetic behavior. Cervantes-Sodi et al. [646,647] considered different
functional groups terminating the dangling bonds at a single zigzag edge to induce
the spin-polarization in graphene. The simulation results of the spin density of the
states performed with first-principles method are shown in Figure 128. There the
edge functionalization significantly modifies the electronic structure of the graphene

Figure 127. The band gap of the nanoscale graphene with the zigzag edges functionalized by
the same chemical groups. The simulations are performed with PBE and B3LYP functionals
(Reprinted figure with permission from H. Zheng and W. Duley, Physical Review B, 78,
045421, 2008 [648]. Copyright � (2008) by the American Physical Society.).
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ribbon, particularly lifting the spin degeneracy. In some cases, a significant spin gap

asymmetry is achieved producing half-metallic behavior at zero electric field (see the
S–NO2–6	 2Z structure). However, functionalization of the armchair edges has been

shown to slightly lift the spin degeneracy [646] and induce impurity bands. Similar

results, showing that if two opposite zigzag edges are functionalized by two different

types of chemical groups, a gap asymmetry of the �- and �-spin channels can be

obtained, was also presented [418,651,652]. Thus, if one zigzag edge is terminated by

OH groups and the opposite one by Cl atoms, zero band gap for one spin state and

semiconductor gap for the other spin state are observed, thereby giving half-
metallicity [651].

Figure 128. The spin density of the states for graphene with a single zigzag edge functionalized
by the chemical groups. The spin density distribution for �- and �-spin states is presented
in comparison to those for pure (clean) graphene (Reprinted figure with permission from
F. Cervantes-Sodi et al., Physical Review B, 77, 165427, 2008 [646]. Copyright � (2008) by the
American Physical Society.).

Figure 129. The structure and electronic properties of graphene where the border carbon
atoms at one zigzag edge are substituted by the B or N atoms. (a) The structure of the
graphene ribbon, (b) The spin-density distribution for the state where spin separation between
sublattices does not occur. (c) The energy band structure for a ferrimagnetic state. Solid and
dashed lines represent the spin-up and spin-down states (Reprinted figure with permission
from J. Nakamura et al., Physical Review B, 72, 205429, 2005 [415]. Copyright � (2005) by the
American Physical Society.).
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Another way to generate asymmetry of the potentials between two opposite

zigzag edges is by substitution of the carbon atoms at the edges. Substitution of

carbon atoms at a single zigzag edge by the B and N atoms [415], as presented

in Figure 129(a), leads to occupation of the A and B sublattices by both spins,

thereby providing the ferromagnetic spin ordering of the localized states between the

zigzag edges and n"� n#¼ 0.29 per unit cell. The spin density distribution and band

diagram for this state are presented in Figure 129(b) and (c), respectively. The spin

ordering occurs due to the imbalance of the majority and minority spins at the zigzag

edge, where substitution of the carbon atoms is performed. The obtained band

structure corresponds to a metallic system. The lattice dissimilarity between the

opposite zigzag edges generates asymmetry of the potentials between the opposite

zigzag edges. The nanoribbons must be wider than a certain minimum value before

spontaneous spin polarization may occur.
In [653], Berashevich and Chakraborty reported that for nanoscale graphene the

highest symmetry is D2h for which the sublattice symmetry is preserved and a gap can

occur only due to the confinement effect. For the D2h symmetry the HOMO and

LUMO orbitals are localized at the zigzag edges but their electron density is equally

distributed over both edges. Termination of a single zigzag edge by hydrogen or

substitutional doping of the carbon atoms along a single zigzag edge by a dopant,

such as nitrogen, breaks the sublattice symmetry thereby lowering the D2h symmetry

to the C2v symmetry with a mirror plane of symmetry perpendicular to the zigzag

edges. For the C2v symmetry, the HOMO and LUMO orbitals are characterized by

the �- and �-spin states localized on the opposite zigzag edges. For pure graphene

in a state with the C2v symmetry, where symmetry breaking is induced by the spin

distribution between the zigzag edges, the band gaps for two different spins D� and
D� are almost identical. Thus, for graphene with four carbon rings along the zigzag

edge and five along the armchair edge, these band gaps are found to be of the order

of 
1.5 eV. The hydrogenation of a single zigzag edge leads to saturation of the

dangling � bonds at the terminated edge but does not significantly change the energy

of the HOMO� and LUMO� states localized at the terminated edge. The resulting

non-degeneracy of the �- and �-spin states is not large, and the gap of the �-spin state

(D�¼ 1.8 eV) is almost identical to that of the �-spin state (D�¼ 2.1 eV). However,

hydrogen termination along a single zigzag edge increases the gap from 
1.5 eV for

pure graphene in state of C2v symmetry to 
1.9 eV due to major breaking of the

sublattice symmetry. The substitutional doping by nitrogen along a single zigzag

edge shifts down the orbital energies of the HOMO� and LUMO� states localized at

the doped edge and results in a strong electron non-degeneracy for these orbitals.

