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We study the dc transport of finite graphene samples with random gap. Using Dirac fermions to describe the
low-energy physics near the Dirac point, we employ a generalized Drude form for the conductivity. The latter
is constant for a vanishing average gap but always decreases with increasing sample size for a nonzero average
gap. The asymptotic conductivity of the infinite sample is either nonzero if the average gap is smaller than a
critical value or zero otherwise. Our results are in qualitative agreement with recent numerical calculations of
Bardarson et al. �Phys. Rev. B 81, 121414�R� �2010��.
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Transport in graphene is a fascinating field in terms of
experiments as well as theory1–4 and it provides an interest-
ing test ground for the validity of general theoretical con-
cepts. A problem is that experimental measurements and nu-
merical simulations of transport properties are performed on
finite-size samples. On the other hand, most analytic calcu-
lations are based on linear-response theory for infinite
samples. It is known from perturbative renormalization-
group calculations that disorder in graphene can create its
own finite length scale that describes a crossover from small
scales �weak disorder regime� to large scales �strong disorder
regime�.5,6 The perturbative renormalization-group approach
works only in the regime of weak disorder �i.e., on small
scales�, such that the crossover behavior requires an alterna-
tive analysis. An example is the random-gap model that is
described by Dirac fermions with random mass. The renor-
malization of the average gap parameter m̄ always scales to
zero,7 indicating the total suppression of the gap by fluctua-
tions. Provided that the perturbative renormalization-group
approach is valid, its results imply that a random gap always
scales to zero and graphene remains metallic for any strength
of gap fluctuations. This, of course, cannot be true for a
sufficiently large m̄, where we expect an insulating behavior.
The latter was observed experimentally in case of hydrogen-
ated graphene,8 in a recent numerical simulation9 and ana-
lytically for an infinite random-gap model.10 However, to
compare the analytic theory with the experiment and with
numerical simulations,9 the finite-size crossover remains an
open problem. In particular, the transition between metallic
and insulating behavior may be washed out by finite-size
effects. An interesting result of the numerical calculation is
that graphene is metallic with constant dc conductivity �0
=e2 /�h for vanishing average gap m̄, regardless of the
strength of the gap fluctuations, but it decreases with sample
size for any nonzero average gap m̄. This rises the question
whether or not the conductivity vanishes for the infinite
sample with any m̄�0. This question will be addressed in
the following.

We employ the linear-response approach to study the
transport properties for the Dirac Hamiltonian H with ran-
dom gap term

H = i�1�1 + i�2�2 + mr�3.

� j is a Pauli matrix and the random gap mr has an uncorre-
lated Gaussian distribution with mean m̄ and variance g.

Then the conductivity can be evaluated from the Kubo for-
mula. The latter is applicable also to finite samples, provided
that the boundary conditions are properly taken into
account.11,12 Then the conductivity is related to the average
two-particle Green’s function as in the infinite sample. The
average conductivity at the Dirac point becomes the simple
scaling form10

���� = F�m̄,� + 2i��
e2

�h
, �1�

where � is the frequency of the external field. It should be
noticed that the conductivity depends on the fluctuations of
the random gap only through the scattering rate �. This is a
generalized Drude formula with the scaling function F�z�.
The conventional Drude formula has F�z��1 /z. In case of
graphene the dc limit �=0 of the conductivity has the scal-
ing form10

�0 � �1 −
m̄2

4�2 + m̄2� e2

�h
. �2�

The scattering rate � is real and the conductivity vanishes for
�→0. A vanishing scattering rate can be understood here as
the absence of quantum states, which reflects the appearance
of an effective gap.

The scaling form of Eq. �2� allows us to define a critical

gap parameter as mc=�4�2+ m̄2 �Ref. 10� which itself
depends on m̄. Then the conductivity vanishes as one ap-
proaches m̄=mc. In the infinite sample the scattering rate � is
determined by10

1

4�2	
0

2� 	
0

2� 1

�2 + m̄2/4 + k2dk1dk2 =
1

g
, �3�

where g is the variance of the fluctuating gap. � is automati-
cally zero if there is no real solution � for Eq. �3�.13

The scaling relation in Eq. �1� and a nonzero dc conduc-
tivity are consequences of a scale-invariant behavior of the
system due to a massless mode.10,14 The latter reflects a dif-
fusive behavior of the quasiparticles, where the diffusion co-
efficient is finite and proportional to 1 /� in the model under
consideration. Diffusion is also possible in a finite �confined�
system with the restriction that the diffusion time is limited
by the sample size. However, the restriction can be avoided
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by applying periodic or quasiperiodic boundary conditions,
where the diffusing particles can leave the sample on one
side and re-enter it from another side. This corresponds with
a physical system in an electric circuit as it is described by
the Kubo formula.

