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1. Introduction

Graphene is a single sheet of carbon atoms tightly packed into
a two-dimensional (2D) honeycomb lattice. This material has
recently become available for experimental study [1,2], and its
exotic electronic properties are attracting a lot of interest [3]. In
particular, the conical shape of conduction and valence bands,
together with the absence of a gap, near the K and K0 points in the
Brillouin zone renders graphene an intriguing type of quasi-
relativistic condensed-matter system [4]. Recent experiments
have verified that the band dispersion of charge carriers in
graphene is indeed linear as expected for massless Dirac fermions
[5,6]. A multitude of interesting physical effects arising in single-
layer and bilayer graphene samples have been discussed [3], both
theoretically and experimentally.

In this work, we focus on the ac electric transport properties of
graphene, which have been the subject of numerous theoretical
(mostly numerical) studies [7–28] and several recent experiments
[29–34]. Measurements of quantities related to the optical
conductivity are expected to give deeper insight into the
electronic properties of graphene samples, making it possible to
infer details of their morphology [33,28] and suitability
for applications. It is thus important to obtain a clear
understanding of the features exhibited in the frequency-
dependent conductivity, in particular, their relation to microscopic
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parameters and behavior at finite temperature T. Furthermore, it
is advantageous to have mathematical expressions available
that can be straightforwardly used for comparison with data.
This is the motivation for our study. We have developed a
formalism that lends itself for generalization to many situations,
in particular, the treatment of inelastic scattering. Extrapolation
to zero frequency will enable us to discuss the dc conductivity,
shedding new light on the phenomenon of minimal conductivity
in graphene. The full range of our results will be presented
elsewhere; here we focus on discussing the method and present
selected results.
2. Calculation of the conductivity: basic formalism

Our starting point is the familiar [35] Kubo formula

smnðoÞ ¼
Z 0

�1

dteiðo�i0þ ÞtKmn; ð1Þ

with the kernel

Kmn ¼
ie

‘
Tr e�iHt=‘ jmeiHt=‘ ½rn;R�
n o

: ð2Þ

Here jm ¼�e_rm � ð�e=‘ Þi½H; rm� is the current operator, and R the
density matrix. An alternative expression for the kernel [35],

Kmn ¼

Z 1=kBT

0
dlTr e�iHt=‘ jmeiHt=‘ e�lHjne�lHR

n o
; ð3Þ

will become particularly useful to enable discussion of the effect
of inelastic scattering. When quasiparticle interactions are
neglected, it is possible [12] to express the conductivity in terms
of matrix elements between eigenstates jnS of the single-particle
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Hamiltonian having energy en:

smnðoÞ ¼
e2

i‘

X
n;n0

/nj½H; rm�jn0S/n0j½H; rn�jnS
ðen0�enÞðen0�enþ‘o�i0þ Þ

½f ðenÞ�f ðen0 Þ�: ð4Þ

Here f ðeÞ ¼ 1=ð1þexpf½e�m�=½kBT�g denotes the Fermi function,
which depends on the chemical potential m. In the following, we
use the expression (4) to derive conductivity formulae applicable
to graphene.

2.1. Clean limit: plane-wave representation

Using continuum-model descriptions of the band structure near
the K- points, single-particle eigenstates of clean graphene systems
can be written as a direct product of a plane wave
in real space and a 2N- spinor (the latter subsuming the two sub-
lattice and N layer-index degrees of freedom): jnS¼ jkS� jsSk. In
single-layer graphene, s distinguishes the two (electron
and hole) bands. Note that the spinor wave function depends on
wave vector k. The current operator jm or, equivalently, the
commutator ½H; rm�, is diagonal in the real-space part jkS while
having off-diagonal matrix elements in pseudospin space. It is then
straightforward to specialize Eq. (4) to this case, finding

smn ¼
e2

i‘

X2N

s;s0

Z
d2k

ð2pÞ2
/sjwmðkÞjs0Sk/s0jwnðkÞjsSk

eks0�eksþ‘o�i0þ
f ðeksÞ�f ðeks0 Þ

eks0�eks
:

ð5Þ

Here wmðkÞ is found from ½H; rm�jkS¼wmðkÞjkS. Two contributions
to the conductivity can be distinguished, arising from terms with
s¼ s0 and sas0, respectively. It is customary to call these the
intra-band and inter-band contributions. Defining wss0

m ðkÞ ¼
/sjwmðkÞjs0Sk, we find

sðintraÞ
mn

s0
¼

dð‘oÞ
2

X2N

s

Z
d2kwðssÞm ðkÞw

ðssÞ
n ðkÞf

0ðeksÞ; ð6Þ

sðinterÞ
mn

s0
¼

sinh
‘o

2kBT

� �
2‘o

X
sas0

Z
d2kdð‘o�½eks�eks0 �Þ

�
�wðss

0Þ
m ðkÞwðs

0sÞ
n ðkÞ

cosh
‘o

2kBT

� �
þcosh

eksþeks0�2m
2kBT

� � : ð7Þ

For brevity, we use the scale factor s0 ¼ ge2=ð2p‘ Þ, where g ¼ 4 has
been introduced to account for the quasiparticle degeneracy (real
spin and valley) in graphene. The intra-band term (6) is the usual dc
Drude conductivity, which depends on states in the vicinity of the
Fermi surface where the derivative f’ of the Fermi function is
peaked. It vanishes at the neutrality point ðm¼ 0Þ in the zero-
temperature limit. The inter-band contribution (7) is the interesting
part for finite o. It is calculated straightforwardly using continuum-
model descriptions of single-layer and bilayer graphene. The
expression (7) given here is well-suited for obtaining analytical
results for the dependence on temperature but cannot be used to go
beyond the clean limit. To discuss the effect of disorder, a more
general formula is needed that will be given in the next subsection.

2.2. General conductivity formula in terms of Greens functions

Mathematical manipulation of Eq. (4) yields the conductivity
expressed in terms of single-particle Greens functions [12,13,22].
It has the general form

smnðoÞ
s0

¼

Z 1
�1

deT mnðe;oÞ f eþ ‘o
2

� �
�f e�‘o

2

� �� �
: ð8Þ
We have derived a new and, for our purposes, more convenient
expression for the diagonal part of the frequency-dependent
transmission function,

T mmðe;oÞ ¼ Fm
‘o

2
�e�i0þ ;�

‘o
2
�e�i0þ

� �

�Fm
‘o

2
�e�i0þ ;�

‘o
2
�eþ i0þ

� �
þc:c:; ð9Þ

given here in terms of functions

Fmðz; z
0Þ ¼

‘o
4

X
r

r2
mTrslfGrðzÞG�rðz

0Þg: ð10Þ

Gðr; r0; zÞ � Gðr�r0;0; zÞ ¼ : Gr�r0 ðzÞ is the real-space representation
of the single-particle Greens function in a translationally invariant
system, and the trace Trsl is performed only over sublattice and
layer degrees of freedom.

It is straightforward to specialize the general conductivity
formula obtained in this subsection to the clean limit. Performing
a Fourier transformation and using the fact that the single-particle
Hamiltonian H-Hk becomes diagonal in real space, we find

Fmðz; z
0Þ ¼

‘o
16p2

Z
d2kTrsl GkðzÞ

@2Hk

@k2
m
�2

@Hk

@km
GkðzÞ

@Hk

@km

" #
GkðzÞGkðz

0Þ

( )
:

ð11Þ

Here GkðzÞ ¼ ðHk�zÞ�1 is the single-particle Greens function in
reciprocal-space (plane-wave) representation. Application to
graphene yields the same results as obtained more easily using
formulae from the previous subsection. However, Eq. (8) turns out
to be very useful beyond the clean limit.
3. Single-layer graphene in the clean limit

We apply the continuum-model description of a single sheet of
graphene to evaluate the conductivity formula (7). The single-
particle Hamiltonian in plane-wave representation is given by
[36,37]

Hsg ¼ ‘vðkxsxþkysyÞþt½ðk2
y�k2

x Þsxþ2kxkysy�; ð12Þ

where v is the Dirac-fermion velocity characterizing the dispersion
near the K point, and the term proportional to t is a trigonal-warping
correction to the band structure. Straightforward diagonalization of
Hsg yields eigenvalues eðsgÞ

ks , where s¼ 7 distinguishes the electron
and hole bands. As eðsgÞ

ks ��e
ðsgÞ
k;�s, the dependence on temperature and

chemical potential is universal, i.e., independent of the values of v and
t. The remaining dimensionless prefactor is only a function of o, v, t
and, by simple dimensional analysis, can therefore only depend on
these through the combination ot=ð‘v2Þ. The expression for the
conductivity reads then

sðinterÞ
mn

s0
¼ g

‘o
2kBT

;
m

kBT

� �
Umn

ot
‘v2

� �
YðoÞ; ð13Þ

where Y is the Heaviside step function, and we introduced the
abbreviation

gðx;ZÞ ¼ sinhx
coshxþcoshZ

: ð14Þ

It is found that Uxy ¼ Uyx ¼ 0 and

UxxðxÞ
UyyðxÞ

)
¼ 2

Z
d2k

k2
y 1�2x½kxþxk2�
� 	2

ð1þ2xkxÞ
2
ðkx�xk2Þ

2

8<
:

9=
;d 1�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2xkx½k2

x�3k2
y �þx

2k4

q� �
:

ð15Þ

We find numerically that UxxðxÞ ¼ UyyðxÞ � UðxÞ and show this
universal function in Fig. 1. In the limit t-0, the well-known
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Fig. 1. Universal function capturing the effect of trigonal warping on the optical

conductivity of a single graphene sheet. The dashed lines indicate the values of p/8

and p/4, respectively.
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Fig. 2. Interband contribution to the conductivity of clean bilayer graphene

ðt? ¼ 10kBTÞ, with chemical potential at the symmetry point and a finite bias

voltage V ¼ 2kBT=e between the layers (thick solid curve). The zero-bias case is

shown as the thin solid curve. The dashed line indicates the value p=4.
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[13,20,27] universal conductivity of single-layer graphene is found:
Uð0Þ ¼ p=8. In the (for graphene unphysical) limit of large x, a
different saturation value is realized: Uð1Þ ¼ p=4.
4. Bilayer graphene in the clean limit

To describe bilayer graphene, we use the 4� 4 continuum-
model Hamiltonian [16] in plane-wave representation given by

Hbl ¼

eV=2 ‘vðkxþ ikyÞ t? 0

‘vðkx�ikyÞ eV=2 0 ‘v3ðkxþ ikyÞ

t? 0 �eV=2 ‘vðkx�ikyÞ

0 ‘v3ðkx�ikyÞ ‘vðkxþ ikyÞ �eV=2

0
BBBB@

1
CCCCA:

ð16Þ

Here t? and V parameterize the strongest inter-layer hopping and
a potential difference applied between the layers, respectively. v3

measures the strength of an additional inter-layer hopping that
gives rise to trigonal warping. Straightforward diagonalization of
Hbl yields the set of energy eigenvalues eðblÞ

ks , with s¼ 1, 2, 3, 4.
These eigenvalues can be grouped into two pairs that add
up to zero. Assuming without loss of generality that
eðblÞ

k1 oeðblÞ
k2 reðblÞ

k3 oeðblÞ
k4 , we have eðblÞ

k1 ¼�e
ðblÞ
k4 and eðblÞ

k2 ¼�e
ðblÞ
k3 . This

means that there are two contributions of the type encountered in
the single-layer case. Depending on the situation, the remaining
four contributions can be simplified as well. Here we just give the
analytical result obtained for the case with zero inter-layer bias
and trigonal warping neglected (V ¼ 0 and v3 ¼ 0). We find
sðinterÞ

xx ¼ sðinterÞ
yy � s1þs2þs3, where

s1

s0
¼
p
8

g
‘o

2kBT
;
m

kBT

� �
‘oþ2t?
‘oþt?

YðoÞþ ‘o�2t?
‘o�t?

Yðo�2t?=‘ Þ
� �

;

ð17Þ

s2

s0
¼
p
8

t?
‘o

� �2

Yðo�t?=‘ Þ g
‘o

2kBT
;
2m�t?
2kBT

� �
þg

‘o
2kBT

;
2mþt?
2kBT

� �� �
;

ð18Þ

s3

s0
¼

t?
‘
dðo�t?=‘ Þ

Z 1
t?=2kBT

dk
k g

t?
2kBT

;
m

kBT
�k

� �
þg

t?
2kBT

;
m

kBT
þk

� �� �
:

ð19Þ

This result generalizes a previous expression [23] obtained for the
zero-temperature limit. In Fig. 2, we show the effect of a finite
inter-layer bias V.
5. Conclusions

We have studied the ac conductivity of single and bilayer
graphene. Analytical results were obtained for finite temperature
and with trigonal warping included. Our expressions should be
useful to facilitate detailed comparison with experiment and
enable extraction of electronic-structure parameters from con-
ductivity measurements.
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