Slight enhancement of the gap occurs for the �-spin state up to D�¼ 2.2 eV, but there

is a significant decrease of the gap for the �-spin state down to D�¼ 0.8 eV. The

achieved size of the band gap for �- and �-spin states corresponds to the half-

semiconducting behavior. However, increasing the size of the graphene sample

results in a decrease of both the D� and D� gaps due to diminishing confinement

effect. When the number of carbon rings along the zigzag edges is six and seven

along the armchair edges, the gap for the �-spin state is already suppressed to 1.13 eV

while for the �-spin state it is 0.19 eV, which corresponds to the half-metallic

behavior.
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The state with ferromagnetic spin ordering between the zigzag edges when one
edge is doped by boron was obtained in [448]. Metallic behavior for the majority spin
channel and insulating behavior for the minority spin channel was observed in this
case. An applied electric field was found to have no influence on this behavior, i.e.
the magnitude of the gap remains the same for a wide range of the field strengths as a
result of identical influence of the transverse electric field on both spin channels. In
[654] it was shown that for substitution of one or several carbon atoms at the zigzag
edges, the system becomes fully spin-polarized with a opening of band gap near the
Fermi level, thereby switching from metallic to semiconducting behavior. The
opposite was found in another case [646], where initially semiconducting graphene
was converted to the metallic state by substitution of carbon atoms at both zigzag
and armchair edges. Moreover, the substitution of the carbon atoms at a single
zigzag edge by O (Figure 128g) and in the center of the ribbon by N (Figure 128h)
has induced impurity states in the band gap of the zigzag nanoribbons, consequently
providing the semiconductor-metal transition. Additionally, it was found [655] that
the substitutional doping of a single carbon atom at the zigzag edge by an O, B or N
atom can inject a hole or electron into graphene depending on the impurity type.
Therefore, such substitution induces a localized impurity state close to the Fermi
level. Because the induced impurity level affects the �/�* levels of graphene,
alteration of the transport properties of graphene occurs. For the armchair
nanoribbon [646], the substitution of carbon atoms on the armchair edges by B
and N was found to induce localized states which appear deep inside the valence and
conduction bands. This actually could discourage manipulation of the electronic
properties of the armchair nanoribbons.

In the system with a line of atomic substitutions in the middle of the graphene
sheet, both metal–semiconductor and semiconductor–metal transitions have been
observed [656]. The impurity line breaks the translation symmetry normal to the
edges, and provides a modification of the electronic properties. For a zigzag
nanoribbon, the impurity line induced along the armchair edges splits the graphene
sheet into two stacked nanoribbons and therefore its electronic properties are
significantly modified. If the graphene structure cannot be divided equally then the
achieved electronic structure is a superposition of two bands of the nanoribbons of
different sizes. For armchair nanoribbons a similar impurity line has been placed
along the zigzag edge [656]. Depending on the nanoribbon geometry, there were
three types of energy band structures: two semiconductor and one metallic. The
single impurity line has been found to convert the semiconducting armchair
nanoribbon to a metallic one and the metallic to semiconducting ribbon. Replacing
the middle carbon chain by a boron-nitride, nanoribbon was also investigated [657].
It was found that depending on the number of replaced chains the properties of the
graphene ribbon can be modified. The system with two chains replaced by a B–N
system, shows a spin gap asymmetry, where one spin channel is semiconducting with
a gap of 0.5 eV (whose size is similar to that of pure graphene), while the gap in the
second spin channel is significantly reduced in comparison to the case of pure
graphene. The replacement of four chains leads to the appearance of one conducting
channel and an increase of the band gap for the second spin channel, whereas
replacement of six chains shows a decrease in the gap for both spin channels.
However, such a replacement breaks the particle symmetry, thus mixing spin states
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along the edges and therefore the whole lattice is characterized by no dominance
of spin states at any sites.

As we have shown above, the main advantage of functionalization of the edges of
a graphene ribbon is the possibility to achieve a half-metallic behavior of graphene
without applying an external electric field. This has enormous potential for
application in developing spin-selective devices based on graphene systems
[48,450,453–464].
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Notes

1. Structures with up to 10 carbon layers are known as few-layer graphenes, while structures
with 10–100 layers are known as thin graphite films [1].

2. The experimental study of very thin graphite is older than Geim and Novoselov’s ‘initial’
discovery in 2004. For example, [19,20], both discuss the possible fabrication of graphene.