Our previous calculations can be extended to finite
samples with N�N sites. The continuous wave vectors of
the Dirac fermions k j are now discrete variables with k j
=2�n j / �N+1� �n j =0,1 , . . . ,N�. In terms of the conductivity
this affects the scattering rate �. The latter becomes �N in the
finite sample and is determined by the equation



n1,n2=0

N
1

�N + 1�2��N
2 + m̄2/4� + 4�2�n1

2 + n2
2�

=
1

g
. �4�

For a fixed parameter �N
2 + m̄2 /4 the sum decreases with in-

creasing N. This means that for given average gap m̄ and
variance g the scattering rate �N decreases with increasing N.
Consequently, the dc conductivity �0 of Eq. �2� also de-
creases with increasing size N. If �0�0 for a given finite N
the conductivity can vanish for a sufficiently large sample
size. Whether or not it vanishes for the infinite sample de-
pends on the asymptotic value �, which is determined by Eq.
�3�. Thus the transition from metallic to insulating behavior
depends on N, where the ability to conduct decreases with
increasing N. A special case is m̄=0, where we have �0
=e2 /�h for any N since �N does not enter the expression of
�0 in Eq. �2�. This is in agreement with the results of the
numerical calculation of Ref. 9.

The behavior of the critical gap parameter mc and the
conductivity �0 is presented for sample sizes N
=20, . . . ,100 in Figs. 1 and 2, respectively. These results can
be compared with the corresponding results for the infinite
sample given in Table I. All calculations use the same aver-
age gap m̄=0.06 for easy comparison.

There are three remarkable facts for m̄�0: �i� the conduc-
tivity and the scattering rate always decay monotonically
with size N. �ii� The slope of the nonzero conductivity de-
creases with increasing variance g. In particular, the conduc-
tivity is almost constant for g=10 �cf. Fig. 2�. �iii� At fixed N

the conductivity and the scattering rate increase always with
increasing disorder g. These results for the conductivity also
agree with the findings of the recent numerical simulation of
finite samples with random gap9 although a quantitative
comparison is not possible due to different types of gap ran-
domness: instead of the single parameter g of uncorrelated
randomness in Eq. �4�, the numerical simulation uses corre-
lated randomness with correlator gr−r�. The identification of
g with the sum K0=
rgr may overestimate the strength of
randomness in case of correlated disorder.15 Moreover, our
analytic result allows us to extrapolate to the infinite sample.
This reveals an insulating �gapped� behavior for m̄�mc but
also a metallic behavior for m̄�mc, where mc is determined
for the infinite sample �cf. Table I�.

The size dependence of the conductivity is similar if we
send the width of the sample to infinity and study a variable
sample length L. Then one of the sums in Eq. �4� becomes an
integral that gives

1

L + 1

n=0

L
arctan�2�/��̄2 + 4�2n2/�L + 1�2�

2���̄2 + 4�2n2/�L + 1�2
=

1

g
.

The g and L �or N� dependence for the N�N square sample
and the infinite strip is plotted in Figs. 3 and 4.

Our observations in �i�–�iii� provide a qualitative interpre-
tation of the transport properties in finite graphene samples
in the presence of a random gap. First of all, the expression
of �0 in Eq. �1� implies that the conductivity depends on the
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FIG. 1. Critical gap parameter mc=�4�N
2 + m̄2 in units of the

electronic hopping rate of finite N�N samples as a function of N
for average gap m̄=0.06 and for g=2,4 ,5 ,10. For fixed N the criti-
cal gap parameter mc increases with increasing disorder strength g.
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FIG. 2. Minimal conductivity �0 �in units of e2 /h�� of finite
N�N samples as a function of N for average gap m̄=0.06 and g
=2,4 ,5 ,10. For fixed N the conductivity increases with increasing
disorder strength g.

TABLE I. Critical gap parameter and minimal conductivity of
the infinite sample for average gap m̄=0.06. �For this calculation
the area of integration is approximated in Eq. �3� by k2	1.�

g mc

�0

�e2 /�h�

2 0.06 0

4 0.06 0

5 0.09 0.78

10 1.12 0.98
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random gap only through the average gap m̄ and the scatter-
ing rate �. � itself is determined by Eq. �3� �infinite sample�
or by Eq. �4� �finite sample�, respectively, as a function of m̄
and of the variance of the gap fluctuations g. There is no
effective gap as long as the scattering rate is positive since
the conductivity is nonzero. The fact that at fixed m̄ the scat-
tering rate increases with increasing g is indicative of an
increasing density of states near the Dirac point due to dis-
order since gap fluctuations allow the appearance of addi-
tional states. It is less obvious whether these states are local-
ized or extended although the increasing conductivity with
increasing g supports the latter. The constant conductivity for
m̄=0 can be understood as a balanced interplay of an in-
creasing density of states near the Dirac point and a decreas-
ing diffusion coefficient due to gap fluctuations. Our scaling
relation in Eq. �2� yields a linear decay of the conductivity

when mc is approached. This is in agreement with a recent
numerical simulation for Dirac fermions with a uncorrelated
random mass.16 It remains an open question whether or not
the linear behavior of the conductivity near mc is universal
with respect to different types of disorder or other details of
the model on short scales.

In conclusion, we have found that transport in finite
graphene samples with random gap is enhanced by the gap
fluctuations. In particular, the dc conductivity at fixed aver-
age gap increases with increasing variance. The samples are
metallic for sufficiently small but nonzero average gap. On
the other hand, the conductivity always decreases with in-
creasing sample size.
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FIG. 3. Minimal conductivity �0 �in units of e2 /h�� as a func-
tion of disorder strength g for a fixed size N�N with N
=40,50,60,80,100. Larger values of N require larger values of g
for the same conductivity.
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FIG. 4. Minimal conductivity �0 �in units of e2 /h�� as a func-
tion of disorder strength g for infinite width and finite lengths L
=40,50,60,80,100. Larger values of L require larger values of g
for the same conductivity.
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