3. Nanoculture – Implications of the New Technoscience, edited by N. Katherine Hayles
(Intellect Books, 2004)

4. This assumption does not adequately produce the band structure near the center of the
Brillouin zone where the � bands have the lowest energy. See, for example, [140] for the
experimental evidence of the � bands, and [13] for a description of the tight-binding �
bands in monolayer graphene. However, the low-energy and transport properties of
bilayer graphene are determined by the � bands, so we limit ourselves only to their
discussion.

5. Both mono- and bilayer graphene spontaneously form corrugations, or ripples, which are
a significant mechanism for the stable formation of the two-dimensional crystal, and
which may add to the disorder in the system (Section 5).

6. There is a certain confusion in the literature over the labelling of Landau levels in bilayer
graphene since two common notations exist. In the two-band model, it is convenient to
label using o 2 f. . . , � 3, � 2, 0, 1, þ 2, þ 3, . . .g, while in the four-band model, the
notation n2 {. . . , �2, �1, �0, þ0, þ1, þ2, . . .} is usually used. In this section we shall use
the notations as defined in this endnote, so that o refers to the ‘two-band’ labels, while n
denotes ‘four-band’ labels.

7. The parameter � phenomenologically describes the small splitting between the o ¼ 0 and
o ¼ 1 levels caused by effects like those parametrized by D and t0. The notation o is
defined in endnote 6.

8. As a result of the multiplication of the model Slater determinant wave function ’ by the
correlation factor F, the multiparticle state F’ will most likely have projections on states
outside of the bands, in particular on states with energies lower than the bottom of the
valence band. This is clearly unphysical and has to be rectified by requiring that
projections of F’ on the states with momenta larger than a cut-off momentum, must
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vanish. This cut-off momentum is determined, for example by requiring it to yield the
correct number of allowed valence band states. Another constraint which is perhaps
necessary is to impose explicitly the normalization of g(r), i.e.Z

dr½ gðrÞ � 1� ¼ �1

(P. Pietiläinen, private communication).
9. The spin–orbit coupling strength in graphene can be small [249]. However, the results

presented in this section are valid for similar gap size in the energy band.
10. For j
j� j!j the expression in Equation (71) is linear in 
. However, the conductivity

vanishes when we take the DC limit at fixed scattering rate.
11. The SCBA has been criticized by several authors as being not applicable to Dirac

fermions [311,312,319,320]. This is based on the fact that certain terms of the perturbative
series are neglected in the SCBA. The above analysis sheds a different light on this issue,
namely that the SCBA is only the result of a special scalar form of the solution of the
more general matrix saddle-point equation. This implies that the average one-particle
Green’s function, including the density of states, requires the full solution of the matrix
equation (81). On the other hand, for the scattering rate � the scalar equation (80) (i.e. the
SCBA) is justified as a reasonable approximation even for Dirac fermions.
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[477] F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and J.J. Palacios, Phys. Rev. B 74

(2006), p. 195417.
[478] M. Wimmer, _I. Adagideli, S. Berber, D. Tománek, and K. Richter, Rev. Lett. 100 (2008),
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[590] P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, and T. Butz, Phys. Rev.

Lett. 91 (2003), p. 227201.
[591] D. Teweldebrhan and A.A. Balandin, Appl. Phys. Lett. 94 (2009), p. 013101.
[592] Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9

(2009), p. 220.
[593] C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari, Appl. Phys. Lett.

91 (2007), p. 233108.
[594] P.O. Lehtinen, A.S. Foster, Y. Ma, A.V. Krasheninnikov, and R.M. Neiminen, Phys.

Rev. Lett 93 (2004), p. 187202.
[595] Y. Ma, P.O. Lehtinen, A.S. Foster, and R.M. Neiminen, New J. Phys. 6 (2004), p. 68.
[596] A.A. El-Barbary, R.H. Telling, C.P. Ewels, M.I. Heggie, and P.R. Briddon, Phys. Rev. B

68 (2003), p. 144107.
[597] H. Amara, S. Latil, V. Meunier, Ph. Lambin, and J.-C. Charlier, Phys. Rev. B 76 (2007),

p. 115423.
[598] H. Tachikawa and H. Kawabata, J. Phys. Chem. C 113 (2009), p. 7603.
[599] O.V. Yazyev and L. Helm, Phys. Rev. B 75 (2007), p. 125408.

[600] G. Forte, A. Grassi, G.M. Lombardo, A.L. Magna, G.G.N. Angilella, R. Pucci, and

R. Vilardi, Phys. Lett. A 372 (2008), p. 6168.

[601] V.M. Pereira, J.M.B. Lopes dos Santos, and A.H. Castro Neto, Phys. Rev. B 77 (2008),

p. 115109.
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